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Performance Analysis of Energy Detection with
Multiple Correlated Antenna Cognitive Radio in Nakagami-m Fading

Vesh Raj S. Banjade, Nandana Rajatheva, Senior Member, IEEE, and Chintha Tellambura, Fellow, IEEE

Abstract—This letter analyzes the performance of energy-
detection-based spectrum sensing in a cognitive radio (CR)
possessing multiple correlated antennas when the channel from
the primary user (PU) to the CR is Nakagami-m faded. The
probability of detection of the CR by employing square law
combining (SLC) is derived by using the MGF-based approach.
Special cases of equally correlated, exponentially correlated and
a linear array of 2, 3 and 4 arbitrarily correlated antennas are
treated. Numerical and simulation results are used to quantify
the detector performance as a function of antenna correlation
across the branches, number of antennas, fading severity and
the time-bandwidth product.

Index Terms—Cognitive radio, multiple antenna, square law
combining, correlation, Nakagami-m, moment generating func-
tion.

I. INTRODUCTION

INTELLIGENT cognitive radios (CRs), which are capable
of identifying and utilizing gaps in spectrum usage, are

necessary to meet the growth in demand for radio spectrum
[1], [2]. Thus, the IEEE 802.22 standard on cognitive wireless
regional area networks (WRANs) [3] focuses on the exploita-
tion of the unused spectrum without causing any interference
to the licensed primary user (PU) of the spectrum. To realize
this goal, the CR must be able to detect the presence or
absence of the PU signal. Due to ease of implementation, one
of the simplest and most widely used detectors is the energy
detector, which does not require any a priori knowledge of
the PU signal [4], thus rendering the energy detector suitable
for wideband applications. However, an inherent problem with
the energy detector is the performance degradation at the low
signal-to-noise ratio (SNR) region. For example, in a shad-
owed environment, high noise uncertainty leads to unknown
noise variance at the detector, thus causing the hidden terminal
problem [5].

To improve the performance in low-SNR conditions, mul-
tiple antennas for spectrum detection can be deployed. The
need for multiple antennas is also driven by the promise of
a high data rate and high efficiency broadband services by
standards such as the Long Term Evolution (LTE), WiMax
and IMT-Advanced. The notion of using a multiple antenna
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CR for detecting the spectrum holes has thus attracted much
interest. The linear combinations of multiple antenna outputs
can be used to improve the detection reliability [6][7]. The
detection performance of several linear diversity combiners
has thus been analyzed in [7] by using the moment generating
function (MGF) of the channel SNR.

However, all these works are contingent on a CR with
independent antennas. If a CR is a handheld terminal in
cellular and/or adhoc networks, the spatial separation among
the antennas may be insufficient to ensure independent fading.
In [8], the detection performance of an energy detector with
multiple correlated antennas was analyzed for the Rayleigh
fading channel by approximating the energy detector statistics
as Gaussian by invoking the central limit theorem (CLT).
However, due to the high agility requirement of the CRs [5],
a large number of signal samples may not be available, and
the CLT may not hold. Study [9] includes the exact detection
performance analysis by using the probability density function
(PDF) approach for a square law combiner (SLC) in correlated
Rayleigh faded channels. Since maximal ratio combining
(MRC) requires complete knowledge of the channel state
information (CSI), a simpler technique is the SLC, which does
not require the CSI.

Despite the focus on the use of spatial diversity in CR-
based detection, none of the previous works has addressed
the issue of energy detection with multiple correlated antennas
in a Nakagami-m faded PU-CR environment. Since this dis-
tribution encompasses Rayleigh fading (m=1) and can also
approximate Rician fading [10], the detection performance
under this generic fading channel model is of interest to wire-
less researchers and engineers. In our letter, we thus assume
Nakagami-m faded PU-CR channels and a CR with L corre-
lated antennas with SLC reception. The average probability of
detection is then derived by using the MGF approach. Specific
correlation models like the constant correlation, exponential
correlation and linear array of arbitrary correlation are then
analyzed.

II. PROBLEM FORMULATION

For a CR, the detection problem can be formulated as a
classical binary hypothesis test of the form r(t) = n(t) under
H0 and r(t) = hs(t) + n(t) under H1, where r(t) is the
received signal at the detector, s(t) is the primary signal, h is
the channel coefficient, and n(t) is the additive white Gaussian
noise (AWGN) [4]. We assume the CR is equipped with an
energy detector, which essentially filters the input signal with a
bandpass filter of bandwidth W and squares the filtered signal
to be fed to an integrator of period T . The resulting statistic
Y is compared against a predefined threshold λ to decide on
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one of the two hypotheses, H0 and H1. Under H0 and H1, the
statistic Y is modeled as a central and non-central chi-square
with 2u (u = TW is the time bandwidth product) degrees of
freedom as Y ∼ χ2

2u and Y ∼ χ2
2u(2γ), respectively, where

γ is the SNR at the receiver, and 2γ is the non-centrality
parameter [4]. Since we use SLC for L diversity branches
at the CR, the total SNR will be equal to the sum of the
individual branch SNRs (γt), thus resulting in a non-centrality
parameter of

∑L
i=1 2γ = 2γt. The probability of detection at

the CR then becomes [9]

Pd,SLC = QLu(
√

2γt,
√
λ), (1)

where QM (a, b) =
∫∞
b

x(xa )
M−1exp(−x2+a2

2 )IM−1(ax)dx
is the generalized M th order Marcum-Q function [11], and
Γ(a, x) =

∫∞
x

tae−t is the upper incomplete gamma func-
tion. The average detection probability over the correlated
Nakagami-m channels is thus required. By using the alter-
native representation of the Marcum-Q function combined
with the definition of MGF for SLC, the average detection
probability is [7]

P d =
e−

λ
2

2πj

∮
�
M

(
1− 1

z

) e
λ
2 z

zLu(1− z)
dz, (2)

where M(s) = E(e−sγ) is the MGF, with E(·) representing
the mathematical expectation. The MGF of SNR with corre-
lated Nakagami-m fading is now required.

III. AVERAGE PROBABILITY OF DETECTION FOR L
CORRELATED ANTENNAS

For analytical tractability, we assume the correlated fading
channels have an identical fading parameter m (integer). The
MGF of SNR for L branches at the CR can then be written
as [12]

M(s) =

L∏
i=1

(1 + sηi)
−m, (3)

where ηi, ∀i ∈ {1, ..., L} is the ith eigenvalue of the L × L
matrix,

ΘL =
γt
m

√
CL. (4)

The term
√
CL is a notation for the matrix whose elements

are equal to the square root of the corresponding elements of
the L×L channel covariance matrix CL [13]. Substituting (3)
into (2) and following some steps of manipulations, we obtain

P d =
e−

λ
2∏L

i=1(1 + ηi)m2πj

∮
�
f(z)dz, (5)

where f(z) = e
λ
2

z

∏L
i=1(z−θi)mzβ1(1−z)

with β1 = L(u − m),

and θi = ηi

1+ηi
is the i-th pole of f(z), ∀i = {1, ..., L}.

By applying the residue theorem [14] to (5), the average
probability of detection is obtained as follows:
Case 1 : u > m

P d =
e−

λ
2∏L

i=1(1 + ηi)m

[ L∑
i=1

Res(f ; θi,m) +Res(f ; 0, β1)

]
,

(6)

Case 2 : u ≤ m

P d =
e−

λ
2∏L

i=1(1 + ηi)m

[ L∑
i=1

Res(f ; θi,m)

]
, (7)

where the residue of f(z) for an l-th order pole at z = a is
defined as [14]

Res(f ; a, l) = lim
z→a

1

(l − 1)!

dl−1

dzl−1
[(z − a)lf(z)]. (8)

Note that the two cases u > m and u ≤ m must be treated
separately as the zβ1 term in f(z) appears either as a pole or a

zero, respectively. Denoting T (z) = e
λ
2

z

∏L
i=1
i�=j

(z−θi)mzβ1 (1−z)
, we

can use the Faà-di Bruno’s formula [15] for the nth derivative
of a composite function to evaluate the (m − 1)th derivative
of elog(T (z)). The residues in closed-form may be given by

Res(f ; θj,m) =
∑
Λ

[
eφ(θj)φk(θj)

b1!b2!...bm−1!

(
φ′(θj)
1!

)b1(φ′′(θj)
2!

)b2

...

(
φ(m−1)(θj)

(m− 1)!

)bm−1
]
,

(9)

where Λ = [{(b1, ..., bm)|∑m
i=1 ibi = m,

∑n
i=1 bi = k, bi ≥

0, i = 1, ...,m}] and φ(z) = log(T (z)) whose nth derivative
∀n ∈ Z

+ is given by

φ(n)(z) =
λ

2
δ(n− 1) + (−1)nm(n− 1)!

[ L∑
i=1
i�=j

(z − θi)
−n

+ β1z
−n + (1− z)−n

]
,

(10)

with δ(x) being the Kronecker delta function. The same
procedure can be used to obtain the closed-form expression
for Res(f ; 0, β1) as well. Here, we omit the expressions for
brevity.

Note that (6) and (7) are given by the residues, which in turn
are expressed as higher-order derivatives of f(z). Although
the expressions seem tedious, the residues can be computed
efficiently by using a platform such as MATHEMATICA
for any given set of L, u, m and the channel covariance
matrix CL. In general, for L correlated antennas at the CR,
the eigenvalues will be real. Given the matrix CL, the total
received SNR γt and the fading index m, the eigenvalues of
ΘL can be readily computed. Thus, our approach can be used
to analyze a variety of antenna correlation models, some of
which are discussed next.

A. Constant correlation

This model applies when the antennas are situated close
enough in a circular array [16] to result in the same correlation
between any two branches. The channel covariance matrix,
thus, is CL = [cij ], where cij = 1 for i = j, and cij = ρ for
i �= j. For this structure, ΘL has only two distinct eigenvalues,
η1 = γt(1 − √

ρ)/m and η2 = γt(1 + (L − 1)
√
ρ), where

η1 is repeated (L − 1) times. Then, f(z) in (5) reduces to
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g(z) = e
λ
2

z

(z−θ1)β2(z−θ2)mzβ1 (1−z)
, with β2 = (L − 1)m. Now,

we need the residues of g(z) at z = θ1, z = θ2 and z = 0
(if u > m). In this special case, we can evaluate (9) further.
Substituting z = t+θ1 into g(z), performing the Laurent series
expansion [14] about t = 0, and extracting the coefficient of
t−1 will give the residue of g(z) at z = θ1 as

Res(f ; θ1, β2)=
∑
Λ1

[(
λ

2

)k1
(−m

k2

)
(θ1 − θ2)

−m−k2

·
(−β1

k3

)
θ−β1−k3

1 (1− θ1)
−1−k4 · eλ

2 θ1

]
,

(11)

where Λ1 = {(k1, k2, k3, k4)|
∑4

i=1 ki = β2 − 1, ki ≥ 0}.
Similarly, the residue at z = 0 is

Res(f ; 0, β1) =
∑
Λ2

(
λ

2

)k1
(−β2

k2

)(−m

k3

)
(−θ2)

−m−k3 ,

(12)
with Λ2 = {k1, k2, k3, k4|

∑4
i=1 ki = β1 − 1, ki ≥ 0}.

The same steps will give the residue of the mth order pole
at z= θ2. For brevity, we omit the calculations here. The
probability of detection can be then expressed as

P d =
e−

λ
2

[
Res(f ; θ1, β2) +Res(f ; θ2,m) +Res(f ; 0, β1)

]
(1 + η1)β2(1 + η2)m

.

(13)

B. Exponential correlation

If the ij-th entry of the covariance matrix CL is of the form
ρij = ρ|i−j|, then the signals at the received branches are said
to be exponentially correlated [16]. This case is relatively more
general than the constant correlation model and is a special
case of the linear array of arbitrarily correlated antennas,
which is treated in the next section. There are no explicit
expressions for the eigenvalues in this case for L > 4, but
they can be readily computed. Then, (6) and (7) can be used
to compute the average probability of detection. This model is
particularly employed to show the effect of antenna correlation
on the detection performance of the CR.

C. Linear array of arbitrary correlation

If the antenna elements are placed in a linear configuration,
then the signals at the branches may be arbitrarily correlated
depending upon the incident angle, the spacing between the
antennas or the height of the antennas. Therefore, the ele-
ments cannot be assumed to have a constant or exponential
correlation structure. In such a scenario, the covariance matrix
can be modeled to have a Toeplitz structure of the form,
CL = [ρ|i−j|] with ρ0 = 1 [13].

Explicit number of antennas: If we consider the CR to
be equipped with two correlated antennas with a correlation
ρ between the branches, the covariance matrix C2 will be
the 2 × 2 version of CL . Then the eigenvalues of the
corresponding matrix Θ2 can be shown to be

η1, η2 =
γt
m
(1±√

ρ1). (14)
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Fig. 1. P d vs ρ for the exponential correlation model with L = 4,
Pf =0.01, m=2, SNR= 5 dB and u = {1, 2, 3, 4}: analytical and sim-
ulation.

Similarly, if the CR is equipped with three antennas, by using
a 3× 3 covariance matrix C3 with correlation coefficients ρ1
and ρ2 across the branches, the eigenvalues of Θ3 can be
shown to be

η1 =
γt
m
(1−√

ρ2); η2, η3 =
γt
2m

(2 +
√
ρ2 ±

√
8ρ1 + ρ2).

(15)

For a four-antenna CR, the eigenvalues of Θ4 can be obtained
as

η1, η2 =
γt
2m

(2−√
ρ1 −√

ρ3)

±
√
5ρ1 − 8

√
ρ1ρ2 + 4ρ2 − 2

√
ρ1ρ3 + ρ3,

η3, η4 =
γt
2m

(2 +
√
ρ1 +

√
ρ3)

±
√
5ρ1 + 8

√
ρ1ρ2 + 4ρ2 − 2

√
ρ1ρ3 + ρ3.

(16)

Using (14), (15) and (16) separately along with (6) and (7)
for L = {2, 3, 4} number of antennas at the CR, we can
obtain the expression for the average probability of detection
at the CR for the two cases of u > m and u ≤ m. We
omit the expressions here for brevity. Note that this model
reduces to the exponential correlation model for ρi = ρi,
i = {0, 1, ..., L − 1} for the i-th element of the first row of
the covariance matrix CL.

IV. NUMERICAL AND SIMULATION RESULTS

The analytical results (in Section III) are evaluated by
using MATHEMATICA to obtain theoretical curves for the
given parameters of interest. These curves are validated with
simulations performed in MATLAB for 106 iterations. We
study the effect of the degree of antenna correlation, the
number of antennas and the time-bandwidth product of the
energy detector at the CR. The threshold of detection λ is
computed by solving Pf,SLC = Γ(Lu,λ/2)

Γ(Lu) [9] for a desired
value of the false alarm probability.
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Fig. 2. P d vs L for the linear array with Pf = 0.01, u = 1, SNR= 5 dB,
m = {1, 2, 3, 4, 5}: analytical and simulation.

To observe the effect of antenna correlation on the CR
detection performance, we plot the average probability of
detection against the various degrees of correlation across
the branches for an exponentially correlated four antenna CR
in Fig. 1. As the antenna correlation increases, the system
performance gain due to antenna diversity deteriorates [17].
Our results validate this fact for the detection performance
of a CR. The probability of detection for the completely
correlated scenario (ρ = 1) observed for u = 1 is about
16% less than that for the no-correlation (ρ = 0) case. Also,
the detection probability decreases for larger values of the
time-bandwidth product u because at higher values of u, the
increased incoherence of noise tends to nullify the signal
energy at the detector, thus resulting in lower probability of
detection [4].

In Fig. 2, the average probability of detection at the CR is
plotted against the number of antennas for a linear array with
the first row of CL being (1, 0.9, 0.8, . . . , 0.1) (the correlation
decreases as the branches become further apart). The detection
capability of the CR increases significantly with the increase
in the number of antennas even if the antennas are correlated.
For example, for m = 1, the Rayleigh fading case, we find
that the detection probability for a 10-antenna CR is almost
double (about 80% more) than that for a 2-antenna CR. Thus,
more antennas at the CR boost the detection performance even
if high correlations exist across them. The fading index also
quantifies the detection performance for several Nakagami-m
parameter values. As expected, higher values of the fading
index m imply a relatively less degraded received signal and
thus lead to a higher probability of detection. Thus, the antenna

diversity mitigates the impact of correlation and introduces a
significant improvement in the probability of detection.

V. CONCLUSION

We analyzed the detection performance of a multiple corre-
lated antenna CR by deploying the square law combining tech-
nique. The average probability of detection over L correlated
Nakagami-m channels from PU to CR was derived. Specific
results were developed for constant correlation, exponential
correlation and linear array antenna models. The impact of
various parameters such as the degree of correlation across
the antennas, the time-bandwidth product of the energy de-
tector, the number of antennas and the fading severity index
was investigated. Although antenna correlation degrades the
detection performance of the CR, the gain due to multiple
antenna diversity remains significant.
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