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Yamuna Dhungana, Nandana Rajatheva, Senior Member, IEEE, and Chintha Tellambura, Fellow, IEEE

Abstract—For a multiple antenna land mobile satellite (LMS)
communication system with a terrestrial relay node, the system
performance when channel state information (CSI) is not avail-
able at the source and the relay is analyzed. The system employs
orthogonal space time block code (OSTBC) encoding with fixed
gain amplify and forward (AF) relaying. The moment generating
function (MGF) and first and second moments of the signal-to-
noise ratio (SNR) at the destination are derived in exact closed
form. The average symbol error rate (SER) and the amount of
fading (AoF) of the system are also derived.

Index Terms—Hybrid satellite-terrestrial, cooperative relay,
amplify and forward, fading channels, MIMO, moment generat-
ing function, outage probability, symbol error rate.

I. INTRODUCTION

INTEGRATING satellite networks with terrestrials net-
works improve coverage for low-density populations and

high data rate services for high-density populations in urban
environments [1], [2]. The concept and advantages of coop-
erative communication in hybrid satellite-terrestrial networks
were originally presented in [3]. Several hybrid satellite-
terrestrial cooperative systems have thus been analyzed in
[2], [4]. In [1], transmit diversity, which adapts to different
channel environments, utilizing orthogonal space time block
coding (OSTBC) and turbo codes is proposed. In [2], several
cooperative techniques for hybrid satellite-terrestrial networks
are investigated. In [4], a comprehensive performance analysis
of such networks in Shadowed-Rician and Rayleigh fading
channels is developed.

The integration of multiple input multiple output (MIMO)
relays with a land mobile satellite (LMS) communication
system is shown in [5] where authors employed beamforming
with variable gain amplify and forward (AF) relaying, hence
exploiting channel state information (CSI) at source, relay and
destination. However, when no CSI is available, orthogonal
space time block coding (OSTBC) is a classical MIMO
technique for achieving full spatial diversity. Reference [6]
hence proposed and evaluated OSTBC MIMO dual hop relay
systems with non-coherent AF relaying over independent and
identically distributed (i.i.d.) Rayleigh fading.

The concept of an LMS relay system [5] is based on the key
assumption of full CSI availability. In this paper, we remove
this assumption and extend this LMS relay system to more
realistic one without the availability of CSI. In this case, as in
[6], both the source and relay use an OSTBC transmission. The
performance is then evaluated for the satellite-relay channel
with Shadowed Rician fading and the relay-destination chan-
nel with Rayleigh fading. The moment generating function
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(MGF), first two moments, average symbol error rate (SER)
and amount of fading (AoF) are derived.

II. SYSTEM AND CHANNEL MODEL

We consider an LMS downlink where the satellite (source
(S) node) transmits to a land mobile user terminal (destination
(D) node ) via a terrestrial relay node (R). The direct link from
the satellite to the destination S → D is not available due to
several reasons such as the excessive atmospheric attenuation,
shadowing and the limited reception capability of the mobile
receiver. Hence the relay enables the communication link. The
S → R channel is modeled as a shadowed-Rician fading
channel while the R → D channel as Rayleigh fading channel.
S, R and D nodes are equipped with Ns, Nr and Nd antennas,
respectively. The S → R channel matrix H1 ∈ C

Nr×Ns

with i.i.d. Shadowed-Rician fading entries can be modeled
as H1 = H̄1 + H̃1. Adopting the Shadowed-Rician model
proposed in [7], the entries of the line-of-sight component
H̄1 can be modeled as i.i.d. Nakagami-m random variables
(RVs) with average power Ω where m describes the severity
of shadowing varying over the range m ≥ 0. The entries
of the scattered component H̃1 and R → D channel matrix
H2 ∈ CNd×Nr are i.i.d. complex Gaussian RVs with zero
mean and unit variance.

The relay operates in half duplex mode and hence coopera-
tion takes place over two time slots. During the first time slot,
the source employing OSTBC encoding transmits a block of
ns symbols in T symbol periods according to the code matrix
X ∈ C

Ns×T = [x1, . . . , xT ] where xk ∈ C
Ns×1 and hence the

code rate is Rs = ns/T . The received signal at the relay in
the k-th symbol period, yRk

∈ CNr×1 can be expressed as

yRk
=
√

ρ
δ H1xk + nRk

, k = 1, 2, . . . , T (1)

where E
[ ‖xk‖2

]
= 1, nRk

∈ CNr×1 ∼ CN (0, INr), INr is
Nr ×Nr identity matrix. The normalization factor δ ensures
that E[||H1||2F ]/δ = NrNs where ‖.‖F denotes the Frobenius
norm of a matrix. The average SNR per channel at the receive
end of the relay is ρ.

The relay operating according to fixed gain AF protocol

applies a linear transformation F =
√
αINr =

√
β

(ρ+1)Nr
INr

on the received signal and transmits to the destination in the
second time slot. The power normalization factor (ρ + 1)Nr

ensures that the relay node transmits an average total power
β. The received signal at the destination in the kth symbol
period, yDk

∈ C
Nd×1 is thus given by

yDk
=
√αρ

δ H2H1xk +
√
αH2nRk

+ nDk
, k = 1, 2, . . . , T

(2)
where nDk

∈ CNd×1 ∼ CN (0, INd
). The colored Gaussian

noise
√
αH2nRk

+ nDk
with conditional covariance matrix

E[(
√
αH2nRk

+ nDk
)(
√
αH2nRk

+ nDk
)H |H2] = αH2HH

2 +
INd

= K must be whitened before standard linear OSTBC
processing at the destination [6] which is achieved by

yk = K− 1
2 yDk

=
√

αρ
δ Hxk + nk (3)
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where H = K− 1
2 H2H1 and nk = K− 1

2 (
√
αH2nRk

+ nDk
)

is the equivalent white Gaussian noise ∼ CN (0, INd
). The

end-to-end transmission equation for the overall code matrix
X can be written as

Y =
√

αρ
δ HX + N (4)

where Y = [y1, . . . , yT ] and N = [n1, . . . , nT ]. OSTBC
transmission splits the MIMO channel into ns parallel single-
input single-output channels with the instantaneous SNR per
symbol per channel given by [6]

γ = αρ
δ c ‖H‖2F = αρ

δ cTr{HH
1 HH

2 K−1H2H1} (5)

where c = 1/(RsNs).

III. STATISTICS OF THE SNR γ

The statistical properties of the SNR γ are obtained by
deriving the exact MGF, first and second moments.

Theorem 1: The MGF of γ is given by

Mγ(s) = K−1 det[A(s)] (6)

where K =
∏p

i=1 Γ(p− i+1)Γ(q− i+1), p = min(Nr, Nd),
q = max(Nr, Nd) and A is a p × p matrix with its (k, l)-th
entry given by

Ak,l(s) =

∫ ∞

0

e−λλωkl−1(1 + αλ)Ns

(
1 + α(1 + ηcs)λ

)(m−1)Ns(
1 + α

(
1 + (1 + Ω

m )ηcs
)
λ
)mNs

dλ (7)

where η =
ρ

δ
and ωkl = k + l + q − p− 1.

Proof: See Appendix A.
While (7) is applicable for any m ≥ 0, it is not in closed form.
To derive one, we assume m to take integer values 0, 1, 2, . . .
and address m = 0 and m ≥ 1 cases separately.

Case I: m ≥ 1: For integer m with m ≥ 1, (m − 1)Ns

is an integer ≥ 0 and hence applying binomial theorem
for (1 + α(1 + ρcs)λ)(m−1)Ns and (1 + αλ)Ns in (7), and
solving the resulting integral using [8, eq. (13.2.5)], closed-
form expression for Ak,l(s) can finally be obtained as

Ak,l(s) =

Ns∑
u=0

(
Ns

u

) (m−1)Ns∑
v=0

(
(m− 1)Ns

v

)
(1 + ηcs)v

× Γ(u+ v + ωkl)

αωkl(1 + (1 + Ω
m )ηcs)u+v+ωkl

×U

[
u+v+ωkl, u+v+1+ωkl−mNs,

1

α(1 + (1 + Ω
m )ηcs)

]
(8)

where U[., ., .] is the confluent hypergeometric function of the
second kind [8], η = ρ

1+Ω since δ = 1 + Ω when m ≥ 1.
Case II: m = 0: Closed-form expression for Ak,l(s) for

m = 0 can similarly be obtained as

Ak,l(s) =
Γ(ωkl)

αωkl(1 + ηcs)ωkl+Ns

Ns∑
u=0

(
Ns

u

)
(ηcs)u

U

[
ωkl, ωkl + 1− u,

1

α(1 + ηcs)

]
(9)

where η = ρ since δ = 1 when m = 0.
Our proposed model is versatile because the Rayleigh-

Rayleigh case addressed in [6] is a special case (m = 0 in
our Shadowed-Rician fading model corresponds to Rayleigh
fading). Note that MGF of γ in (6) with entries of A given
by (9) is exactly the same as [6, Theorem 1].

Theorem 2: The first moment of γ is given by

E[γ] = −K−1

p∑
j=1

det[B(j)] (10)

where B(j) is a p× p matrix with its (k, l)-th entry given by

B(j)k,l =
{ −μkl U [ωkl + 1;ωkl + 1, 1

α ] l = j
Γ(ωkl) l �= j

(11)

where μkl =
Γ(ωkl+1)

αωkl
Nsρc.

Proof: See Appendix B.
Theorem 3: The second moment of γ is given by

E[γ2] = K−1

p∑
j=1

p∑
i=1

det[D(j, i)] (12)

where D(j, i) is a p × p matrix with its (k, l)-th entry given
by

D(j, i)k,l =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
νklU [ωkl + 2;ωkl + 1, 1

α ] l = j = i

−μkl U [ωkl + 1;ωkl + 1, 1
α ] l = j or l = i;

j �= i

Γ(ωkl) l �= j; l �= i
(13)

where

νkl =
Γ(ωkl + 2)

αωkl
Ns

×
⎧⎨
⎩
(
Ns(1 + Ω)2 + 1 + 2Ω + Ω2

m

)(
ρc

1+Ω

)2
m ≥ 1

(Ns + 1)(ρc)2 m = 0

Proof: The proof is similar to that of Theorem 2. By
using the second derivative of (6), Theorem 3 can be proven
(details are omitted for brevity).

IV. PERFORMANCE ANALYSIS

With the help of the statistics derived in Section III, we now
develop a performance analysis of the system.

A. Average SER

For modulation formats with conditional SER expression of
the form aQ(

√
2bγ) where Q(.) is the Gaussian-Q function

that can be expressed as Q(x) = 1
π

∫ π/2

0
exp

( − x2

2 sin2 θ

)
dθ

by using Craig’s formula, the average SER is given by

Ps = aEγ [Q(
√
2bγ)] =

a

π

∫ π
2

0

Mγ

(
b

sin2 θ

)
dθ. (14)

These modulation formats include binary phase shift keying
(BPSK) (a = 1, b = 1); coherently detected orthogonal binary
frequency shift keying (BFSK)(a = 1, b = 0.5) ; M-ary
pulse amplitude modulation (PAM) (a = 2(M − 1)/M, b =
3/(M2−1)). Approximate SER for M-ary Phase shift Keying
(PSK) can also be found with a = 2, b = sin2(π/M).
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By using (6) with (8) or (9) into (14) gives the exact SER.
However, numerical evaluation is required.

We now show that for systems with min(Nr, Nd) = 1, a
closed-form average SER can be obtained. If we use integral
expression (7) for the matrix entries in (6), the average SER
can be writen using (14) as

Ps =
a

πΓ(q)

∫ π
2

0

∫ ∞

0

e−λλq−1

(
1 + αλ

1 + α(1 + ηcb
sin2 θ

)λ

)Ns

×
(

1 + α(1 + ηcb
sin2 θ

)λ

1 + α(1 + (1 + Ω
m ) ηcb

sin2 θ )λ

)mNs

dλdθ

=
a

Γ(q)

∫ ∞

0

e−λλq−1 1

π

∫ π
2

0

(
sin2 θ

ζ + sin2 θ

)Ns

×
(
1 +

Ω

m

ζ

ζ + sin2 θ

)−mNs

dλdθ (15)

where ζ = ηcbαλ
1+αλ . Further manipulation yields,

Ps =
a

Γ(q)

∫ ∞

0

e−λλq−1 1

π

∫ π
2

0

(
sin2 θ

ζ + sin2 θ

)Ns

×
(
1 +

Ω

m
− Ω

m

sin2 θ

ζ + sin2 θ

)−mNs

dθdλ (16)

Applying negative binomial expansion and solving the inner
integral by using [9, Eq.(5A.8), Eq. (5A.4b)], then substituting
back ζ followed by binomial expansion and finally solving
the resulting integral by using [8, eq. (13.2.5)], we obtain the
closed-form SER as follows:

Ps =
a

2

∞∑
k=0

(−mNs

k

)(
−Ω

m

)k (
1 +

Ω

m

)−mNs−k

(
1− 1

Γ(q)

k+Ns−1∑
l=0

l∑
n=0

(
2l
l

)(
l
n

)
Γ(q + n+ 1/2)

√
ηcb

4lαq(1 + ηcb)q+n+1/2

U

[
q + n+

1

2
, q + n− l + 1,

1

α(1 + ηcb)

])
. (17)

The above expression is valid for integer m > 0. The result
for m = 0 is straightforward and omitted for brevity.

B. AoF

The AoF is typically used as a measure of the severity of
the fading channels. It can be derived via the definition

AoF =
E[γ2]− (E[γ])2

(E[γ])2
(18)

with E[γ] and E[γ2] given by (10) and (12) respectively.

V. NUMERICAL RESULTS AND CONCLUSION

Validation of our analytical results with Monte Carlo sim-
ulations using the Alamouti code is performed here. Fig. 1
shows the average SER of the system for BPSK (a = b = 1)
and QPSK (a = 2 and b = 0.5) constellations using different
antenna configurations. The analytical plots are obtained using
(17) where the infinite series is accurately truncated with 10
terms. The AoF of the system is plotted against β in Fig.
2. A clear match between analytical and simulated results
is observed in both figures. Clearly, both the SER and AoF

0 2 4 6 8 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

10
0

ρ (dB)

A
ve

ra
ge

 S
E

R

 

 
Analytical
Simulation

(2,2,1)

(2,4,1)

(2,1,4)

(2,4,1)

(2,1,4)
(2,2,1)

QPSK

BPSK

Fig. 1. Average SER of BPSK and QPSK constellations using Alamouti’s
coding for antenna configuration (Ns, Nr, Nd), m = 3, Ω = 0.1 and β =
2ρ.
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Fig. 2. AoF vs. β using Alamouti’s coding for antenna configuration
(Ns, Nr , Nd), m = 2, Ω = 0.22 and ρ = 10dB.

decrease with the increase in Nr, Nd. Reliability is improved
due to exploiting spatial diversity from multiple antennas.

In conclusion, an LMS system with a terrestrial relay (fixed
gain AF) and without CSI at the source and the relay was
considered. The satellite-relay link is Shadowed-Rician fading
while the terrestrial link is Rayleigh fading. The MGF, the first
two moments of the SNR and the SER were derived. While the
independent fading scenario is valid for sufficiently separated
antennas, the impact of antenna correlation is omitted due to
space limitation and will be addressed in future submissions.

APPENDIX

A. Proof of Theorem 1

Since H = K− 1
2 H2H1 = HL+Hs where HL = K− 1

2 H2H̄1

and Hs = K− 1
2 H2H̃1, given HL and H2,

EHs [(vec(H)− vec(HL))(vec(H)− vec(HL))
H ]

= EHs [vec(Hs)vec(Hs)
H ]

= (INs ⊗ K− 1
2 H2)EH̃1

[vec(H̃1)vec(H̃1)
H ](INs ⊗ K− 1

2 H2)
H

= INs ⊗ HH
2 K−1H2 (19)

where vec(A) denotes a vector formed by stacking the
columns of matrix A on top of each other, and ⊗
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stands for Kronecker product. We used vec(Hs) =

(INs ⊗ K− 1
2 H2)vec(H̃1) [10, Lemma (2.2.2)] to get the

second equality. Third equality follows after substituting
EH̃1

[vec(H̃1)vec(H̃1)
H ] = (INs ⊗ INr) and applying the

properties of Kronecker product. From the above derivation,
it follows that given HL and H2,

vec(H)
∣∣∣
HL,H2

∼ CN (
vec(HL), INs ⊗ HH

2 K−1H2

)
. (20)

INs ⊗HH
2 K−1H2 being Hermitian and non-negative definite,

using the eigenvalue decomposition, we have,

INs ⊗ HH
2 K−1H2 =

[
U U0

] [ Σ 0
0 0

] [
UH

UH
0

]
(21)

where Σ = diag{σ1, σ2, . . . , σpNs} is a positive definite
pNs × pNs diagonal matrix, the diagonal elements of which
have p distinct values with each distinct value repeated Ns

times such that σ(j−1)Ns+1 = σ(j−1)Ns+2 = . . . = σjNs =
λj

1+αλj
, j = 1, 2, . . . , p where λ1 > λ2 > . . . > λp > 0

are the eigenvalues of H2HH
2 , U ∈ C

NrNs×pNs and U0 ∈
C

NrNs×(Nr−p)Ns such that [ U U0 ] [ U U0 ]
H

= INrNs . If we
define h = [ U U0 ]

H
vec(H), it can be shown that given HL

and H2, h is distributed as

h
∣∣∣
HL,H2

∼ CN
(

hL,
[
Σ 0
0 0

])
(22)

where hL = [ U U0 ]
H
vec(HL). As Σ is diagonal, given hL and

Σ, the elements of h are independent and distributed as hi ∼
CN (hLi , σi), i = 1, . . . , pNs where hLis are the elements of
hL. Hence marginal pdf of |hi| is given by

p|hi|(xi|hLi , σi) =
2xi

σi
exp

(
−x2

i+h2
Li

σi

)
I0

(
2xihLi

σi

)
.

Since entries of H̄1 are independent Nakagami-m RVs
such that EH̄1

[vec(H̄1)vec(H̄1)
H ] = Ω(INs ⊗ INr), it

can be similarly derived as in (19) that given H2,
EHL

[vec(HL)vec(HL)
H ] = Ω(INs⊗HH

2 K−1H2). Then using
(21), it can be shown that given H2, hL is a Nakagami-m
random vector with EhL

[hL(hL)
H ] = Ω

[
Σ 0
0 0

]
. Hence given

Σ, hLis, i = 1, . . . , pNs are independent Nakagami-m RVs
with marginal pdf

phLi
(yi|σi) =

2mm

Γ(m)(Ωσi)m
y2m−1
i exp

(
−my2

i

Ωσi

)
.

The MGF of γ = αηc||H||2F = αηc vec(H)Hvec(H) =

αηchHh = αηc
∑pNs

i=1 |hi|2 can be derived as

Mγ(s) = Eγ [e
−sγ ]

= EH2,HL

[
EHs

[
e−αηcs

∑pNs
i=1

|hi|2
∣∣∣HL,H2

]]

= EΣ

[ pNs∏
i=1

EhLi

[ ∫ ∞

0

e−αηcx2
i p|hi|(xi|hLi , σi)dxi

]]

= EΣ

[ pNs∏
i=1

1

1 + αηcsσi

∫ ∞

0

e
− αηcsy2i

1+αηcsσi phLi
(yi|σi)dyi

]

= EΣ

[ pNs∏
i=1

(1 + αηcsσi)
m−1

(1 + (1 + Ω/m)αηcsσi)m

]

= EΛ

[ p∏
i=1

(1 + αηcs λi
1+αλi

)(m−1)Ns

(1 + (1 + Ω/m)αηcs λi
1+αλi

)mNs

]
(23)

where Λ = diag(λ1, λ2, . . . , λp). Integrating (23)
with respect to the joint distribution of λis, f(Λ) =
K−1det(λj−1

i )2
∏p

i=1 λ
q−p
i e−λi , λ1 > λ2 > . . . > λp > 0,

we obtain

Mγ(s) = K−1

∫
D
det(λj−1

i )2
p∏

i=1

ξ(i) dλ1 . . . dλp. (24)

where ξ(i) =

[
(1+αηcs

λi
1+αλi

)(m−1)Ns

(1+(1+ Ω
m )αηcs

λi
1+αλi

)mNs
λq−p
i e−λi

]
, and D =

{λ1 > λ2 > . . . > λp > 0}. The integral (24) is solved using
[11, eq. (51)] to yield (6).

B. Proof of Theorem 2

Proof: The n-th moment of γ is (−1)n times the n-th
derivative of the MGF of γ evaluated at s = 0. Hence by
differentiating (6) once, the first moment of γ is obtained.
But since MGF (6) is given by a determinant expression, for
any n × n matrix G with entries that are functions of x, we
use

d
(
det[G]

)
dx

=
n∑

j=1

det[G̃(j)] (25)

where G̃(j) is an n× n matrix formed by differentiating the
j-th column of the matrix G with all other columns left intact.
Using (25), first moment of γ can be expressed as (10) where
the (k, l)-th entry of B(j) is given by

B(j)k,l =

⎧⎨
⎩

d(Ak,l(s))

ds

∣∣∣
s=0

l = j

Ak,l(s)
∣∣∣
s=0

l �= j.
(26)

Finally, (11) follows from (26) and (7).
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