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Abstract—Transmit/receive zero-forcing (ZF) is studied for
multiple-input multiple-output (MIMO) amplify-and-forward
(AF) two-way relay networks (TWRNs). Specifically, two sources
employ transmit and receive ZF during two consecutive time-
slots for transmission and reception, respectively, while the relay
performs analog network coding. Each source then requires only
the instantaneous respective source-to-relay channel knowledge,
and hence, the complexity of practical implementation is signifi-
cantly reduced. The performance of this system set-up is studied
by deriving the upper and lower bounds of the overall outage
probability, their high signal-to-noise ratio approximations and
diversity order. To obtain valuable insights into practical MIMO
TWRN implementation, the diversity-multiplexing trade-off is
also quantified.

Index Terms—Two-way relay networks, MIMO, zero forcing.

I. INTRODUCTION

TWO-WAY relay networks (TWRNs) promise spectral
efficiency improvements for wireless networks with half-

duplex terminals [1]–[5]. Specifically, conventional one-way
relay networks (OWRNs) require four orthogonal channel-
uses to exchange two messages between two sources via a
relay, whereas TWRNs require just two orthogonal channel-
uses. Thus, TWRNs avoid the pre-log factor of one-half in
capacity expressions, and hence, are twice as spectral efficient
as OWRNs [1], [2]. Moreover, multiple-input multiple-output
(MIMO) technologies can further enhance the performance
of single-antenna TWRNs [3]–[5]. Consequently, amplify-
and-forward (AF) MIMO TWRNs can use zero-forcing (ZF)
transmit beamforming and ZF receive equalization strategies.

Prior related research: In [3]–[5], precoder/decoder de-
signs for MIMO AF TWRNs are studied with varying de-
grees of complexity and performance. Specifically, in [3], the
optimal relay beamforming structure is derived and used to
study the achievable capacity regions. Moreover, [4] develops
the optimal relay precoder for MIMO TWRNs based on the
minimization of the mean square error (MSE) between the
transmitted and received signals with a total power constraint.
In [5], the relay processing is optimized based on both ZF
and minimum MSE criteria under relay power constraints for
multiuser MIMO TWRNs. Specifically, [5] designs optimized
transceivers at the relay to mitigate both co-channel interfer-
ence and self-interference to cater a multiuser scenario by
using steered beams through multiple antennas at the relay.
All the aforementioned studies [3]–[5] involve convex opti-
mization techniques for designing MIMO precoders/decoders.

For the sake of completeness, we also mention the prior
related research on OWRNs with ZF precoder/decoder de-
signs. In [6], ZF is studied for four different system set-ups

Manuscript received December 1, 2011. The associate editor coordinating
the review of this letter and approving it for publication was M. Tao.

The authors are with the Department of Electrical and Computer Engi-
neering, University of Alberta, Edmonton, AB, Canada T6G 2V4 (e-mail:
{amarasur, chintha, ardakani}@ece.ualberta.ca).

Digital Object Identifier 10.1109/WCL.2012.010912.110220

of multiuser OWRNs by deriving the outage probability of an
arbitrary data substream.

Motivation and our contribution: Although [3]–[5] derive
transceiver structures for MIMO TWRNs, they do not facilitate
deriving important performance metrics such as the outage
probability and achievable diversity/multiplexing gains in
closed-form due to the complicated MIMO precoder/decoder
designs. Moreover, in all the above studies, the relay complex-
ity is high and consequently undermines one of the main trade-
offs of deploying relay networks; i.e., the implementation
complexity versus performance. In particular, to implement
the source/relay transceiver structures [3]–[5], sources/relay
require global channel state information (CSI)1, and thus,
increasing the additional feedback/overhead and lowering the
spectral efficiencies.

In this letter, a suboptimal yet simple transmission strategy,
which circumvents the complex precoder designs of [3]–[5],
while achieving comparable performance gains, is developed
and analyzed. Specifically, we consider a half-duplex MIMO
AF TWRN consisting of two sources and one relay. In the first
time-slot, both sources simply employ transmit-ZF, while the
relay receives a superimposed-signal without using a specific
receiver reconstruction filtering. In the second time-slot, relay
performs a simple AF operation with a specific gain that
is designed to constraint the long-term total transmission
power at the relay. The two sources receive this amplified
superimposed-signal by employing receive-ZF. One practical
significance of our system set-up is that each source requires
only the respective source-to-relay CSI knowledge as opposed
to the global CSI requirement of [3]–[5], while the relay
requires only the long-term channel statistics. This letter aims
to establish basic performance metrics of this system set-up.

The performance of the aforementioned system set-up is
quantified by first deriving the effective end-to-end signal-to-
noise ratio (e2e SNR) of each source, and then, deriving the
upper and lower bounds for the overall outage probability, their
asymptotically exact high SNR approximations and diversity
order. Moreover, useful insights into practical MIMO TWRN
implementation are obtained by quantifying the diversity-
multiplexing trade-off.

Notations: EΛ{z} is the expected value of z over Λ. ZH , ZT ,
[Z]k,l and λk(Z) denote the conjugate-transpose, transpose,
the (k, l)th diagonal element and the kth eigenvalue of the
square matrix, Z, respectively. The operator ⊗ denotes the
Kronecker product. IM and OM×N are the M ×M Identity
matrix and M × N matrix of all zeros, respectively. f(x) =
o (g(x)), g(x) > 0 states that f(x)/g(x) → 0 as x → 0.

1Here, instantaneous global CSI refers to instantaneous full channel knowl-
edge of both hops, i.e., S1 → R and S2 → R.
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II. SYSTEM MODEL

We consider a MIMO AF TWRN consisting of two source
nodes (S1 and S2), and one relay node (R), where each of
them is equipped with N1, N2 and NR antennas, respectively2.
All nodes are assumed to be half-duplex, and all chan-
nel amplitudes are assumed to be independently distributed
frequency-flat Rayleigh fading. The channel matrix from Si

to R is denoted by Hi,R ∼ CNNR×Ni (0NR×Ni , INR ⊗ INi),
where i ∈ {1, 2}. All the channel coefficients are assumed to
be fixed over two consecutive time-slots [1], [2], and hence,
the channel matrix from R to Si, HR,i, can be denoted as
HT

i,R for i ∈ {1, 2}. The additive noise at all the receivers
is modeled as complex zero mean additive white Gaussian
(AWGN) noise. The direct channel between S1 and S2 is as-
sumed to be unavailable due to heavy path-loss and shadowing
[1], [2].

In this protocol, S1 and S2 exchange their information-
bearing vectors, x1 and x2, satisfying E

[
xix

H
i

]
= INi ,

i ∈ {1, 2}, respectively, during two time-slots. In the first
time-slot, both S1 and S2 transmit x1 and x2 simultaneously
by employing transmit-ZF precoding to R over a multiple
access channel. The received superimposed-signal vector3 at
R is given by

yR = Ψ1H1,RU1x1 +Ψ2H2,RU2x2 + nR, (1)

where nR is the NR × 1 zero mean AWGN vector at R
satisfying E

(
nRn

H
R

)
= INRσ

2
R, and Ui is the transmit-ZF

precoding matrix at Si, and is given by [7]

Ui = HH
i,R

(
Hi,RH

H
i,R

)−1
Πi for i ∈ {1, 2}, (2)

where Πi is the NR×Ni permutation matrix4, which ensures
only NR data streams are transmitted by Si for i ∈ {1, 2}.
In (2), Ψi, i ∈ {1, 2}, is the power normalizing factor, which
constraints the long-term total power at Si, and is given by

Ψi =

√
Pi

Tr
(
E
[
UiUH

i

]) =

√
Pi

Ti
, for i ∈ {1, 2}, (3)

where Pi is the transmit power at Si and Ti �
Tr

(
E
[
UiU

H
i

])
= NR

Ni−NR
[6].

In the second time slot, R amplifies yR with a gain5

G =
√

PR

Ψ2
1+Ψ2

2+σ2
R

and broadcasts to both sources over the

broadcast channel. Here, PR is the transmit power at R.
Then, each source, Si, receives the NR × 1 signal vector by
employing the receive-ZF as follows:

ySi = Vi (GHR,iyR + ni) , for i ∈ {1, 2}, (4)

where HR,i=HT
i,R and ni is the Ni × 1 zero mean AWGN

at Si satisfying E
(
nin

H
i

)
= INiσ

2
i , where i ∈ {1, 2}.

Furthermore, in (4), Vi, i ∈ {1, 2}, is the receive-ZF matrix
at Si, and given by [7]

2Specifically, we restrict N1, N2 and NR to satisfy the constraint
NR < min(N1, N2) in the sequel. This constraint allows us to employ
joint transmit/receive ZF for the same antenna configuration and renders
mathematical tractability. Consequently, the maximum number of end-to-end
data substreams is constrained to NR.

3This superimposed-signal can also be identified as an analog network code
vector in the two-way relay networks [3].

4The permutation matrix, Πi, i ∈ {1, 2}, can be constructed by horizon-
tally concatenating a NR×NR permutation matrix and a NR×(Ni−NR)
zero matrix.

5Here, the amplification gain, G, is designed as a normalizing constant to
constraint the long-term total power at R.

Vi =
(
HH

R,iHR,i

)−1
HH

R,i, for i ∈ {1, 2}. (5)

By substituting (1) and (5) into (4), and by removing the self-
interference6 [1], the post-processing e2e SNR of the kth,
k ∈ {1 · · ·NR}, data substream at Si can be derived as

γ
S

(k)
i

=
Tiγ̄R,iγ̄i′,R

TiTi′ γ̄R,i+(Tiγ̄i′,R+Ti′ γ̄i,R+TiTi′)
[
HH

R,iHR,i

]−1

k,k

, (6)

where γ̄i,R � Pi

σ2
R

, γ̄R,i � PR

σ2
i

, i ∈ {1, 2}, i′ ∈ {1, 2} and
i �= i′. It is worth noticing the statistical independence of γ

S
(k)
1

and γ
S

(k)
2

of (6) for a given k. However, post-processing SNRs
of multiple substreams belong to a given source are correlated.

III. PERFORMANCE ANALYSIS

In this section, the performance of transmit/receive ZF
for MIMO AF TWRNs is studied. To this end, closed-form
upper and lower bounds for the overall outage probability are
derived. To obtain further insights into practical system de-
signing, the diversity-multiplexing trade-off is also quantified.
A. Overall outage probability

The overall performance of multi-source systems is gov-
erned by the performance of the weakest source [8]. Thus,
the overall outage probability of our system set-up is defined
as

Pout=Pr

[
min

(
min

k∈{1···NR}
γ
S

(k)
1

, min
k∈{1···NR}

γ
S

(k)
2

)
≤γth

]
,(7)

where γth is the threshold SNR7. Direct computation of (7)
appears complicated due to the correlation of γ

S
(k)
i

for k ∈
{1 · · ·NR}. Thus, simple closed-form upper and lower bounds
for the overall outage probability are derived.

1) Upper bound of Pout: The maximum diagonal element
of

[
HH

R,iHR,i

]−1
can be upper bounded as [7]

max
k∈{1···NR}

[
HH

R,iHR,i

]−1

k,k
≤ λ−1

min

(
HH

R,iHR,i

)
. (8)

By substituting (8) into (6), the smallest substream SNR of
Si, i ∈ {1, 2}, can be lower bounded as follows:

γSi,min= min
k∈{1···NR}

γ
S

(k)
i

≥γlb
Si,min

=
ηi

ζi+μλ−1
min

(
HH

R,iHR,i

) ,(9)

where μ = T1γ̄2,R + T2γ̄1,R + T1T2, ηi = Tiγ̄R,iγ̄i′,R, and
ζi = TiTi′ γ̄R,i, where i ∈ {1, 2}, i′ ∈ {1, 2} and i �= i′.

By substituting (9) into (7), Pout can be upper bounded as

Pout ≤ P ub
out = Pr

[
min

(
γlb
S1,min

, γlb
S2,min

)
≤ γth

]
. (10)

The upper bound for the overall outage probability in (10) can
be derived in closed-form as (see Appendix I for the proof)

P ub
out =

2∑
i=1

Fγlb
Si,min

(γth)−
2∏

i=1

Fγlb
Si,min

(γth) , (11)

where Fγlb
Si,min

(x) is the cumulative distribution function

(CDF) of γlb
Si,min

and is given by

Fγlb
Si,min

(x)=

⎧⎨
⎩1−

det
[
Qi

(
μx

ηi−ζix

)]

∏NR
j=1[Γ(Ni−j+1)Γ(NR−j+1)]

, 0<x< ηi

ζi

1, x ≥ ηi

ζi
.

(12)

6It is assumed that Si knows its own information-bearing symbol vector,
xi, CSI of Hi,R, and G which requires Ψi, where i ∈ {1, 2}.

7This threshold SNR, γth, can be determined to satisfy the minimum
service-rate constraint; γth = 2Rth − 1, where Rth is the target rate [8].
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In (12), Q(x) is an NR × NR matrix, where the (u, v)th
element is given by [9, Eq. (2.73)]

[Qi(x)]u,v = Γ(Ni −NR + u+ v − 1, x) . (13)

2) Lower bound of Pout: The maximum diagonal element
of

[
HH

R,iHR,i

]−1
can be lower bounded by an arbitrary kth

diagonal element,
[
HH

R,iHR,i

]−1

k,k
. Thus, the smallest post-

processing substream SNR of Si, i ∈ {1, 2}, can be upper
bounded as
γSi,min= min

k∈{1···NR}
γ
S

(k)
i

≤γub
Si,min

=
ηi

ζi+μ
[
HH

R,iHR,i

]−1

k,k

. (14)

By substituting (14) into (7), Pout can be lower bounded as

Pout ≥ P lb
out = Pr

[
min

(
γub
S1,min

, γub
S2,min

)
≤ γth

]
. (15)

By using similar steps to those in Appendix I, the lower bound
for the overall outage probability (15) can be derived as

P lb
out =

2∑
i=1

Fγub
Si,min

(γth)−
2∏

i=1

Fγub
Si,min

(γth) , (16)

where Fγub
Si,min

(x) is the CDF of γub
Si,min

and is derived by

using similar steps to those in [6] as

Fγub
Si,min

(x) =

⎧⎨
⎩1−

Γ
(
Ni−NR+1, μx

ηi−ζix

)

Γ(Ni−NR+1) , 0 < x < ηi

ζi

1, x ≥ ηi

ζi
.

(17)

B. Diversity order

In this subsection, the diversity order of transmit/receive
ZF for MIMO AF TWRNs is derived by using the upper and
lower bounds for the overall outage probability.

1) Diversity order by using the upper bound of Pout:
An asymptotic high SNR approximation for the upper bound
of the overall outage probability (11) can be derived as (see
Appendix II for the proof)

P ub,∞
out = Ωub

(
γth
γ̄S,R

)Gub
d

+ o
(
γ̄
−(Gub

d +1)
S,R

)
, (18)

where the upper bound of the diversity order is given by

Gub
d = min(N1, N2)−NR + 1. (19)

In (18), the system dependent constant, Ωub, is given by

Ωub=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν1φ
N1−NR+1

1

(N1−NR+1)βN1−NR+1 , N1 < N2

ν2φ
N2−NR+1

2

(N2−NR+1)βN2−NR+1 , N2 < N1(
ν1φ

N−NR+1

1 +ν2φ
N−NR+1

2

)

(N−NR+1)βN−NR+1 , N1=N2=N,

(20)

where γ̄1,R = γ̄2,R = γ̄S,R, γ̄R,1 = γ̄R,2 = γ̄R,S , γ̄R,S =
βγ̄S,R, φ1 = T1+T2

T1
, and φ2 = T1+T2

T2
.

Moreover, in (20), νi for i ∈ {1, 2} is given by

νi =

⎧⎨
⎩

det(Mi)∏NR
j=1[Γ(Ni−j+1)Γ(NR−j+1)]

, NR �= 1

1
Γ(Ni)

, NR = 1,
(21)

where Mi, i ∈ {1, 2}, is an (NR − 1) × (NR − 1) ma-
trix, where the (u, v)th element is given by [Mi]u,v =
Γ(Ni −NR + u+ v + 1).

2) Diversity order by using the lower bound of Pout: An
asymptotic high SNR approximation for the lower bound of
the overall outage probability (15) can be derived as8

P lb,∞
out = Ωlb

(
γth
γ̄S,R

)Glb
d

+ o
(
γ̄
−(Glb

d +1)
S,R

)
, (22)

where the lower bound of diversity order is given by
Glb

d = min(N1, N2)−NR + 1. (23)

In (22), the system dependent constant, Ωlb, is defined as

Ωlb=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ
N1−NR+1

1

Γ(N1−NR+2)βN1−NR+1 , N1 < N2

φ
N2−NR+1

2

Γ(N2−NR+2)βN2−NR+1 , N2 < N1

φ
N−NR+1

1 +φ
N−NR+1

2

Γ(N−NR+2)βN−NR+1 , N1=N2=N,

(24)

where γ̄S,R, φ1 and φ2 are defined in (20).
Remark III.1: Interestingly, the upper and lower bounds of
the diversity order in (19) and (23) coincide, and consequently,
the achievable diversity order can then be quantified as

Gd = min(N1, N2)−NR + 1. (25)

C. Diversity-multiplexing trade-off

It is worth noticing that the diversity order reduces as
the number of antennas at the relay (NR) increases, and
consequently, the multiplexing gain increases. This behavior is
resulted from the fundamental diversity-multiplexing trade-off
[8], and can be quantified as follows:

The effective mutual information can be upper bounded as

Ieff ≤ NR

2

[
2∑

i=1

log
(
1 + γub

Si,min

)]

≈NRlog
(
1 + min

(
γub
S1,min, γ

ub
S2,min

))
. (26)

Consequently, the information outage probability can be lower
bounded as

Pout � Pr

(
min

(
γub
S1,min, γ

ub
S2,min

)
≤ 2

Rth
NR − 1

)
, (27)

where Rth is the target rate, and is defined as Rth =
rlog (1 + γ̄S,R) [8]. By using (22), Pout in (27) can be
approximated when γ̄S,R → ∞ as

P
γ̄S,R→∞
out ≈ γ̄

−(min(N1,N2)−NR+1)
(
1− r

NR

)

S,R . (28)

The diversity-multiplexing trade-off can then be quantified by
using its definition [8] as9

d(r) = (min(N1, N2)−NR + 1)

(
1− r

NR

)
. (29)

IV. NUMERICAL RESULTS

In Fig. 1, the exact, upper and lower bounds ((11) and (15)),
and asymptotically exact high SNR approximations ((18) and
(22)) of the overall outage probability is plotted. Fig. 1 clearly
reveals that the outage probability improves significantly as
the number of relay antennas decreases. For instance, at 10−5

outage probability, single-antenna relay results in a 16 dB SNR
gain over the triple-antenna relay. However, it is worth noticing
that the single-antenna set-up achieves this outage gain over
the latter at the expense of a drastic spatial multiplexing
loss as quantified in (29). The asymptotic high SNR outage

8The proof of P lb,∞
out follows similar steps to those of P ub,∞

out , and hence,
is omitted for the sake of brevity.

9It is worth noticing that (29) can also be derived by using the outage upper

bound; Pout � Pr(min(γlb
S1,min, γ

lb
S2,min) ≤ 2

Rth
NR − 1).
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bounds clearly reveal the achievable diversity order of the
system, and provide insights into practical two-way relay
system designing. In particular, our outage bounds reduce to
exact outage for single-antenna relays. This behavior is not
surprising as NR = 1, HH

R,iHR,i becomes a rank one matrix.

V. CONCLUSION

Transmit/receive ZF was studied for MIMO AF TWRNs.
The performance of this system set-up was studied by deriving
the upper and lower bounds of the overall outage prob-
ability and diversity-multiplexing trade-off in closed-form.
Specifically, our outage bounds reduce to exact outage for
single-antenna relays, and hence, serve as benchmarks for
practical AF MIMO TWRNs. In particular, transmit/receive
ZF strategy requires each source to know only its channel to
the relay, and thus, eliminates the requirement of the global
CSI for each source. We also studied the impact of number
of relay antennas. Counter intuitively, increasing the number
of relay antennas reduces the diversity gains but increases the
multiplexing gains. Relay selection can improve this trade-off
and will be investigated in the future.

APPENDIX I :PROOF OF P ub
out

In this appendix, the proof of the CDF of γlb
Si,min, for i ∈

{1, 2}, (9) is sketched as follows:

Fγlb
Si,min

(x)=Pr

⎛
⎝γlb

Si,min
=

ηi

ζi+μλ−1
min

(
HH

R,iHR,i

)≤x

⎞
⎠.(30)

Whenever x ≥ ηi

ζi
, Fγlb

Si,min
(x)=1. On the contrary, for x< ηi

ζi
,

(30) can be simplified as

Fγlb
Si,min

(x) = Fλi,min

(
μx

ηi − ζix

)
, (31)

where λi,min = λmin

(
HH

R,iHR,i

)
and Fλi,min(x) are the

minimum eigenvalue of the central Wishart matrix, HH
R,iHR,i,

and its CDF, respectively [9, Eq. (2.73)]. Next, by observing
the statistical independence of γlb

S1,min and γlb
S2,min, the CDF

of γub
eff = min

(
γlb
S1,min, γ

lb
S2,min

)
can be derived as Fγub

eff
(x) =∑2

i=1 Fγlb
Si,min

(x)−
∏2

i=1 Fγlb
Si,min

(x) . The desired result (11)

can then be obtained by substituting (31) into Fγub
eff
(x), and

evaluating at γth.

APPENDIX II :PROOF OF P ub,∞
out

In this appendix, the proof of the upper bound for the diversity
order is sketched. To this end, the probability density function
of λmin

(
HH

R,iHR,i

)
is given as [10, Theorem 5.4]

fλi,min(x) = CNR,Nix
Ni−NRe−

xNi
2 PNR,Ni(x), (32)

where CNR,Ni is a constant, and PNR,Ni(x) is a
polynomial of degree (Ni −NR)(NR − 1); PNR,Ni =∑(Ni−NR)(NR−1)

j=0 αNR,Ni,j x
j . By using (31), the PDF of

γlb
Si,min, i ∈ {1, 2}, can be derived as

fγlb
Si,min

(x)=
ηiμ

(ηi−ζix)2
fλi,min

(
μx

ηi−ζix

)
, 0≤x<

ηi
ζi
. (33)

The behavior of fγlb
Si,min

(x) as x → 0 is governed by the
Maclaurin series expansion of (33) [11]. After some steps, the
first order expansion of fγlb

Si,min
(x) can be derived as

fx→0
γlb
Si,min

(x)=νi

(
φi

βγ̄S,R

)Ni−NR+1

xNi−NR+ o
(
xNi−NR+1

)
, (34)
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Fig. 1. The overall outage probability for the SNR threshold γth = 6.02 dB.

where CNR,NiαNR,Ni,0 = νi, i ∈ {1, 2}, and can be derived
by using [12, Eq. (10)] and [9] as given in (21). In (34), γ̄S,R,
β, and φi are defined in (20). Now, by using (34) and adopting
a similar approach of that of [11], the first order expansion of
Fγlb

Si,min

(x), i ∈ {1, 2}, as x → 0 can be derived as

F x→0
γlb
Si,min

(x) =
νi

(
φix

βγ̄S,R

)Ni−NR+1

(Ni −NR + 1)
+ o

(
xNi−NR+2

)
, (35)

By substituting (35) into (11), and obtaining its first order
expansion, the high SNR approximation for the upper bound
of the overall outage probability can be derived as in (18).
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