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Abstract—To evaluate the unitary integrals, such as the well-
known Harish–Chandra–Itzykson–Zuber integral, character ex-
pansions were developed by Balantekin, where the matrix inte-
grand is a group member; i.e., a square matrix with a nonzero de-
terminant. Recently, this method has been exploited to derive the
joint eigenvalue distributions of the Wishart matrices; i.e.,
where is the complexGaussian random channel matrix of amul-
tiple-input multiple-output (MIMO) system. The joint eigenvalue
distributions are used to calculate the moment generating function
of the mutual information (ergodic capacity) of a MIMO channel.
In this paper, we show that the previous integration framework
presented in the literature is not correct, and results in incorrect
joint eigenvalue distributions for the Ricean and full-correlated
Rayleigh MIMO channels. We develop a new framework to apply
the character expansions for integrations over the unitary group,
involving general rectangular complex matrices in the integrand.
We derive the correct distribution functions and use them to obtain
the capacity of the Ricean and correlated Rayleigh MIMO systems
in a unified and straightforward approach. The integration tech-
nique proposed in this paper is general enough to be used for other
unitary integrals in engineering, mathematics, and physics.

Index Terms—Character expansion, Gaussian random ma-
trix, group representation, MIMO capacity, unitary integration,
Wishart matrix.

I. INTRODUCTION

M ULTIPLE-INPUT multiple-output (MIMO) systems,
which deploy antenna arrays at both the transmitter

and receiver, provide high-capacity and high-quality wireless
communication links [1], [2]. MIMO systems have been inves-
tigated from a variety of aspects including the ergodic capacity
[1] and the outage probability [3], by exact or asymptotic
analysis [4], [5]. In the case of exact analysis, several results
regarding the distribution of the channel matrix have been
presented in the literature. It is shown that in an independent
and identically distributed (i.i.d.) Rayleigh fading channel, the
capacity of a MIMO system with transmit antennas and
receive antennas scales almost linearly with the
in the high signal-to-noise ratio (SNR) regime [1].
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The capacity of MIMO systems is commonly analyzed by
using the moment generating function (MGF) of the mutual in-
formation between the transmitter and receiver, for various as-
sumptions about the statistics of the channel matrix. The first
derivative of the MGF yields the ergodic capacity, and the prob-
ability of outage can be derived through a simple numerical in-
tegral [6]. The outage mutual information for Gaussian uncorre-
lated channels, obtained by using the MGF, is presented in [3],
and the capacity of MIMO systems can be found in [7] when
the channel is Ricean, and in [8] and [9] when the channel is
semi-correlated Rayleigh; i.e., either the transmit antennas or
the receive antennas are correlated. The case that the number of
correlated antennas is less than or equal to the number of uncor-
related antennas is analyzed in [8], and the opposite case in [9].
All these works are based on the available results in the theory
of Wishart random matrices is a Wishart matrix when
is a complex Gaussian matrix). The joint probability density

function (pdf) of the eigenvalues of the Wishart matrix, derived
in [10] in the form of a hypergeometric function with matrix ar-
guments, is typically used in the literature to obtain the MGF of
the mutual information.
Recently, the character expansion method, introduced by

Balantekin [11], has been used in [12] for the capacity anal-
ysis of the full-correlated1 Rayleigh MIMO channel when

, and in [13] for the capacity analysis of the Ricean,
and semi-correlated2 and full-correlated Rayleigh MIMO chan-
nels with arbitrary numbers of transmit and receive antennas.
These studies use character expansions to calculate the inte-
grals over the unitary group, which are essential for obtaining
the joint eigenvalue distributions of Wishart matrices [14]. In
fact, unitary integrals have many applications in physics [15],
[16]–[17], mathematics [18], and engineering [19]. In 1984,
Balantekin presented a combinatorial formula for the character
expansions of the group (the group of unitary matrices
with dimension ) [20], and later he generalized those results
in [11] and used the character expansions to simplify the
integrations over the unitary group, in particular, to derive the
well-known Harish–Chandra–Itzykson–Zuber integral [18],
[21]. The integration steps presented by Balantekin [11] are as
follows:
1) Expansion of the integrand by using the character expan-
sion method.

2) Integration over unitary matrices by using the available
results on the unitary group.

3) Re-summation of the expansion by using the
Cauchy–Binet formula.

1Both the transmit and receive antennas are correlated.
2Only the transmit or the receive antennas are correlated.
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In Balantekin’s work, the coefficient matrices appearing in the
integrand are nonzero-determinant square matrices. However,
when the channel matrix is non-square, integrals appear over
unitary matrices with rectangular coefficient matrices

. To handle this problem, the following integra-
tion steps are proposed in [13]:
1) Assume so that the matrix integrand is a group
member.

2) Apply Balantekin’s three-step method to calculate the uni-
tary integrals.

3) Find the limit of the final result when eigenvalues
approach zero.

This integration method has been used in [13] to derive the
joint pdf of the eigenvalues for the Ricean and semi-correlated
Rayleigh channels when , and the full-correlated
Rayleigh channel when . However, the joint eigenvalue
distribution of the Ricean case is incorrect [7], [17]. In fact,
it was observed in [17] (without providing any solution) that
the above integration method produces incorrect results when
applied to multiple unitary integrals with unequal dimensions
(e.g., the Ricean and full-correlated Rayleigh MIMO channels
when ).
In this paper, we first briefly introduce the MIMO system

model, capacity formula, and character expansions of groups.
By applying the character expansion method, we calculate four
useful unitary integrals to develop our main tools for unitary
integrations with rectangular complex coefficient matrices in
the integrand. These results are the generalizations of the clas-
sical unitary integrals so that the coefficient matrices are not re-
stricted to Hermitian, positive definite, diagonal and/or real ma-
trices. We use the results of the unitary integrals to derive the
joint eigenvalue distributions of the Ricean and full-correlated
Rayleigh MIMO channels with arbitrary numbers of transmit
and receive antennas. The joint eigenvalue distribution of the
full-correlated non-square MIMO channel is a new result in
random matrix theory [22]. By employing the derived eigen-
value distributions, we calculate the MGF of the mutual in-
formation and the capacity for the Ricean and full-correlated
Rayleigh MIMO channels.
To make the paper self-content, we provide some examples

of applying the integration method proposed in [13] to compare
with the results in this paper, and justify the observation in [17].
In particular, we show that the MGF of the mutual information
(and consequently the capacity) for the full-correlated Rayleigh
MIMO channel is correctly obtained in [13] (Remark 3).
The integration steps along with the auxiliary propositions

and lemmas presented in this paper, enabling the derivation
of the joint eigenvalue distributions and MIMO capacity in
a unified approach, are the main contributions of this paper.
Furthermore, the proposed integration framework is a powerful
and straightforward tool for evaluating other unitary integrals
in communications, mathematics, and physics.

II. MIMO SYSTEM MODEL AND CAPACITY

Consider a narrow-band, flat-fading communication system
with transmit and receive antennas .

The linear transformation between the transmit and receive an-
tennas can be modeled as

(1)

where is the complex received vector,
is the transmitted vector, is the additive noise, and

is the channel matrix. To obtain the capacity, we
assume the entries of both vectors and are i.i.d. complex
Gaussian random variables with zero mean and unit variance,

. Thus, , where and denote the
expectation and Hermitian (transpose conjugate), and is the
identity matrix. Consequently, will be the average transmitted
power at each signaling interval from each antenna.
Assuming that the channel matrix is known to the receiver

only, the mutual information between the transmitter and re-
ceiver is obtained by

(2)

where denotes the natural logarithm. By defining the
MGF of as

(3)

and assuming that the channel matrix is updated for each trans-
mission (fast fading), the ergodic capacity of the system is ob-
tained by direct differentiation of :

(4)

The generating function can be written in terms of the eigen-
values of the matrix as

(5)

where , and is the
joint pdf of the nonzero eigenvalues of . Assuming the
singular value decomposition of as , where

, , and , it is
shown that [14]

(6)

where , the integrals are over all unitary
matrices and , and denotes the standard Haar measure
of [23]. In addition, is the joint pdf of the elements
of ,

(7)
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and

(8)

is the Vandermonde determinant of vector . ( de-

notes the determinant of a matrix with the th element given
by , and the subscript under the determinant is the dimen-
sion of the argument matrix.)
Accordingly, for different channel statistics, the corre-

sponding should be inserted into (6), and the integrals
over the unitary matrices should be calculated. The resulting

can then be used to obtain the MGF of the mutual infor-
mation, , and, consequently, the capacity.

III. CHARACTER EXPANSIONS OF GROUPS

The group of unitary matrices is a subgroup of
the group of complex invertible matrices, . A
–dimensional representation of the group is a homo-
morphism from into the . A –dimensional
representation of is irreducible if it has no non-
trivial invariant subspaces. The irreducible representations of

can be labeled by the –dimensional ordered sets
, where are

integers. The dimension of the irreducible representation
is given by [24]

(9)

where the matrix elements inside the determinant with
are zero. Another useful formula for is

[13]

(10)

where for .
The character of a group element in its rep-

resentation is defined by Weyl’s character formula as [25]

(11)

where denotes the representation matrix of , and
are the eigenvalues of . In this case, the fol-

lowing equation holds for [11]:

(12)

where , the summation is over all irre-
ducible representations of , and the expansion coeffi-
cient is defined as

(13)

Lemma 1: The orthogonality relation between the unitary
group matrix elements implies that [23]

(14)

where denotes the th element of the representation
matrix of , and is the dimension of the representation.

Proposition 1: Assume , , and
and are two representations of . Then, [26]

Proposition 2: Assume , , and
is a representation of . Then, [26]

IV. UNITARY INTEGRATION BY CHARACTER EXPANSIONS

To develop our main tools for unitary integration by character
expansions, we calculate the following four unitary integrals in
this section:
1) The unitary integral

(15)

where , , , and
are complex matrices with rank ,

and is a complex scalar, is equal to

(16)

where and represent the eigenvalues of
the matrices and , respectively.

2) The unitary integral

(17)

where , and are
complex matrices with rank , and

are complex matrices with rank ,
and is a complex scalar, is equal to

(18)

where , and represents the
nonzero eigenvalues of the matrix .
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3) The double unitary integral

(19)

where , , and
are complex matrices with rank

, and is a complex scalar, is equal to

(20)

where represent the eigenvalues of the ma-
trices and , respectively.
To our best knowledge, this integral was previously known
only for the case that and [10], [17], [27].

4) The double unitary integral

(21)

where , , ,
, and are complex

matrices with rank , and is a complex
scalar, is equal to

(22)

where represents all irreducible representations of
, and and represent the

eigenvalues of the matrices , , and , respectively.
To our best knowledge, this integral has been solved in the
literature only when , , and and are
positive definite Hermitian matrices [12], [13].

A. Calculation of

We start with the Harish–Chandra–Itzykson–Zuber integral
[18], [21], defined as

(23)

where , , and is a scalar.
By absorbing into and applying the character expansion
formula (12), we obtain

(24)

(25)

(26)

where (25) is achieved by applying Proposition 2, and (26) is the
result of substituting from (13) and the characters from (11).

The vectors and
represent the eigenvalues of the matrices and , respectively.
Thus,

(27)

where . Considering the fact that

and by applying the Cauchy–Binet formula (Lemma 3 in
Appendix A), we have

(28)

By replacing by or, equivalently, replacing by in
(28), we conclude that

(29)

Now, assume eigenvalues of matrix in (24) ap-
proach zero. To find

one can directly apply Lemma 5 (Appendix B) to (28) to obtain
(35) [13], [17]. On the other hand, from (25), we have

(30)

Calculation of (30) requires the following results:

Proposition 3: Assume with eigenvalues
, and is a representation of .

Then,
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where is the matrix with eigenvalues
, and is a representation of .

(See Appendix C for proof.)

According to Proposition 3, the summation terms in (30) are
nonzero only if , where .

Proposition 4: Assume and
are irreducible representations of and , re-
spectively. Then,

(31)

(32)

(33)

where and are the corresponding expansion
coefficients defined in (13), and and are the corre-
sponding dimensions of the representations defined in (9). (See
Appendix D for proof.)

Applying Propositions 3 and 4 to (30) gives

(34)

where . By considering the power series ex-
pansion of , and applying the generalized Cauchy–Binet
formula (Lemma 4 in Appendix A), we obtain

(35)

Replacing by or, equivalently, replacing by in (35)
gives the result for in (16).

Remark 1: According to Propositions 1 and 2, the result of a
unitary integral over is determined by the dimension of its
corresponding representation . On the other hand, Propo-
sitions 3 and 4 reveal that performing the limit on the zero eigen-
values shrinks to , to , and to . However,
it does not shrink to . Therefore, any assumption on the
dimensions of the matrices, that changes the dimension of the
unitary matrix, produces an incorrect result for the original uni-
tary integral even after applying the limit.

Example 1: Consider the case in which in (15).
Consequently, the matrix has a full rank of . Therefore,

On the other hand, one may follow the approach in [13] and set
to be equal to . Thus, the matrices and have a full

rank of , which results in

(36)

The next step is to find the limit of (36) when eigenvalues
of both matrices and approach zero. Applying Lemma 5
(Appendix B) to (36) gives

Interested readers may refer to Appendix F for more examples.

B. Calculation of

The second unitary integral examined in this paper is

(37)

where , , and is a complex
scalar. Absorbing into and , and applying the character
expansion formula (12) yields

(38)

(39)

(40)

where (39) is obtained by applying Proposition 1, and (40) is the
result of substituting and from (13), and the character

function from (11). The vector repre-
sents the eigenvalues of matrix . Thus,
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where . Considering the power series expansion
of the modified Bessel function as

(41)

and applying the Cauchy–Binet formula (Lemma 2 in
Appendix A) gives

Since , and by replacing by , we have

(42)

Now, assume eigenvalues of matrix in (38) ap-
proach zero. To find

one can directly apply Lemma 5 (Appendix B) to obtain (45).
On the other hand, applying Propositions 3 and 4 to (39) gives

(43)

(44)

where . Considering the power series expan-
sion of (41), and by applying the Cauchy–Binet formula
(Lemma 2 in Appendix A), we obtain

(45)

Replacing and by and , respectively, or, equiv-
alently, replacing by in (45) gives the result for
in (18).

C. Calculation of

By absorbing into and in (19), the integral over
in is equivalent to . Since the –dimensional matrices

and have rank , we use the result of in
(43) to obtain

(46)

where the last equality is achieved by applying Proposition 2.
Thus, substituting from (11), (13), and (33) gives

where , and are the eigenvalues of
the matrices and , respectively. Considering the power
series expansion of (41), and applying the Cauchy–Binet
formula (Lemma 3 in Appendix A) yields

(47)
Replacing by in (47) gives the result for in (20).

D. Calculation of

By absorbing into in (21), the integral over in is
equivalent to . Since the –dimensional matrix
has rank , we use the result of in (34) to obtain

(48)

where the last equality is achieved by applying Proposition 2.
Thus, substituting from (10), (11), and (33) gives

(49)

where , and and represent
the eigenvalues of the matrices , , and , respectively.
Although it is possible to generalize the Cauchy–Binet formula
(Appendix A) to the cases of three or more determinants in the
summation, since in (49) cannot be represented as a multi-

plication of any function of ’s, it seems (49) cannot be further
simplified.
Replacing by or, equivalently, replacing by gives

the result for in (22).

V. MIMO CAPACITY ANALYSIS

In this section, we use the results of the unitary inte-
grals, derived in Section IV, to obtain the capacity for the
Ricean and full-correlated Rayleigh MIMO channels. Without
loss of generality, we assume or, equivalently,

and .



2956 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 5, MAY 2012

Accordingly, the results in this section can be used for
by replacing the corresponding parameters.

A. Ricean MIMO Channel

In this scenario, the channel matrix can be modeled as
, where denotes the mean matrix, and is the stan-

dard Rayleigh matrix; i.e., all elements of are i.i.d.
random variables. In this case,

where are the nonzero eigenvalues of
the matrix , and the second equality comes from

. Thus, from (6), we have

(50)

The double unitary integral in (50) is similar to . Therefore,
by employing in (20), the joint eigenvalue distribution of
the Ricean MIMO channel is obtained as

(51)

where

and

Substituting (51) into (5) gives

(52)

where the second equality comes from (64) (Appendix E), and
the last equality comes from (65). Therefore,

(53)
Differentiating (53) with respect to (Appendix E) yields

(54)

where

if ; and

if ; and is the confluent hypergeometric func-
tion [28].

Remark 2: In the case that some of nonzero eigenvalues
of the matrix are equal, one can use Lemma 5 in
Appendix B to obtain the appropriate joint eigenvalue distri-
bution. One such example occurs when the MIMO channel
is an i.i.d. Ricean fading channel, where the elements of the
mean matrix are equal or, equivalently, the elements of
the channel matrix are i.i.d. random variables (
is a complex constant). Therefore, is the only
nonzero eigenvalue of the matrix . By applying Lemma
5 to (51), the joint pdf of the eigenvalues for the i.i.d. Ricean
MIMO channel is obtained as

where

and

, if

, if .

Following the same procedure as in (52) gives

(55)

Differentiating (55) with respect to (Appendix E) results in

where
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if , ;

if , ;

if , ; and

if , .

B. Full-Correlated Rayleigh MIMO Channel

In this scenario, the channel matrix is correlated at both
sides of the communication link. Thus, it can be modeled as

, where and denote the receiver and trans-
mitter correlation matrices, respectively, and is the standard
Rayleigh matrix; i.e., all elements of are i.i.d.
random variables. In this case,

where , and the second equality
comes from . Thus, from (6), we have

(56)

The double unitary integral in (56) is similar to . Therefore,
by employing in (22), the joint eigenvalue distribution of
the full-correlated Rayleigh MIMO channel is obtained as

(57)

where

(58)

is independent of , , ,
represents the eigenvalues of or , whichever

has the dimension , and represents the eigenvalues
of or , whichever has the dimension .
Since in the correlated scenario, we absorb

the transmit power factor into to simplify the calculation
of the MGF. Considering the fact that

and by applying Leibniz formula (64) (Appendix E) to expand
the determinants in (57), we can write

(59)

where the last equality comes from (65). By following the same
approach as in [13, Section V-A], and taking the integrals in
(59) by parts, times, we have [29]

(60)

(61)

where the last equality is obtained by substituting from (58).
By replacing by , and applying the generalized

Cauchy–Binet formula (Lemma 4 in Appendix A), according
to the fact that
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Fig. 1. The capacity of Ricean MIMO channels with .

we conclude that

(62)

where

and

and is the upper incomplete Gamma function [28]. Note
that for integer , we have

Differentiating (62) with respect to (Appendix E) yields

(63)

where

Fig. 2. The capacity of i.i.d. Ricean MIMO channels at SNR=10 dB with
distribution.

if ; and

, if

, if .

Remark 3: In this section, we used the joint eigenvalue dis-
tribution of the full-correlated MIMO channel, derived in (57),
to calculate . As a result, the term , which is the re-

sult of the unitary integral over (48, 49), is omitted in (60),
and the summation in (61) takes the form of the generalized
Cauchy–Binet formula (Lemma 4 in Appendix A).
On the other hand, Lemma 4 is derived [29] by taking the

limit of both sides of the Cauchy–Binet formula (Lemma 3 in
Appendix A), when elements of the vector approach
zero. Therefore, to calculate a summation with the form of
Lemma 4, one can directly apply Lemma 4, or apply Lemma 3
by assuming , and then, find the limit of the result
when elements of vector approach zero.
In [13], the authors derive for the full-correlated case

by assuming , and use it to obtain by employing
Lemma 3. In the end, they apply the limit on the zero
eigenvalues to obtain for . Hence, the MGF of
the mutual information (and the capacity) for the full-correlated
Rayleigh MIMO channel is correctly derived in [13].

VI. SIMULATION RESULTS

To verify the analytical expressions of the capacity with the
simulation results, we include four figures in this section, each
one demonstrating the results for MIMO systems with
transmitter antennas and , 4, and 5 receiver antennas. In
all figures, the solid curves are from analytic expressions, and
the symbols are obtained by computer simulations.
• Fig. 1 shows the capacity of MIMO systems versus SNR

when the channel is Ricean fading. Here, the eigen-
values of the matrix are .

• Fig. 2 shows the capacity of MIMO systems at
when the channel is i.i.d. Ricean fading, and all elements
of the channel matrix have distribution.
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Fig. 3. The capacity of full-correlated Rayleigh MIMO channels with
and .

• Fig. 3 shows the capacity of MIMO systems versus SNR
when the channel is full-correlated Rayleigh fading. The
elements of the correlation matrices and are generated
from the following expression [13]:

where in degrees is the angle spread, measured from the
vertical to the linear antenna array, and is
the normalized minimum distance between antennas ( is
the signal wavelength). The results in Fig. 3 are obtained
by assuming and .

• Fig. 4 shows the capacity of MIMO systems at
when the channel is full-correlated Rayleigh fading. Here,
the results are obtained by assuming .

As observed, the results from analytic expressions are con-
sistent with the results from simulations, which verifies our
analysis.

VII. CONCLUSIONS

Unitary integrals appear in several fields of science and en-
gineering. In this paper, we showed that changing the dimen-
sion of the unitary matrix produces incorrect result for the orig-
inal unitary integral even after applying the limit. We developed
a precise framework to use the character expansions for inte-
grations over the unitary group, where the coefficient matrices
appearing in the integrand can be general rectangular complex
matrices. We solved some of the well-known but not solved in
general form unitary integrals to obtain the joint eigenvalue
distributions (and the capacity) for the Ricean and correlated
Rayleigh MIMO channels. Although some of the results of this
paper have been derived before in the literature (using con-
siderably more complicated methods), this paper demonstrates
the power and neatness of the character expansion method to
obtain those results in their general forms. The approach pre-
sented in this paper can be used to solve other unitary integrals
accordingly.

Fig. 4. The capacity of full-correlated Rayleigh MIMO channels at SNR=10
dB with .

APPENDIX A
GENERALIZED CAUCHY–BINET FORMULA

The following two lemmas have been proved in [30] as the
Cauchy–Binet formula:

Lemma 2: Given vector with dimension , and power
series expansions convergent for ,
then if for all , one can write

where represents all irreducible representations of
.

Lemma 3: Given vectors and with dimension , and
a power series expansion convergent for

, then if for all , one can write

where represents all irreducible representations of
.

In the case of unequal dimension vectors and , we have
Lemma 4 [26].

Lemma 4 (Generalized Cauchy–Binet Formula): Given
vectors and with dimensions and , respectively

, and a power series expansion
convergent for , then if for all
and , one can write
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where represents all irreducible representations of
.

APPENDIX B
GENERALIZED L’HÔPITAL RULE

Lemma 5: If we define

then, [30]

where

and denotes the th derivative of the function .

APPENDIX C
PROOF OF PROPOSITION 3

Proof: Since , we define

and apply Lemma 5 in Appendix B to the
character function (11) to obtain

where

Note that all entries of with are zero.
As observed, all diagonal entries of from

are in the form of . Therefore, if ,
then , unless . In

this case, by defining , we have

where

...
. . .

...

and

...
. . .

...
...

...

By column factoring of , we obtain

independent of [31]. Therefore,

where is the matrix with eigenvalues
.

APPENDIX D
PROOF OF PROPOSITION 4

Proof: From the definition of in (13), and noting that
the matrix elements inside the determinant with
are zero, we have

where for , and

...
...

...
. . .

...
...

so that . Thus,

From (13), we have
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Thus,

and, by using (13) once more,

APPENDIX E
LEIBNIZ FORMULA FOR DETERMINANTS

The Leibniz formula for the determinant expansion [31] is as
follows:

(64)

(65)

where the vector is a permutation of
integers , if the permutation is even,

if the permutation is odd, and the summation is over
all possible permutations.
In addition, from (64), we have

where

, if

, otherwise.

APPENDIX F

Example 2: By following the approach in [13] and setting
, from (46), we have

(66)

(67)

The next step is to find the limit of when eigen-
values of both matrices and approach zero. Applying
Propositions 3 and 4 to (66) gives

(68)

(69)

where is derived in (46) and (47), corresponding to (68)
and (69), respectively.
As explained in Remark 1, increasing the dimension of the

integral over from to generates the incorrect results in
(68) and (69). Consequently, the joint eigenvalue distribution of
the Ricean MIMO channel in [13, Eq. (52)], obtained based on
(69), is incorrect [7], [10]. Interested readers may calculate [13,
Eq. (52)] for a MIMO system with and , which
results in a non-pdf function.

Example 3: By setting , from (48), we have

(70)

The next step is to find the limit of when eigen-
values of both matrices and approach zero. Applying
Propositions 3 and 4 to (70) gives

(71)

where is derived in (48). Similar to Example 2, increasing
the dimension of the integral over from to generates the
incorrect result in (71).
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