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Damith Senaratne, Student Member, IEEE, Chintha Tellambura, Fellow, IEEE, and
Himal A. Suraweera, Member, IEEE

Abstract—The performance of eigenmode transmission over a
multiple-input–multiple-output (MIMO) Rayleigh channel under
the channel inversion (CI) power allocation scheme is investigated.
The moment-generating function of the reciprocal of the received
signal-to-noise ratio (SNR) is derived. For the special case when
the minimum number of antennas at the transmitter and the
receiver is two, the exact closed-form expressions for the proba-
bility density function (pdf) and cumulative distribution function
(cdf) are also derived. The average symbol error rate (SER) is
derived as an application of the results. The extension to Rician
and semicorrelated Rayleigh fading scenarios is also outlined.

Index Terms—Channel inversion (CI), eigenmode transmission,
multiple-input multiple-output (MIMO), Wishart distribution.

I. INTRODUCTION

MULTIPLE-ANTENNA wireless terminals, which are
used along with special signal-processing techniques

to achieve diversity and multiplexing benefits, characterize
multiple-input–multiple-output (MIMO) wireless technology
[3]. MIMO technology exploits the space dimension, in ad-
dition to the time and frequency dimensions, to deliver data
rates and a quality of service unmatched otherwise with com-
parable spectral resources. MIMO is widely investigated and
being deployed (e.g., IEEE 802.11n [4] and Third-Generation
Partnership Project (3GPP) Long-Term Evolution (LTE) [5]
standards).

A MIMO channel is represented by a channel matrix, whose
elements are channel gains between transmit–receive antenna
pairs. Thus, mathematical tools such as the random matrix
theory [6] help the analysis. A MIMO channel can be reduced to
a set of noninterfering spatial channels (virtual channels) with
appropriate transmitter and receiver signal-processing tech-
niques. The ability to independently code, modulate, and power
allocate for [7], [8] these virtual channels facilitates the use
of single-antenna signal-processing techniques in MIMO. Our
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focus is on applying the channel inversion (CI) power allocation
scheme [9] across the virtual channels realized through eigen-
mode transmission.

In a multichannel communication system with channel state
information (CSI) at the transmitter, CI allocates power among
the channels such that the total instantaneous transmit power
is held constant and the instantaneous received signal-to-noise
ratio (SNR) is identical across the channels. Although CI yields
worse capacity than optimal water-filling power allocation, it
may be suitable for applications with tight delay constraints [10,
Ch. 5]. A temporal variant of CI can be used in single-carrier
single-antenna systems [9]. Its use with MIMO has also been
investigated in literature [11]. MIMO CI [12] considered here,
by contrast, is spatial, i.e., achieved across spatially multiplexed
virtual channels.

Hereafter, CI refers to CI power allocation on the virtual
channels produced by eigenmode transmission. References
[12]–[14] examine the basics of MIMO CI, whereas [15]–[17]
investigate certain variants exhibiting improved capacity. No-
tably, signal processing for CI in certain MIMO configurations
does not even require singular value decomposition of the
channel matrix.

Another noteworthy fact is the similarity that CI has with
zero-forcing (ZF) beamforming [18], [19]; thus, CI might find
use in MIMO and multiuser MIMO scenarios [20]. ZF simply
inverts the channel at the transmitter or the receiver. Transmit
ZF thus causes the instantaneous transmit power to fluctuate
unbounded, making its practical realization challenging. CI is
immune to this issue. ZF reception employs nonunitary signal
processing, which is susceptible to noise enhancement and
correlated noise. CI, with only unitary receiver processing (if
at all) [12], [14], is free from these disadvantages. However,
CI requires nonunitary transmit processing, and the achievable
error rate is the same as that of receive ZF but is worse than that
of transmit ZF. These distinctions can be observed in terms of
error performance (see Fig. 1).

Our main contribution is the development of a mathematical
framework for an Nr × Nt MIMO system to accurately charac-
terize the per-virtual-channel received SNR Λ under CI. More
specifically, we obtain the following:

1) for arbitrary Nt and Nr: the exact moment-generating
function (mgf) of Λ−1;

2) for the case min(Nt, Nr) = 2: the exact probability den-
sity function (pdf) of Λ, the cumulative density function
(cdf) of Λ, and the average symbol error rate (SER) for a
class of modulation schemes (presented in [1]).
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Fig. 1. Average SER for quadratic phase-shift keying (QPSK) on (Nr × Nt)
MIMO systems: ZF versus CI. Transmit ZF is used for the 2 × 4 configuration,
whereas ZF reception is used with the others. 106 channel realizations, with
100 QPSK symbols per virtual channel for each, have been simulated.

Although independent Rayleigh fading is assumed for the
main results, the extension of some of the results for Rician
fading (presented in [2]) and semicorrelated Rayleigh fading is
briefly developed.

This paper is organized as follows: The system model is
given in Section II, and the mathematical formulation and
the numerical results for independent and identically distrib-
uted (i.i.d.) Rayleigh fading follow in Sections III and IV,
respectively. Section V extends the analysis for Rician fading
and semicorrelated Rayleigh fading. Section VI concludes this
paper. Proof of the results is annexed.

Notation: P [A] is the probability of event A. The pdf, cdf,
complimentary cdf (ccdf), and the mgf of a random variable X
are given by fX(x), FX(x), F̄X(x), and MX(s), respectively.
The expected value is EX{·}. Iν(·) and Kν(·) are the Modified
Bessel functions [21, Sec. 9.6] of the first kind and second kind
of order ν, respectively. Gm n

p q (·|a1,...,an,an+1,...,ap

b1,...,bm,bm+1,...,bq
) is the Meijer

G function [22, Sec. 9.3]. Q(·) is the Gaussian Q-function [21,
eq. (26.2.3)]. log2(·) represents the logarithm to base 2, whereas
k! is the factorial of k. C

m×n is the set of m × n complex
matrices.

BH , ‖B‖F , trace(B), and eig(B) represent the conjugate
transpose, Frobenius norm, trace, and eigenvalues of a matrix
B, respectively. The remainder, in a Maclaurin series of a
function of x after the xn term, is denoted by o(xn).

II. SYSTEM MODEL

We consider a MIMO system with Nt and Nr trans-
mit and receive antennas. Let m = min(Nt, Nr) and n =
max(Nt, Nr). The channel matrix is H ∈ C

Nr×Nt . We also as-
sume perfect transmit CSI and the usual additive i.i.d. complex
Gaussian noise at the receiver antennas.

Define W as either HHH (Nt > Nr) or HHH (Nt ≤ Nr).
The eigenvalues {λ1, . . . , λm} of W sufficiently characterize
the MIMO channel. For instance, they relate to the received
SNR along the m virtual channels under eigenmode transmis-

sion. The total transmit power P is allocated as pi for each ith
virtual channel i ∈ {1, . . . ,m}, using CI, causing λipi = K to
be held identical for each of them at any given time instant.
Thus, we have

P =
m∑

i=1

pi = K

m∑
i=1

λ−1
i .

Let Λ = K/P . Then, we get

Λ−1 =
m∑

i=1

λ−1
i = trace(W−1). (1)

Note that (1) holds only under block fading assumptions,
which permit averaging out the randomness of additive noise
and transmitted data for each channel realization.

III. MATHEMATICAL FORMULATION

This section analyzes MIMO CI systems. The links between
the transmit–receive antenna pairs are assumed to undergo
i.i.d. Rayleigh fading. Thus, H ∈ C

Nr×Nt becomes a com-
plex Gaussian matrix; W becomes a rank-m complex central
Wishart matrix [7], [23] having n degrees of freedom; and Λ−1

becomes the trace of an inverse-Wishart matrix.

A. Arbitrary m ≤ n

The joint pdf of λi, i ∈ {1, . . . ,m}, which are the unordered
eigenvalues of W , is given [23], [24] by

fλ1,...λm
(λ1, . . . , λm)

=
e−

∑m

i=1
λi

m!Km,n

m∏
i=1

λn−m
i

∏
1≤i<j≤m

(λi − λj)2 (2)

where Km,n =
∏m

k=1(m − k)!(n − k)!. The joint pdf of un-
ordered eigenvalues differs only by a factorial term from that
of the ordered eigenvalues. All the unordered eigenvalues have
the range [0,∞), and therefore, using their joint pdf simplifies
further derivations.

The factor
∏

1≤i<j≤m(λi − λj)2 in (2) may be expanded to
obtain the more manipulable following form:

fλ1,...λm
(λ1, . . . , λm) =

e−
∑m

i=1
λi

m!Km,n

(
m∏

i=1

λn−m
i

)

×
∑

k1,...,km∈{0,...,2(m−1)}∑
ki=m(m−1)

b(k1, . . . , km)λk1
1 · · ·λkm

m . (3)

Coefficients b(k1, . . . , km), corresponding to variables
λ1, . . . , λm raised to respective powers k1, . . . , km, can be
obtained by expanding the factor as a multivariate polynomial.
The equality

∑m
i=1 ki = m(m − 1) is seen to hold for each

term of this expansion.
Theorem 1—MGF of Λ−1 (for Arbitrary m ≤ n): Let

λ1, . . . , λm be the unordered eigenvalues of an m × m complex
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central Wishart matrix having n degrees of freedom. The mgf
of Λ−1 in (1) is given by

M1/Λ(s) =
2ms−

mn
2

m!Km,n

∑
k1,...,km∈{0,...,2(m−1)}∑

ki
=m(m−1)

b(k1, . . . , km)

×
m∏

i=1

Kki+n−m+1(2
√

s). (4)

Proof: See the Appendix. �

B. Special Case: m = 2

This scenario occurs in any MIMO channel having two
antennas at one end and at least two antennas in the other.
The MIMO downlink from a multiantenna base station to two-
antenna mobile station (as in 4 × 2 3GPP LTE downlink con-
figuration [5]) is an example. Another is the multiuser MIMO
downlink [20] from a multiantenna base station to two single-
antenna mobile stations. Owing to antenna spacing constraints,
equipping a mobile terminal operating in cellular frequency
bands (currently, below 4 GHz) with more antennas, is tech-
nically challenging. Therefore, the case m = 2 is realistic.

For the case m = 2, (2) reduces to

fλ1,λ2(λ1, λ2) =
1

2K2,n
e−(λ1+λ2)(λ1 − λ2)2λn−2

1 λn−2
2 (5)

where K2,n simplifies to (n − 1)!(n − 2)!. The distribution of
Λ can be found from (1) and (5).

Theorem 2—PDF of Λ (for m = 2): Let λ1 and λ2 be the
unordered eigenvalues of a 2 × 2 complex central Wishart
matrix having n degrees of freedom. The pdf of Λ in (1) is
given by

fΛ(x) =
1

K2,n
x2(n−1)e−2x

2n∑
k=0

(
2n

k

)

× ((n − k − 2x)Kk−n(2x) + 2xKk+1−n(2x)) . (6)

Proof: See the Appendix. �
Corollary 1—CDF of Λ (for m = 2): Let λ1 and λ2 be the

unordered eigenvalues of a 2 × 2 complex central Wishart
matrix having n degrees of freedom. The cdf of Λ in (1) is
given by

FΛ(x) =
2
√

π

42nK2,n

2n∑
k=0

(
2n

k

)

×
[
2(n − k)G2 1

2 3

(
4x|1,2n−0.5

3n−k−1,n+k−1,0

)
− G2 1

2 3

(
4x|1,2n+0.5

3n−k,n+k,0

)
+ G2 1

2 3

(
4x|1,2n+0.5

3n−k−1,n+k+1,0

)]
. (7)

Proof: See the Appendix. �
Although relative uncommonly used in the wireless litera-

ture, the Meijer G function is well characterized [22, Sec. 9.3].

Fig. 2. CDF of Λ over {2 × 2, 3 × 2, 3 × 3} MIMO systems using CI;
numerical versus simulated (�).

Moreover, it is directly available in the common computational
environments including Mathematica, Maple, and MATLAB.
Hence, the results can be easily evaluated at high precision.

IV. NUMERICAL RESULTS

This section highlights some applications of the characteri-
zation of Λ made in Section III. Numerical results on different
performance metrics are presented to establish its validity.

A. Arbitrary m ≤ n

Further derivations based on the result (4) likely require the
use of hypergeometric functions of multiple variables and are
not examined here.1 Having an exact expression for MΛ−1(s)
is more appealing when it comes to numerical evaluation of
the performance metrics for it reduces the number of folded
integrals that one may have to evaluate. The ccdf of Λ, which
relates to the probability of outage, for instance, is given by [25]

F̄Λ(x) = FΛ−1

(
1
x

)
=

2
π

∞∫
0

� (MΛ−1(jω))
ω

sin
(ω

x

)
dω

(8)
whose single integral can be evaluated using a simple quadra-
ture technique. Likewise, evaluating a single integral suffices to
obtain the SER [26].

Fig. 2 compares the cdf of Λ: numerical versus simulated
(106-point semianalytic Monte Carlo). Numerical values have
been computed using adaptive quadrature routine quadl in
MATLAB after applying the variable transformation ω = (1 +
t)2/(1 − t)2 to adjust the range of integration. Since CI holds
reciprocity and performs similar to a ZF receiver, the diversity
order of CI can be deduced (from [27]) to be |Nt − Nr| + 1.
The slope of cdf curves as λ → 0 agrees with this observation.

1Native support for special functions of an arbitrary number of variables
is not currently available in standard computational environments such as
MATLAB and Mathematica. They are nevertheless implementable as cascaded
infinite series.
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Fig. 3. Ergodic capacity (in bits per second per hertz) for a 2 × n MIMO
system using CI; numerical versus simulated (�).

B. Special Case m = 2

This scenario is more tractable. Three applications of the
results are examined next, indirectly verifying (6) and (7).

1) Ergodic Capacity: The Shannon capacity of the MIMO
system in concern is given by a random variable C =∑2

k=1 log2(1 + piλi/N0) = 2 log2(1 + PΛ), where P de-
notes the transmit SNR (transmit power normalized w.r.t. the
noise variance). Its average, i.e., ergodic capacity EC{C}, can
be numerically computed as

EC{C} =

∞∫
0

cfC(c)dc = 2

∞∫
0

log2(1 + Px)fΛ(x) dx

for any given P . Fig. 3 verifies the numerical values thus
obtained for EC{C} for the cases n ∈ {2, 3, 5}, against the
simulation (105-point semianalytic Monte Carlo) results. As
expected, the ergodic capacity logarithmically increases with
the transmit SNR (i.e., appears as a straight line at high-transmit
SNR, when SNR is given in decibels) and increases (although
not linearly) with n.

2) Average SER: Since the receiver processing for CI leaves
the distribution of additive Gaussian noise unaltered, the aver-
age SER Ps under many modulation schemes [28, Ch. 5] can
be given by

Ps = μEΛ

{
Q(

√
2νΛP )

}
(9)

where P is the transmit SNR, and μ, ν are constants dependent
on the modulation scheme. For example, μ = 1, ν = 1 exactly
give the SER for binary phase-shift keying (BPSK), whereas
μ = 2(M − 1)/M , ν = 3/(M2 − 1) approximate those for
other M -ary pulse amplitude modulation schemes. The average
SER for such systems can be analytically derived using (9) and
the distribution of Λ.

Corollary 2—Average SER (for m = 2): Let λ1 and λ2 be
the unordered eigenvalues of a 2 × 2 complex central Wishart

Fig. 4. Average SER for BPSK (i.e., μ = ν = 1) over a 2 × n MIMO
system using CI; analytical versus simulated (�). (Dashed lines) Asymptotes
to curves.

matrix having n degrees of freedom. The average SER (9) is
given by

Ps =
μ

(42n)K2,n

2n∑
k=0

(
2n

k

)

×
[

2(n − k)G2 2
3 3

(
4

νP
|0.5,1,2n−0.5
3n−k−1,n+k−1,0

)

− G2 2
3 3

(
4

νP
|0.5,1,2n+0.5
3n−k,n+k,0

)

+ G2 2
3 3

(
4

νP
|0.5,1,2n+0.5
3n−k−1,n+k+1,0

)]
. (10)

Proof: See the Appendix. �
3) High SNR Analysis: The diversity and coding gains of the

system can be easily deduced [29, Prop. I] from the least order
approximation of x on the pdf of Λ. For the MIMO system in
concern, it may be obtained, after some manipulations, using
[21, eq. (9.6.9)] on (6).

Corollary 3: Let λ1 and λ2 be the unordered eigenvalues of
a 2 × 2 complex central Wishart matrix having n degrees of
freedom. The least order approximation of the pdf of Λ in (1) is
given by

fΛ(x) =
n

2(n − 2)!
xn−2 + o(xn−2). (11)

Proof: Evidently, only the k = 0 term of the summation
in (6) contributes to this approximation. Using the first term
of each series expansion [21, eq. (4.2.1)] and [21, eq. (9.6.9)],
followed by the selection of the least order term of x, yields the
result. �

Fig. 4 shows for the cases n ∈ {2, 3, 5} how the analytical re-
sult (10) for the SER of the BPSK compares with the simulation
(105-point semianalytic Monte Carlo) results. It also shows the
asymptotes for the curves computed using (11) based on [29].
A reduction of SER with increased n and a diversity order of
(n − 1) are observed.
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V. EXTENSION TO RICIAN AND CORRELATED

RAYLEIGH CASES

The joint pdf of the unordered eigenvalues of a complex
central Wishart distribution resembles those of the noncentral
and semicorrelated central Wishart distributions [30]. There-
fore, certain results presented in Section III can be generalized
for these scenarios. Only pdf results are presented here since the
derivation of other results from them (for case m = 2) requires
no different approach from the central-Wishart case.

A. Rician Fading for the Case min(Nt, Nr) = 2

Without further loss of generality, let Nt = n ≥ 2 and
Nr = 2. Suppose that the resulting 2 × n channel matrix
H is of the form H = aHsp + bHsc, where Hsp represents
the deterministic specular (line-of-sight) component, Hsc ∈
C

2×n represents the random scatter component, and a2 + b2 =
1. The specular component is governed by the directional
gains of the antennas, presence of dominant multipaths, etc.
K = a2‖Hsp‖2

F /b2‖Hsc‖2
F is the Rician factor [31]. Ω =

(a2/b2)HspHH
sp is the noncentrality matrix.

Let {λ1, λ2} = eig(HHH) and {ω1, ω2|ω1 > ω2} =
eig(Ω). The joint distribution of unordered eigenvalues λ1, λ2

is given by [31, eq. (15)]

fλ1,λ2(λ1, λ2)

=
e−(ω1+ω2)

2
|λ1 − λ2|(λ1λ2)

n−2
2

(ω1 − ω2)(ω1ω2)
n−2

2

× e−(λ1+λ2)
(
In−2(2

√
ω1λ1)In−2(2

√
ω2λ2)

− In−2(2
√

ω2λ1)In−2(2
√

ω1λ2)
)

. (12)

The pdf result corresponding to case ω1 = ω2 can be obtained
through the limiting operation ω1 → ω2 on (12).

Assume perfect transmit CSI and the CI scheme. Given
transmit SNR P , the per-channel received SNR (b2/2)PΛ
relates to λ1 and λ2 through (1).

Theorem 3—PDF of Λ: Let λ1 and λ2 be the eigenvalues of
a rank-2 complex noncentral Wishart matrix having n degrees
of freedom and noncentrality matrix Ω whose eigenvalues are
{ω1, ω2|ω1 > ω2 > 0}. The pdf of Λ in (1) is given by

fΛ(x) =
∞∑

i=0

i∑
j=0

gi,j(ω1, ω2)
(j + n − 2)!(i − j + n − 2)!j!(i − j)!

×
i+2n−1∑

p=0

(
i + 2n − 1

p

)
e−2xxi+2n−2

× (Kn+j−p(2x) −Kn+j−p−1(2x)) (13)

where

gi,j(ω1, ω2) =
e−(ω1+ω2)

(ω1 − ω2)

(
ωj

1ω
(i−j)
2 − ω

(i−j)
1 ωj

2

)
. (14)

Fig. 5. PDF of Λ over 2 × n MIMO systems using CI; analytical versus
simulated (�). Rician fading modeled by a rank-2 noncentrality matrix having
eigenvalues [4, 1] assumed.

Proof: The identity [21, eq. (9.6.10)] is used to expand
each In(·) as an infinite series. Each term of the resulting
cascaded infinite series is of a form similar to (6). Hence, the
rest of the proof is similar to that of Theorem 2. �

Fig. 5 verifies the analytical pdf results for 2 × n MIMO
systems using CI under Rician fading against the simulated
(106-point semianalytic Monte Carlo) results. The noncentral-
ity matrix has eigenvalues ω1 = 4 and ω2 = 1.

Equation (13) gets simplified further for the case ω1 
= 0,
ω2 = 0 and the limiting case ω1 → ω2. Corresponding pdf
expressions, along with the cdf and average SER results, have
been presented and verified in [2]. The least order approxima-
tion of the pdf therein is reproduced here. It shows that the
diversity order is the same for both Rayleigh and Rician fading.

Corollary 4: Let λ1 and λ2 be the eigenvalues of a rank-2
noncentral complex Wishart matrix having n degrees of
freedom and noncentrality matrix Ω, whose eigenvalues are
{ω1, ω2|ω1 > ω2 > 0}. The first-order approximation of the
pdf of Λ in (1) is given by fΛ(x) = axn−2 + o(xn−2), where

a =
(n + ω1 − 1)e−ω2 − (n + ω2 − 1)e−ω1

2(ω1 − ω2)(n − 2)!
. (15)

Proof: The proof is similar to that of Corollary 3. �
Note that the limit of a in (15) as ω1 → ω2 and ω2 → 0 is

n/2(n − 2)!, which corresponds to Rayleigh fading.

B. Min Semicorrelated Rayleigh Fading for the Case
min(Nt, Nr) = 2

Semicorrelated MIMO channel models [30] represent the
scenarios where only one of the set of transmit or receive
antennas is correlated. Under Rayleigh fading, the joint dis-
tributions of corresponding unordered eigenvalues hold certain
similarities to that of the complex central Wishart matrix.

Let us extend the analysis of min(Nt, Nr) = 2 case in
Section III for min semicorrelated Rayleigh fading, where
correlation exists only at the terminal having a smaller number
of antennas. Without loss of generality, let Nt = n ≥ 2 and
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Nr = 2. The channel matrix becomes H = Σ1/2Hw, where
Hw ∈ C

Nr×Nt is complex Gaussian distributed, and Σ is the
2 × 2 receive correlation matrix whose ordered eigenvalues
are σ1 and σ2, such that σ2 > σ1. The joint distribution of
the ordered eigenvalues of HHH is given by [32, eq. (17)].
Thus, we get the joint distribution of the unordered eigenvalues
{λ1, λ2} = eig(HHH) as

fλ1,λ2(λ1, λ2) =
K

2
|λ1 − λ2|(λ1λ2)n−2

×
(
e−(λ1/σ1+λ2/σ2) − e−(λ1/σ2+λ2/σ1)

)
(16)

where

K =
(σ1σ2)1−n

(n − 1)!(n − 2)!(σ2 − σ1)
. (17)

The result for the case σ1 = σ2 would be given by the limiting
operation σ2 → σ1. The distribution of Λ in (1) can be charac-
terized as follows:

Theorem 4—PDF of Λ: Let λ1 and λ2 be the eigenvalues
of a rank-2 complex central Wishart matrix having n de-
grees of freedom and a correlation matrix having eigenvalues
{σ1, σ2|σ2 > σ1 > 0}. The pdf of Λ in (1) is given by

fλ(x)=Kx2n−2e−(1/σ1+1/σ2) (Ix(σ1, σ2, 0)−xIx(σ1, σ2, 1)

− Ix(σ2, σ1, 0)+xIx(σ2, σ1, 1))

where

Ix(μ1, μ2, a) =
2n−1∑
k=0

(
2n − 1

k

)(
μ1

μ2

) k−n−a+1
2

×
Kk−n−a+1

(
2x√
μ1μ2

)
xa

.

Proof: The proof is omitted, given the similarity to that of
Theorem 2. �

Fig. 6 verifies the analytical pdf results for 2 × n MIMO
systems using CI against the simulated results. The receive cor-
relation matrix has eigenvalues σ1 = 0.1 and σ2 = 0.3. Special
cases such as σ1 = σ2, as well as the cdf and average SER
results, are mathematically tractable but not attempted here.

VI. CONCLUSION

The performance of MIMO eigenmode transmission under
the CI power allocation scheme has been examined. A mathe-
matical framework has been developed to characterize received
signal power Λ in CI. The exact mgf of Λ−1 (for arbitrary
Nt and Nr) and the exact pdf of Λ and the cdf of Λ (for
the special case min(Nt, Nr) = 2) have been derived assuming
Rayleigh fading. Some extensions have been derived for Rician
fading and semicorrelated Rayleigh fading. Numerical results,
including that of the average SER, have been provided and
verified through simulation to highlight possible applications
of the framework developed.

The results confirm the intuition that CI has the diversity
order of the weakest eigenmode, which is |Nt − Nr| + 1 under

Fig. 6. PDF of Λ over 2 × n MIMO systems using CI; analytical versus
simulated (�). Receive correlation matrix assumed to have [0.1, 0.3] as the
eigenvalues.

both Rayleigh and Rician fading. This is because CI allocates
power so that the received SNR is the same over all eigenmodes.
Note that ZF reception performs similar to CI, without requiring
transmit CSI. Hence, CI is not attractive when the receiver has
more antennas than the transmitter. When the transmitter has
more antennas, just like transmit ZF, CI does not require spatial
processing at the receiver. Therefore, in such point-to-point and
point-to-multipoint MIMO configurations, CI is an easier to
implement alternative to transmit ZF.

APPENDIX

This Appendix presents the proofs of Theorems 1 and 2 and
Corollaries 1 and 2.

Proof—Theorem 1: MGF of Λ−1 (Arbitrary m ∈ Z+): The
mgf of Λ−1 is given by the m-folded integral, i.e.,

M1/Λ(s) =

∞∫
λ1=0

· · ·
∞∫

λm=0

e
−
∑m

i=1
1

λi
s

×fλ1,...λm
(λ1, . . . , λm) dλ1 · · · dλm. (18)

Substituting (3) into (18) and simplifying with [33, 4.5.1.(9)],
we get

M1/Λ(s) =
1

m!Km,n

∑
k1,...,km∈{0,...,2(m−1)}∑

ki
=m(m−1)

b(k1, . . . , km)

×
m∏

i=1

∞∫
λ1=0

λki+n−m
i e

−
(
λi+

s
λi

)
dλi

=
1

m!Km,n

∑
k1,...,km∈{0,...,2(m−1)}∑

ki
=m(m−1)

b(k1, . . . , km)

×
m∏

i=1

(
2s−

ki+nm+1
2 Kki+n−m+1(2

√
s)

)
(19)

and, hence, (4). �
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Proof—Theorem 2: PDF of Λ (Case: m = 2): From the
definition of the cdf

FΛ(x) =P
[

λ1λ2

λ1 + λ2
≤ x

]
=P [λ1(λ2 − x) ≤ λ2x]

=

x∫
0

F̄λ1|λ2

(
λ2x

λ2 − x

∣∣∣∣ λ2

)
︸ ︷︷ ︸

.
=1

fλ2(λ2) dλ2

+

∞∫
x

Fλ1|λ2

(
λ2x

λ2 − x

∣∣∣∣ λ2

)
fλ2(λ2) dλ2

F̄Λ(x) =

∞∫
x

F̄λ1|λ2

(
λ2x

λ2 − x

∣∣∣∣ λ2

)
fλ2(λ2) dλ2.

Differentiating it with respect to x, we get

fΛ(x) =

∞∫
x

λ2
2

(λ2 − x)2
fλ1|λ2

(
λ2x

λ2 − x

∣∣∣∣ λ2

)
fλ2(λ2)dλ2

=

∞∫
x

λ2
2

(λ2 − x)2
fλ1,λ2

(
λ2x

λ2 − x
, λ2

)
dλ2

=

∞∫
0

(
t + x

t

)2

fλ1,λ2

(
x(t + x)

t
, t + x

)
dt. (20)

Substituting (5) into (20) and using the binomial expansion and
[22, eqs. (3.471.9, 8.471.1)], we get

fΛ(x) =
1

2K2,n

∞∫
0

(
t + x

t

)2

e−
(t+x)2

t

×
(

(t + x)2(t − x)2

t2

) (
x(t + x)2

t

)n−2

dt

=
1

2K2,n
xn−2e−2x

2n∑
k=0

(
2n

k

)
x2n−k

×
∞∫

0

(t − x)2

tn+2−k
e
−
(
t+ x2

t

)
dt

=
1

K2,n
x2(n−1)e−2x

2n∑
k=0

(
2n

k

)

× ((n−k−2x)Kk−n(2x)+2xKk+1−n(2x)) . (21)

�
Proof—Corollary 1: CDF of Λ (Case: m = 2): Consider

the following integral, which can be simplified into a single
Meijer G function [34, p. 419] first by using [22, eq. (9.34.4)]

and then by applying [35, eq. (7.34.21.2.1)] with a substitution
u

.= 2t:

x∫
0

tμKν(t)e−tdt =
√

π

x∫
0

tμG2 0
1 2

(
2t|0.5

−ν,ν

)
dt

=
√

π

2μ+1

2x∫
0

uμG2 0
1 2

(
u|0.5

−ν,ν

)
du

=
√

π

2μ+1G
2 1
2 3

(
2x|1,μ+1.5

μ−ν+1,μ+ν+1,0

)
. (22)

Now, let us consider the cdf of Λ, i.e.,

FΛ(x) =

x∫
0

fΛ(t) dt

=
1

K2,n

2n∑
k=0

(
2n

k

)

×

⎛
⎝(n − k)

x∫
0

t2n−2e−2tKk−n(2t) dt

− 2

x∫
0

t2n−1e−2tKk−n(2t) dt

+ 2

x∫
0

t2n−1e−2tKk+1−n(2t) dt

⎞
⎠ . (23)

Applying the result of (22) in (23), we get (7). �
Proof—Corollary 2: Average SER (Case: m = 2): Equation

(9) can be simplified as follows using integration by parts and
the Leibniz’s rule for differentiation [36, eq. (32)], [37]:

Ps =

∞∫
0

μQ(
√

2νxP ) dFΛ(x)

=μ

∞∫
0

e−νPx

√
2π

·
√

2νP

2
√

x
FΛ(x) dx. (24)

Consider the integral

I(q, α, β, γ) =

∞∫
0

x−0.5e−qxG2 1
2 3

(
4x|1,α

β,γ,0

)
dx

=L
{

x−0.5G2 1
2 3

(
4x|1,α

β,γ,0

)}∣∣∣
s
.
=q

where q, α, β, and γ are positive reals, and L{.} denotes the
Laplace transform. It can be solved using [33, eq. (4.23.34)]
to get

I(q, α, β, γ) = q−0.5G2 2
3 3

(
4
q
|0.5,1,α
β,γ,0

)
. (25)

Substituting (7) into (24) and using (25) complete the proof. �
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