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Abstract—The power allocation problem corresponding to the
communication of two sources via a relay with amplify-forward
capability is studied from the outage probability perspective.
Analog network coding is considered for half-duplex nodes with
perfect channel state information at the receiver side. Under
a sum-power constraint on the transmit powers of the nodes,
an optimal power allocation strategy that minimizes the high
signal-to-noise ratio approximation of the outage probability is
derived and shown to improve the performance significantly. As a
reference for comparison, a cut-set type bound is also optimized
for the setup.

I. INTRODUCTION

Bidirectional relaying, in which two nodes exchange inde-

pendent messages through a relay node while using the same

physical channels, has attracted a great research attention.

This is motivated by the capability of two-way relaying in

recovering a significant portion of the spectral efficiency loss

occurred as a result of the half-duplex operation of network

nodes [1]. With the half-duplex constraint, each node cannot

transmit and receive in the same time-frequency resource.

Despite the increased spectral efficiency, bidirectional relaying

suffers from reliability degradation in a fading environment

[2]. The present paper aims to improve the reliability of this

network by optimally distributing the total transmit power

among network nodes.

Since the relay is not interested in knowing the messages,

it makes sense for the relay to clean the received signal and

forward it to the users instead of decoding the messages.

Therefore, the unnecessary rate-loss associated with decoding

at the relay (due to the multiple-access decoding constraints) is

avoided [3], [4]. The cleaning can be done if the relay decodes

the sum of its received signals using the idea of compute-

forward based on lattices [5]. A simpler strategy that does

not need lattices is to amplify the received signal, which is

known as analog network coding (ANC) [6]. However, this

comes at the price of performance loss. For instance, decode-

forward strategy, has been shown to outperform ANC when

either multiplexing gain or signal-to-noise ratio (SNR) is small

enough [7]. Nevertheless, ANC is desirable due to its low-

complexity structure.

The approximate outage probability of ANC has been

investigated in previous studies [8]–[10]. In [8], an optimum

power allocation (OPA) is obtained based on unidirectional

link outage calculation, and under the equal power assumption

for the sources. In [10] and [11], OPA strategies are derived

based on the assumption of channel state information available

at the transmitters (CSIT). To increase the reliability of the

network, an opportunistic source selection protocol has been

proposed in [2]. Using CSIT, the protocol supports one traffic

flow at a time; therefore, provides improved reliability. Other

relevant references concerning power allocation for two-way

multi-user/relay configurations are [12]–[14].

Contributions and relation to previous work. In this paper,

we consider the amplify-forward two-way relay channel (AF-

TWRC) with an equal target rate for both users under a

sum transmit power constraint1. We assume all nodes have

perfect channel knowledge at their reception time (CSIR). We

obtain an OPA for ANC protocol that minimizes the outage

probability for a given target rate. The allocation turns out to

be only a function of the ratio of the average fading powers

(AFP). A similar observation has been made for the one-way

relay channel with the same channel knowledge assumption

[15]. In performance analysis, it is always interesting to

compare the results against a bound. This motivates us to

develop a cut-set type lower bound on the outage performance

of the TWRC, and find the corresponding OPA. In [16], an

OPA that maximizes the sum-capacity upper bound of the

TWRC with CSIT assumption has been derived.

The rest of the paper is structured as follows. Section II

introduces the system and channel model, and covers the

preliminaries. Section III derives the optimum power vector

that minimizes the outage probability for ANC protocol as

well as for a cut-set type bound. Section IV concludes the

paper. Some details and proofs are deferred to appendices2.

II. SYSTEM MODEL AND PRELIMINARIES

In this work, a dual-hop communication system, depicted

in Fig. 1, is studied. The model consists of two sources S1
and S2 interested in exchanging their messages via relay R.

1Our results can be modified to account for per node maximum power
constraints as well as for sources with different target rates.

2Throughout the paper, i, j ∈ {1, 2}, and i 6= j. Prob(E) denotes the
probability of the event E . A circularly symmetric complex Gaussian random
variable (r.v.) z with meanm and variance v is represented by z∼CN (m, v).
Finally, the logarithmic base 2 is used unless otherwise stated.
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Fig. 1. Two-way relay channel (TWRC) model.

A. Assumptions

The following assumptions are made through the rest of

the paper. First, there is no direct link between the sources

(for example due to shadowing or large distance between the

sources). Second, all terminals operate in half-duplex mode.

Third, the channel noise on each link is an independent

and additive r.v. with CN (0, 1). The channel gain between

Si and R is denoted by hi ∼ CN (0,Ωi). Without loss of

generality, it is assumed that Ω2 ≤ Ω1. The channels are

independent, frequency-flat, and constant over the signaling

duration. Moreover, the uplink and downlink channels are

reciprocal. In addition, the channel realization is perfectly

known by the receiving end of each transmission. Also, it is

assumed that the realization of hj is known by user i at the

end of each transmission block. This task can be accomplished

by broadcasting (at a small rate from R) the quantized version

of both channel coefficients to the users with arbitrarily small

error [17]. Finally, an equal target rate Rt

2 is considered for

users, and the total transmit power is assumed to be PT .

B. Definitions

The multiplexing gain r is defined as r , Rt

C(PT )
, where

C(P ), log(1+P ). In addition, gi, |hi|2, and ω, Ω2
Ω1
.

C. ANC Protocol

In ANC protocol, Si transmits a unit-power signal xi to R

during the first time slot. In the second time slot, the relay

forwards a scaled version of its received signal to both users.

The received signals by R, and Si are

yr = h1
√

P1x1 + h2
√

P2x2 + nr

yi = hi

√

Prxr + ni,
(1)

where n represents the noise signal at the corresponding

receiver, Pr and Pi are the transmit powers for R and Si,

respectively, and

xr =
1√

g1P1 + g2P2 + 1
yr. (2)

In this scheme, each user receives a copy of its own signal

as interference. After removing the known interference, the

instantaneous SNR at destination i is

γ̃i =
g1g2PrPj

gi(Pr + Pi) + gjPj + 1

(a)

≤ Prmin{gi,
gjPj

Pr + Pi

}, (3)

where (a) is obtained by neglecting 1 in the denominator

(high SNR approximation, see for example [10], [15], [18]),

and using xy
x+y

≤min{x, y} [10]3. The latter approximation is
referred to as harmonic-to-min approximation (HMA) in this

paper. Therefore, assuming Gaussian input signals, the outage

probability becomes

Poutage(Rt)= Prob(min{γ̃1, γ̃2}<Γ,2Rt−1)

≈ Prob(Prmin{g1,
g2P2

Pr + P1
, g2,

g1P1

Pr + P2
}<Γ). (4)

D. Lower Bound on the Outage Probability

A lower bound on the outage probability of all two phase

schemes (comprising the multiple-access (MAC) and broad-

cast (BC) phases) is provided here. It is assumed the MAC

and BC phases take β and 1−β fractions of time, respectively.

We use cut-set bounds and consider the relay in two formats:

part of transmitter or receiver i for each flow. This leads to:

R
up
i ≤ min{(1− β)C(gi

Pr

1− β
), βC(gj

Pj

β
)}. (5)

The high SNR approximation of the bound on outage becomes

P LB
outage(Rt) = Prob(min{Rup

1 , R
up
2 } <

Rt

2
) = 1−

Prob(g1 ≥ max{Γ1
Pr

,
Γ2
P1
}, g2 ≥ max{Γ1

Pr

,
Γ2
P2
})

≈
max{Γ1

Pr
, Γ2
P1
}

Ω1
+
max{Γ1

Pr
, Γ2
P2
}

Ω2
, (6)

where Γ1 , (2
Rt

2(1−β) − 1)(1− β), and Γ2 , (2
Rt
2β − 1)β. It is

remarked that for equal transmission power, i.e., P1=P2=Pr,

the optimal β∗= 1
2 .

III. OPTIMAL POWER ALLOCATION FOR TWRC WITH

SUM-POWER CONSTRAINT

In this section, the optimal transmit power vector is derived,

as a function of the statistical properties of the channel,

that minimizes the high SNR approximation of the outage

probabilities (4) and (6), subject to a sum-power constraint.

In particular, defining ~P ,{P1, P2, Pr}, we have
min

~P (Ω1,Ω2,PT )
Poutage

s.t. P1 + P2 + Pr ≤ PT .
(7)

A. OPA for ANC

First, it is noted that for Ω2≤Ω1, a suitable power allocation
satisfies P1 ≤ P2. The reason is to balance (on average)

the second and fourth terms in Eq. (4) as much as possible.

The formal proof is straightforward, and hence, omitted. The

arguments of the min{·} operator in (4) can then be simplified
to either of the following:

{

case I: g2P2
Pr+P1

, g1P1
Pr+P2

, if P2 ≤ PT

2 ;

case II: g2,
g1P1

Pr+P2
, if PT

2 ≤ P2.
(8)

3It is remarked that since 1

2
min{x, y} ≤ xy

x+y
≤ min{x, y}, the

approximation in Eq. (3) is different than the actual value by at most 3 dB.
However, as mentioned in [10] and also shown in Fig. 4, the approximation
is quite tight. Appendix A investigates the accuracy of the approximation in
more detail.

1709



For case I, (4) can be written as

PCase I
outage (Rt) ≈ 1− e

−Ω′1+Ω
′

2
Ω′1Ω

′

2
Γ ≈ Ω′1 +Ω′2

Ω′1Ω
′
2

Γ, (9)

where Ω′i ,
PiPr

Pr+Pj
Ωi. It can be shown that the approximate

outage probability (9) is convex. Therefore, the optimal ~P is

obtained by forming the following Lagrange cost function with

parameter λ

J (~P , λ)=
Ω′1+Ω

′
2

Ω′1Ω
′
2

+λ(P1+P2+Pr−PT ), (10)

which leads to

P2 =
PT

1 +
√
ω + 4

√
4ω

, P1 =
√
ωP2. (11)

It is remarked that the above solution is desirable for the range

of ω that satisfies P2≤ PT

2 .

For case II, the outage probability is

PCase II
outage (Rt) ≈ 1− e

−( 1
Ω1P1

+
P2

Ω1P1Pr
+ 1
Ω2Pr

)Γ

≈ (
1

Ω1P1
+

P2

Ω1P1Pr

+
1

Ω2Pr

)Γ. (12)

Since PT

2 ≤ P2 for this case, then it is clear that choosing

P2=
PT

2 minimizes the outage expression. Hence, solving the

corresponding optimization problem provides

P1 =

√

1 + 1
2 (

1
ω
− 1)− 1

1
ω
− 1

PT , P2 =
PT

2
. (13)

For both cases, Pr=PT−P1−P2. Since the allocation is only a
function of ω, i.e., the ratio of average fading powers, it can be

seen that for ω≤θ, we have P2=
PT

2 , where θ is the switching

value between the two cases, and θ=(
√
1.5−

√
0.5)4≈0.07.

Fig. 2 shows the normalized (to PT ) share of power for

each node. The average power shares in the case of having

CSIT (cf. [10] for the corresponding PA) are also plotted. An

interesting observation is that the behavior of CSIT and CSIR

curves is quite similar for each of the source nodes. In the case

of CSIT, the relay always gets half of the power, whereas with

CSIR, the relay’s share varies between 0.36 and 0.5. It is worth
mentioning that an exhaustive search to minimize the original

outage probability (without HMA) yields similar power shares

for outage probabilities less than 0.01.

B. OPA for the Cut-set Type Lower Bound

The optimization problem associated with the outage prob-

ability (6) can be formulated as

min
~P ,β

max{Γ1
Pr

, Γ2
P1
}

Ω1
+
max{Γ1

Pr
, Γ2
P2
}

Ω2

s.t. P1 + P2 + Pr ≤ PT , 0 ≤ β ≤ 1 (14)

We first solve the above problem assuming a fixed β. One can

find the optimal β by performing an exhaustive search. It is

noted that the objective function is convex and the constraints
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Fig. 2. Optimum share of power for each node. For the case of CSIT, average
share of power is plotted.

form a convex set. Rewriting the above optimization problem

in the form of Lagrangian, we have

J =
R1

Ω1
+

R2

Ω2
+ λ(P1 + P2 + Pr − PT ) + µ1(

Γ1
Pr

−R1)

+ µ2(
Γ2
P1
−R1) + µ3(

Γ1
Pr

−R2) + µ4(
Γ2
P2
−R2), (15)

where R1 and R2 are dummy variables. Appendix B shows

that based on the value of η , Γ2
Γ1
, the optimal allocation is

1) η
η+1 < ω:

P1 = P2 = ηPr =
η

2η + 1
PT . (16)

2) ω ≤ η
η+1 :

P1 =
PT

1 +
√

η
ω(η+1) +

√

1
ωη(1+η)

,

P2 = ηPr =
PT

√

ω(1+η)
η

+ 1 + 1
η

.

(17)

For ω=1, it can be seen that P1=P2.

Fig. 3, demonstrates the gain of the OPA (Eqs. (11) and

(13)) with respect to (w.r.t.) equal power allocation (EPA),

in which P1 = P2 = Pr =
PT

3 . The maximum gain is 4.77
dB, which is similar to the gain of the EPA scenario with

total power 3PT . We note that for ω=1, the optimum power

vector is ~P ∗≈{0.29, 0.29, 0.42}. In the figure, the gain (w.r.t.
ANC with EPA) of power optimized cut-set bound with equal

timing between MAC and BC phases is also plotted. It can be

seen that as ω decreases, optimized ANC approaches the best

of two-way relaying protocols with β = 1
2 .

Fig. 4 evaluates the exact outage expressions for ANC and

for the cut-set bound under equal as well as optimum power

allocations. The figure considers ω = 0.05 and ω = 0.25 cases
with the same multiplexing gain of 0.25. The approximate out-
age expressions for ANC with EPA and OPA are also plotted.
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Fig. 3. Power allocation gain with respect to ANC with a fixed target rate.

From the plots, we infer that the high SNR approximations

are fairly accurate. Furthermore, it is interesting to note that

the gap between ANC curves is larger than that of the lower

bound in this figure. The outage probability, when OPA is

performed based on CSIT [10], is also provided to appreciate

the gain of having CSIT.

IV. CONCLUSION

We have presented optimal transmit power allocation for

ANC protocol with perfect channel knowledge at the receiver

side. The optimal allocation is only a function of the ratio of

average fading powers, and in particular, not the target rate. In

highly asymmetric TWRC, OPA can bring impressive gains

(up to 4.77 dB) w.r.t. EPA. A cut-set type lower bound on

the outage probability is also optimized for such a setup. The

optimal allocation for the bound is however a function of the

target rate in addition to the ratio of average fading powers.

APPENDIX A

ACCURACY OF HARMONIC-TO-MIN APPROXIMATION

Here, we analyze the accuracy of HMA method used in Eq.

(3). In the following, we use a slightly different but simpler

notation. Let γ1 and γ2 represent two independent exponen-

tially distributed r.v.s with means γ̄1 and γ̄2, respectively. The

outage probabilities (Prob(SNR ≤ Γ)) corresponding to the

following SNRs, are given in Eq. (19) (see [19] for POut1)

SNR1 =
γ1γ2

γ1 + γ2 + 1

SNR2 = min{γ1, γ2}.
(18)

POut1 = 1− 2
√
Γ2 + Γ√
γ̄1γ̄2

K1

(2
√
Γ2 + Γ√
γ̄1γ̄2

)

e
−Γ( 1

γ̄1
+ 1

γ̄2
)

POut2 = 1− e
−Γ( 1

γ̄1
+ 1

γ̄2
)
, (19)

where K1(.) is the first order modified Bessel function of the

second kind. It can be seen that for
√
Γ2+Γ√
γ̄1γ̄2

≪1 (which is true
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Fig. 4. The role of power allocation on the performance of ANC and
the relative lower bound. The transmit power of ANC curves is doubled to
compensate for the power scaling in Eq. (5), and hence, to provide a fair
comparison with the corresponding lower bound plots.

for high SNRs and practical target rates with small outage

probabilities), POut1 ≈ POut2 . Therefore, the approximation is

quite tight for practical scenarios. It is remarked that due to

the min{·} operator used in min{γ̃1, γ̃2} in Eq. (4), the exact
outage calculation appears to be difficult, making the HMA a

viable approach to follow.

Another measure of accuracy with the advantage of being

independent of the target SNR Γ, is the average difference D

between the SNRs, defined as4

D,E[10 log10(
SNR1

SNR2
)] =

∫ ∞

1

10 log10(
α

α+ 1
)f(α)dα,

where, α ,
max{γ1,γ2}
min{γ1,γ2} , and f(α) represents the probability

density function of α. To calculate D, we first obtain F (α),

4Assuming high average SNR, we neglect 1 in the denominator of SNR1

hereafter.
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the cumulative distribution function of α.

F (α) = Prob(
max{γ1, γ2}
min{γ1, γ2}

≤ α)

= Prob(
γ1 + γ2

min{γ1, γ2}
≤ α+ 1)

= Prob(
1

α
≤ γ1

γ2
≤ α)

(a)
=

γ̄1γ̄2(α− 1
α
)

γ̄21 + γ̄22 + γ̄1γ̄2(α+
1
α
)

where (a) is obtained by employing Lemma 1 in [18]. Using

integral by parts,

D = − 10

ln(10)

∫ ∞

1

γ̄1γ̄2(α− 1
α
)

(

γ̄21 + γ̄22 + γ̄1γ̄2(α+
1
α
)
)

α(α+ 1)
dα.

Fig. 5 shows D w.r.t. the ratio of mean values. It can be seen

that the maximum difference is about 1.3 dB and occurs when

γ̄1 = γ̄2.

APPENDIX B

OPA FOR THE CUT-SET TYPE LOWER BOUND

By setting the partial derivatives w.r.t. the variables in (15)

to zero, we have

µ1 + µ2 =
1

Ω1
, µ3 + µ4 =

1

Ω2

λ = µ2
Γ2
P 2
1

= µ4
Γ2
P 2
2

= (µ1 + µ3)
Γ1
P 2
r

.
(20)

Assuming µ1 = 0, we get

µ2 =
1

Ω1
, µ3 + µ4 =

1

Ω2
, P1 =

√

Γ2
Ω1λ

P2

Pr

=
Γ2
Γ1

=

√

µ4Γ2
µ3Γ1

⇒ µ4

µ3
=
Γ2
Γ1

PT =
1√
λ
(
√

Γ2(
√
µ2 +

√
µ4) +

√

Γ1
√
µ1 + µ3),

(21)

which leads to

µ3 =
Γ1

Ω2(Γ2 + Γ1)
, µ4 =

Γ2
Ω2(Γ2 + Γ1)

1√
λ
=

PT
√

Γ2
Ω1

+
√

Γ2
Ω2(1+

Γ1
Γ2
)
+

√

Γ1
Ω2(1+

Γ2
Γ1
)

, (22)

and (17). For this case, the condition is true when ω
1−ω

≤η. It

can be seen that the case of µ3=0 never happens since ω≤1.
Therefore, for η< ω

1−ω
, we achieve (16).
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