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Abstract-Interference management is a major issue in un­
derlay cognitive radio networks. In this paper, we focus on 
characterizing the statistics of the aggregate interference experi­
enced by a primary user and evaluate its performance through 
important metrics such as outage probability, bit error rate and 
amount of fading. In previous works, the infinite interferers 
area assumption prevailed since it mainly simplifies the analysis. 
In contrast, we investigate the more realistic finite area, and 
further consider various practical spatial configurations. Two 
of the possible applications the proposed finite reconfigurable 
model can advocate are the IEEE 802.22 (WRAN) digital TV 
scenario and the aggregate interference considering different 
path loss exponents. We first derive the exact moment generating 
function (MGF) of the interference, then quantify the mean, the 
variance, and the skewness. Subsequently, the primary system 
performances are evaluated leading to novel expressions based 
on the interference MGF. 

I. INTRODUCTION 

In the last decade, cognitive radio (CR) technology [1] 
has become a popular candidate to overcome the increasing 
scarcity of the radio spectrum, by allowing the so-called 
secondary users (SUs) to opportunistically sense and utilize the 
available spectrum. In order to foster the CR paradigms, many 
important issues still need to be solved in different research 
areas. In particular, this work focuses on the theoretical anal­
ysis of the aggregate interference experienced by the primary 
system in an underlay CR network. This type of analysis can 
provide useful bounds for the interference level, and shed some 
light on the interplay between the interference behavior and 
different physical parameters (e.g., propagation characteristics, 
users density, area and power). 

The characterization of the interference in different network 
configurations is crucial for the design of efficient interference 
management techniques. Although a well researched topic, 
the CR development has brought it again into the focus of 
researchers. The aggregate interference in a Poisson field 
of interferers was first studied in [2]. The interference was 
shown to follow a stable distribution with infinite variance. 
That work has then been extended to handle more practical 
issues such as: various type of channel fading (e.g., [3]­
[5]), probability distribution approximations (e.g., [6], [7]), 
cell-based primary configuration (e.g., [8]), interferers using 
power control (e.g., [7]), or sensing capabilities (e.g., [6], [9]). 
The outage probabilities of the interfered nodes for various 
channels have been investigated in e.g., [4], [5]. The general 
approach which has hitherto been used to characterize the 

interference is first to evaluate its characteristic function (CF) 
(see e.g., [9]), then to apply the Fourier inverse transfonn to 
compute the probability distribution function (PDF). However, 
in practice, the CF may only be expressed at best with an 
integral fonn or does not have a closed-fonn solution for the 
inverse Fourier transform. The alternative way in practice is 
to numerically evaluate them or use approximation methods. 

The aforementioned works and references therein unde­
niably provide very important results. Yet, they generally 
lack some practical requirements: First, most of them provide 
cumbersome expressions to handle without providing much 
insights; Second, and most importantly, they generally as­
sume an unbounded area for the interferers for mathematical 
tractability. Valid approximation in various cases, such infinite 
models have however some practical limits. One cannot, for 
example, analyze the effect of the interferers from a specific 
targeted area around the interfered user. Moreover, those 
models are based on a unique path loss exponent (PLE) for 
any of the infinitely many interferers. 

The main contributions of this work can be summarized 
in threefold: (i) To analyze the more realistic finite interferers 
area. Moreover, the configurable spatial model we consider en­
joys wide applicability; (ii) To quantify different interference 
statistics in terms of the fundamental physical parameters and 
provide useful insights; (iii) To evaluate valuable perfonnance 
metrics of the primary user (PU) , such as outage probability, 
bit error rate and amount of fading. To fulfill these objectives, 
this work is mainly based on the powerful MGF approach. 

The remainder of this paper is organized as follows: The 
system model with various settings is described in Section II. 
Section III provides the MGF and different key statistics of the 
interference. In section IV different PU perfonnance metrics 
are evaluated. Finally, Section V concludes the paper. 

II. SYSTEM MODEL 

We consider a primary cellular network composed of a 
base station (BS) at the center of the cell and PU receivers 
located anywhere within the cell. The secondary network lays 
outside the primary cell. This system model is depicted in 
Fig. I. We assume that both PUs and SUs use a single antenna, 
and their communications undergo path loss and Rayleigh 
fading. For tractability, we omit the shadowing effect. We aim 
at characterizing the statistics of the aggregate interference 
from SUs at any given PU and subsequently evaluate its 
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B R,-O R, ",0 R,"'O 

C R,-O R, -0 R,"'O 

D R,-O R,-O R,-oc 

Fig. 1. System model and cases identification. defined by the three radii RI• 
R2 and R3. The PU is symbolized by the square and the SUs by the crosses. 

performances. Note that the PU being located anywhere in its 
cell, and not only at the center, the relative spatial distribution 
of the interferers around the PU is asymmetric (as in [8]), 
in contrast to the simple symmetric case as in most of the 

previous works e.g., [2], [3], [5]-[7], [9] 

The system spatial parameters are defined by the three radii 
R1, R2 and R3 such that Rl � R2 � R3, where Rl is the 
distance of the PU from its BS, and R3 is the finite radius 
of the secondary network. R2 can be simply defined as the 
primary cell radius (Rp), but can also account for an additional 
guard band around the primary cell [10] (i.e., R2 = Rp+t, t 2: 

0). Thus, PUs are within Rp, and SUs are beyond R2. 
One of the major applications of this model is the IEEE 

802.22, digital TV (DTV) scenario [8], [ I I] i.e., the BS 
broadcasts the TV signal, the PUs are the TV receivers, and 
the CR network is the opportunistic system. Furthermore, 
in addition to characterize the interference from a specific 
region, the finite model allows to consider interference regions 
with different PLE (i.e., by successively varying the 3 radii 
configuration and computing the interference in each area with 
different PLE, and finally summing up). The two-ray model 
[12] is a simple example. Clearly, this more general finite 
spatial model is easily reconfigurable to obtain a spectrum of 
different network structures, thus enjoying wide applicability. 

In practical scenarios, only statistical knowledge of the 
interferers location is available. Thus, following [2], we may 
as well treat them as completely random according to a homo­
geneous Poisson point process (PPP) in the two dimensional 
plan. The probability of N SUs being inside a region depends 
only on the total area and follows a Poisson distribution with 
mean A 7r R32, where R32 = (R§ - R�) and A characterizes 
the SUs density per unit area. This elegant theory provides a 
tractable and practical model and has prevailed in many works 
e.g., [2], [3], [5]-[7], [9]. 

We assume that each SU has the same transmit power Psu, 
decays according to the PL law, and undergoes independent 
identically distributed (ij.d.) Rayleigh fading. Thus, the ag­
gregate interference I at the PU can be defined as 

N N 
1= L 1i = LPsudi<> [hSUi [2 

i=l i=l 
(I) 

where Ii is the ith SU interference, di is the distance between 
the PU and the ith SU, 0: is the PLE, and IhsUi 12 is the 
exponentially distributed power envelope with unit mean. We 
assume that Ihsul is independent of di. 

In most practical cases, the PLE generally varies between 
1.6 (e.g., hallways inside buidings) and 6 (e.g., dense urban 
environments) [12]. However, in this paper we restrict our 
analysis to the two most representative cases in literature 
with 2 (i.e., free space) and 4. Furthermore, we consider four 
different practical configurations in terms of the radii R1, R2 
and R3 as summarized in the table in Fig.l. Clearly, Case 
A is the most general setting which incorporates the three 
other cases: B, C and D. Notable configuration is Case D for 
0: = 4 which has been analyzed in e.g., [2], [3], [5], [9]. It is 
important to note that Case D is only applicable for 0: > 2, 
since the interference tends to infinity for 0: � 2 as R3 ---+ 00 

[2]. 

III. STATISTICS OF THE INTERFERENCE 

In this section, we first derive the exact closed-fonn expres­
sions for the MGF of the aggregate interference. Subsequently, 
they will be employed to evaluate different statistics of I. 

A. Moment Generating Function of I 
By definition, the MGF of the af.�regate interference I in 

( I), for a specific PLE 0:, is [13] M /' (s) = IEI {exp (-sI)}. 
Since the number of SUs N is a poisson distributed random 
variable, M'I(s) can be written as [2] 

M}<»(s) = f lEI {exp(-sI)IN} eXP(-A7rR=;tA7rR32)N. (2) 
N=O 

The random variables h i = L.N, being ij.d., we get 

IEdexp(-sI)IN} = IEli {exp(-sIi)}N 
= (Mi(n\S))N, 

where Mi(n\s) = IEli {exp (-sIi)} is the individual interfer­
ence MGF from any ith SUo Thus, (2) can be written as 

M}<» (s) = exp (AnR32 ( Mi(<»(s) - 1) ) . (3) 

Since Mi(n), the MGF of the ith interferer, is independent of i, 
in what follows, without loss of generality, we omit the index 
i. In our model, the randomness of each individual interference 
stems from two factors, the random distance (i.e., d), and the 
fading power envelope (i.e., 1 hsu 12). In the sequel, it is math­
ematically more convenient to use the polar coordinates (r, e) 
instead of d, as defined in Fig.l. Thus, we employ henceforth 
the geometric relation d(r, e) = Jr2 + Ri - 2r Rl cos e. The 
individual interference MGF can be written as 

M(<»(s) = IEr.e U:xp (-spsud-<>(r, e)x )f1hsu 12 (X)dX} (4) 

where the PDF of the exponential distribution is defined as 
flhsuI2(X) = exp(-x). The inner integral in (4) can be 
represented using the MGF of an exponential distribution such 
that we obtain 
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M(O<)(s) = lEr,B {I + SPSu
1
d-o«r, O) } · 

Proposition 2: The MGF of the aggregate interference at 

(5) the PU, for a = 4, is given by 

Note that the convergence of the inner integral in (4) is 
satisfied if sPsu > -der.(r, B). Thus, we may as well assume 
in the sequel that s > 0, since it always satisfies the inequality. 
Next, we need to carefully define the spatial distribution of 
the interferers in (5) in terms of r and B. Since SUs are 
uniformly distributed in the circular area, the PDF of r is 
given by the ratio perimeter over area as [2] f R (r) = 2r / R32 
for r E [R2' R3J, and the angular distribution is uniformly 
distributed over [0,2n) i.e., fo(B) = 1/2n. Using the PDF of 
rand B, (5) can be written as 

M(O<)(s) = _
1
_ {

R3 {27r r dOdr. 
7rR32JR2Jo 1 + sPsu (r2 + Rf - 2rRl coso) 

-0<
/
2 

(6) 
This double integral in (6) seems intractable for an arbitrary 
value of a. However, it can be solved for the representative 
cases, a = 2 and a = 4, which we present through the 
following two propositions. Due to space constraints, we only 
sketch the key steps for the proof of Proposition 1, and the 
proof of Proposition 2 is omitted. 

Proposition 1: The MGF of the aggregate interference at 
the PU, for a = 2, is given by 

where 
W(2)(s) = { J4SPsU R�+(R�-R�+sPsu )2+(R�-R�+sPsu) 

J4sPsuR�+(R�-R�+sPSU)2+(R�-R�+sPsu) 
R�+sPsu 
R�+sPsu 
R3+sPSU 

8Psu 

(7) 

Case A 

Case B 

Case C. 

Proof' Using the transformation v = tan(B/2) and [14, 
eq. 2.l72.c] in (6), we obtain the MGF for a = 2 as 

M(2)(S) = 1- 2sPsu {R3 r dr. 
R32 J R2 J (r2 + (sPsu - RO) 2 + 4sPsuRf 

(8) 

Using two transformations, v = r2 and cp such that v + � = 

T tan cp, (8) can be written as 

P larctan«R�H)/7") 
M(2)(S) = 1 -

s su secc/>dc/> 
R3
2 

arctan«R�H)/7") 

. /72 + (R� + �) 2 + (R� + �) 
= 1- sPsu In V 

R32 J 72 + (R� + �) 2 + (R� + �) 
(9) 

where � = sPsu -R� and T = J 4sPsu R�. Finally, substitut­
ing (9) into (3) yields the MGF in (7) Case A. Corresponding 
MGFs for Case B and C are obtained substituting Rl and R2 
by the proper values. • 

where 

(10) 

Case B 

Case C 

Case D. 

Note that a closed-form expression for the general Case A 
for a = 4 seems mathematically intractable. The result for 
a = 4 Case D, which was already obtained in [3, eq.7] using 
the CF approach, boils down to the simplest expression. One 
of the salient highlights of our contributions are the novel 
MGF expressions for the remaining cases. Quick calculations 
reveal that as s � 00 the MGFs in (7) and (10), for 
any cases except Case D, lead to a non-zero finite value. 
Interestingly, there is a non-zero probability of having zero 
interference, a behavior inherently hidden by the infinite area 
assumed in previous works. Due to space constraints, further 
mathematical investigations will be presented in the extended 
journal version. 

B. Cumulants of I 
By invoking the central limit theorem (CLT), one may 

tempt to approximate the PDF of I with a Gaussian PDF. 
However simulations have shown (e.g., [5], [6]) that the PDF is 
positively skewed and thus deviates from normality. This stems 
from the fact that interferers very close to the receiver terminal 
contribute a disproportionately large amount of interference, 
thus limiting the CLT validity. Therefore, the key parameters 
to characterize I are: the mean, the variance and the skewness 
[6]. We now evaluate those statistics using the cumulants of 
I. By definition, the nth cumulant of I is [13] 

I\;�) = (_l)n � InM�o<)(s) l . (11) dsn 8=0 
The first orders cumulants have straightforward relations 

with the mean, /1-}er.) = A;�er.), the variance, 0"}er.)2 = A;�er.), 
and the skewness denoted by bier.) , such that c5ier.) = 

E] { exp ((I - /1-]) / 0"])3 } = (A;�er.) / A;�er.)3/2). Substituting (7) 

or (10) in (11), the 1 st, 2nd and 3rd cumulants are computed 
following extensive algebraic manipulations with successive 
application of the L'H6pital rule. For a = 2, Case A and 
Case B are given as follows: 

Case A 

Case B, 

Case A 

Case B, 

Case A 

Case B 
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Similarly, for a = 4, Case B is given as follows: 

C4,B) _ ( 1 1 ) /;;1 - A7r Psu 2 - 2 ' R2 R3 
C4 B) 2 2 ( 1 1 ) /;;2 ' = 3A7rPSU R� - Rg , 

C4,B) _ 6 3 ( 1 1 ) /;;3 - -A7rPSU -W - -W . 5 R2 R3 
Those expressions can provide direct insights on the interplay 

between the interference and the different physical parameters. 

After careful inspection, several behaviors can be pointed out. 

It is easy to remark that Case C and D cannot be evaluated as 

the mean and the variance tend to infinity. This stems from the 

fact that when R2 = R1, no protective region exists around the 

PU. Thus, there is a probability that a SU is exactly at the same 

position as the PU. In that situation the path loss model defined 

in (1) has a singularity and is generally not valid for d < 1, 
as the wireless channel can not amplify the transmitted signal. 

Interestingly, the mean for a = 2 does not vary if we scale 

all the network spatial parameters by the same proportion. 

However, the variance changes. In contrast, for a = 4, both 

change. It is easy to see from K�2) that if R2 and R3 are fixed 

and Rl (i.e., PU) varies from the center of the cell to the 

edge, the mean increases much faster than with a linear trend. 

Thus, one can expect the performance of the primary cellular 

network, in average, to be much better than at the cell edge. It 

is also easy to note from K�2) and K�4) that for a = 4 one can 

set R3 = 00, in contrast to a = 2 as the interference mean 

goes to infinity. This was already mentioned in [2], but without 

any quantification. In [6], general semi-analytical expressions 

for different type of channels are provided to compute the nth 

cumulant for Case D with R2 = 1, Va > 2. Although useful, 

those integral expressions do not provide much insights and 

are not valid for Case A and B. 

Figs. 2(a) and 2(b) compare the mean, the variance and 

the skewness between the analytical results and corresponding 

Monte-Carlo simulations averaged over 104 random simula­

tions. The results are given for a = 2 and a = 4 with Case A 

and Case B, respectively. The curves between the simulations 

and the analytical expressions clearly match. 

IV. PU SYSTEM PERFORMANCES 

In this section we investigate the performance of the primary 

system through different metrics. We provide a closed-form 

expression for the outage probability. The bit error rate and 

amount of fading are given with single integral expressions. 

A. Outage Probability (Pout) 
The outage probability is an important measure in deter­

mining the quality of service. By definition, Pout bth) = 

Pr b :::; 'Yth), where 'Y is the received signal-to-interference­

noise-ratio (SINR), and 'Yth is a predefined threshold. The aver­

age received power at the PU is defined as Ppu = p};{f RIa., 
where p};{f is the transmit power at the BS. Thus, PU's SINR, 

'Ypu, can be defined as 

Ppu Ihpul2 'Ypu = I + No (12) 

where I is the aggregate interference due to SUs as defined in 

(1), No is the noise variance and Ihpul2 is the exponential 

distributed power envelope with unit mean. In the sequel, 

without loss of generality, we assume a unit noise variance. 

Furthermore, we assume that Ihpul2 and I are independent. 

Based on (12), P��{ bth) can be written as 

pCn) ( ) - 18 {F, ('Yth (I + I))} (13) out 'Yth - I Ihpu 12 Ppu 
where the CDF of Ihpul2 is FrhpuI2(x) = 1 - exp(-x). 
Finally, (13) can be written as 

PCn) ( ) _ 1- (_ 'Yth ) MCo<) ( 'Yth ) 
out 'Yth - exp I . Ppu Ppu (14) 

In (14), it is interesting to note that the PU's outage probability 

has a simple relation to the aggregate interference MGF. 

Fig.2(c) illustrates the validity of (14). One can notice 

that for a = 4 and R2 = 500m, the outage performance 

curves are very similar for R3 equal to 1km and 2km. 

This stems from the fact that for hight PLE the interference 

behavior converges quickly in terms of radius. Thus, this can 

validate the theoretical infinite area assumption. However, this 

assumption becomes less valid for low PLE as shown by the 

performances of a = 2. One can observe that a larger distance 

of R3 (i.e., R3 > 2km) is required for the performance to 

converge compared to a = 4. 
B. Bit Error Rate (BER) 

Here, we investigate the important bit error rate metric. In 

particular, we focus on the coherent BPSK modulation for 

which the BER is defined as Pb = lEl'PU { Q (y'2'ypu)}. 
Instead of the classical Q-function expression, here it is 

convenient to use the alternate representation due to Craig i.e., 

Q(x) = � 107r/2 exp (-x2/(2sin2 (3))d(3,x ?: O. Thus, Pb can 

be written as 

pCn) _ � (1 _ � 18 { 1 }) (15) 
b 

-
2 yrpu I yI+1+Ppu . 

The next challenge is to evaluate the expected value in (15). 

To this end, we use the following relation 

r() 100 --.!!.... = vP-1exp{-xv}dv, p>O,X>O xP o 
(16) 

where f(p) is the gamma function. Finally, using (16) in (15) 

with p = 1/2 (i.e., 1/ y'x = 1/ -Jff 1000 v-1/2 exp {-xv} dv), 
the BER for coherent BPSK can be written as 

p�n) = � _ YP�1:-1/2exp{-(1+ppu)V}M}O<)(V)dv. (17) 2 2y 7r 0 

Fig.2(d) illustrates the validity of (17). 
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Fig. 2. Illustration of the Monte-Carlo and analytical expressions correct match ().. = 10-4), 

C. Amount of Fading (AoF) REFERENCES 

The AoF at the PU is an important performance measure 

which quantifies the severity of the fading channel. By defi­

nition, it is expressed as AoF = (m2 - mi) /mr, where ml 
and m2 are the first and second moments respectively. The 1st 

moment can be written as 

mia) = IE-ypu bpu} = PPUlElhpul2 { lhpuI2} lEI {I � I}' (18) 

Using (16) with p 1, (18) yields min) 
Ppu 1oooexp(-v)M}n)(v)dv. Similarly, m2 can be written 

as m�n) = lE,pu b�u} = 2P�u 1000 vexp (-v)M}n) (v)dv. 
We omit the figure illustration due to space constraint. 

V. SUMMARY AND CONCLUSIVE REMARKS 

This paper has investigated the performance of a PU experi­

encing interference from a CR system. The system model we 

considered, with three configurable and finite radii, enjoys a 

wide practical applicability. By employing the powerful MGF 

tool, we have quantified different statistics of the aggregate 

interference and evaluated different perfonnance metrics of 

the PU such as outage probability, bit error rate and amount 

of fading. Clearly, the theoretical infinite assumption may give 

reasonable approximations. However, this initial work reveals 

some interesting insights into the interference management. 

For instance, the mean for a = 2 does not vary when scaling 

the whole network by the same proportion, and the probability 

of having zero interference is non-zero in finite PPP, a behavior 

inherently hidden by the infinite area assumption. 
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