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Abstract—In this paper, an extension of raptor codes is intro-
duced which keeps all the desirable properties of raptor codes,
including the linear complexity of encoding and decoding per
information bit, unchanged. The new design, however, improves
the performance in terms of the reception rate. Our simulations
show a 10% reduction in the needed overhead at the benchmark
block length of 64,520 bits and with the same complexity per
information bit.

I. INTRODUCTION

Fountain codes such as LT code [1] and raptor codes
[2] were originally designed to achieve the capacity on any
binary erasure channel (BEC) with no channel information and
at very low complexity. The decoding complexity of raptor
codes under edge deletion (ED) decoding [1], [2] is linear
with the block length. Therefore, these codes are the natural
choice for data transmission over channels with unknown or
very fast changing properties. Raptor codes preserve many
of their interesting properties over other channels such as
the binary symmetric channel, additive white Gaussian noise
and fading channels [3]–[6]. These codes have been already
adapted as the forward error correction code for multimedia
broadcast/multicast services (MBMS) by the 3rd Generation
Partnership Project (3GPP) [7].
In practice, it is well known that ED needs a small overhead

for successful decoding. Specifically, to decode k information
bits, k(1 + ε) received bits are needed at the decoder, where
ε is referred to as the overhead. More specifically, even with
the highly optimized designs a nonzero overhead is needed if
using the low complexity ED decoding. In order to avoid this
overhead or reduce it to a negligible amount, a more complex
decoding algorithm is introduced for raptor codes called the
inactivation decoding [8], but this algorithm is practical only
for small block lengths due to its nonlinear complexity. In
this paper, we introduce a variation of raptor codes called
the annotated raptor codes which reduce the overhead of
conventional raptor codes while keeping the encoding and
decoding complexity linear. Although design of these codes
is out of the scope of this short paper, numerical examples are
provided to demonstrate their lower overhead even without a
fine optimization.
After a quick review of conventional raptor codes and

introducing our notations in Section II, in Section III we
provide our main idea for reducing the overhead while keeping
the complexity unchanged. In Section IV, we describe the
encoding and decoding of the proposed annotated raptor codes
which is continued by some general comments on the design

of code parameters in Section V. Finally in Section VI, a
numerical example on a benchmark block length is presented.
The paper is concluded in Section VII.

II. BACKGROUND AND NOTATIONS
In this section, we briefly review the encoding and decoding

of conventional raptor codes. Unlike what is most common in
the literature of rateless codes, we use the matrix form rather
than the graph representation. The matrix form is more suitable
for explaining annotated raptor codes later. In this section, we
also introduce the notations and definitions that will be used
later.

A. Encoding
The encoding starts with a fixed rate outer code of rate

R and a parity check matrix H(n−k)×n which encodes an
information block of k input bits into a block of n = k

R
en-

coded bits b1, . . . , bn, called the intermediate bits. To produce
an output bit, first, the encoder randomly samples an integer
m ∈ {1, . . . , D}, D ≤ n from a probability distribution. This
distribution is characterized by a generating polynomial

Ω(x) =

D∑
i=1

Ωix
i

where Ωi is the probability that m = i. The encoder then
uniformly chooses a set of m intermediate bits and produces
an output bit by XORing them. Output bits are produced and
transmitted until enough bits are received by the decoder to
recover the information bits successfully.
Each output bit can be viewed as a parity check equation

on a subset of intermediate bits, where the parity value is
transmitted on the channel. The outer code can also be viewed
as a set of parity check equations on intermediate bits. Unlike
before, these parity values are always zero, thus they need not
be transmitted on the channel. The decoder can use all the
outer code equations and any received output bit equation to
form an equation system from which all the intermediate bits
are recovered. The information bits are then obtained through
a linear mapping from intermediate bits according to the outer
code.

B. Edge Deletion Decoding
The decoder starts with a linear equation system consisting

of the parity check equations of the outer code

HX = O(n−k)×1
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where O�×k represents an �× k all zero matrix. At this point
the set of recovered intermediate bits is still empty. Assuming
the BEC with erasure rate δ, with probability 1−δ an output bit
is received. Receiving each output bit bi enables the decoder
to use bi’s corresponding parity check equation.
Upon receiving an equation, the decoder will substitutes

any recovered intermediate bits, and then adds the reduced
equation to its equation system. Whenever a reduced equation
is of weight one, the equation is put in a set called the ripple.
For any equation in the ripple, the value of the intermediate
bit is immediately known and can be substituted in every other
equation. This procedure is called the elimination process. It
is easy to check that the order of using ripple elements have
no effect on the performance of the decoder. Note that during
the elimination process, the weight of some of the rows of
the coefficient matrix is reduced which could in turn result
in achieving new equations of weight one, and refilling the
ripple. If the ripple gets empty before all the intermediate bits
are recovered, receiver will listen to the channel to receive
more equations to refill the ripple.
After receiving enough bits for a successful ED decoding,

we have the following linear equation system.[
H(n−k)×n

C(1+ε)k×n

]
X =

[
O(n−k)×1

R(1+ε)k×1

]
(1)

where,C is the coefficient matrix of the parity check equations
corresponding to the received bits, ε is the overhead, R is
the vector containing the value of the received bits and X is
the set of unknown intermediate variables. After successfully
finishing ED decoding, upon reordering the rows, we obtain
the following matrix equation.[

In

Oεk×n

]
X =

[
Bn×1

Oεk×1

]
. (2)

Here, B = [b1, . . . , bn]
T is a vector, containing the recovered

values of the intermediate bits. Note that the reordering is
just required for simplifying the representation. In the real
implementation, this reordering is not needed.

III. MAIN IDEA
According to [2], even using highly optimized raptor codes

with very large block lengths, the overhead is nonzero. This
means that some of the received bits will be useless. These
received bits are represented as all zero rows at the end of ED
decoding (see Eq. (2)). In other words, these rows contain no
new information about the intermediate bits given the rest of
equations, thus we call them the “overhead rows”. Although,
it is not possible to avoid the overhead rows, interestingly, we
will see that it is still possible to embed new information bits
in them.
To embed new information bits in overhead rows, we first

add an auxiliary set of variables a1, . . . , ana
to the binary

equation system and extend the columns of the coefficients
matrix. We refer to these auxiliary columns of the coefficient
matrix and their corresponding set of variables as “A-columns”
and “A-variables” respectively. Clearly, the A-columns are not

all zeros. Thus, some of the output bits are now XORed
with bits from the A-variables. We refer to this operation
as “annotation”. The details of this operation is presented
in Section IV-A. As we will explain later, the A-variables
themselves must be protected by a low-rate outer code. Let
us denote the (na−ka)×na parity check matrix of this outer
code by H

(a) and the encoded block by A = [a1, . . . , ana
]T .

As a result, in the decoding process the initial matrix form
represented in Eq. (1) changes to
⎡
⎢⎣

H(n−k)×n O(n−k)×na

O(na−ka)×n H
(a)
(na−ka)×na

C(1+ε′)(k+ka)×n C
(a)
(1+ε′)(k+ka)×na

⎤
⎥⎦
⎡
⎢⎢⎣ Xn×1

X
(a)
na×1

⎤
⎥⎥⎦ =

[
O(n+na−(k+ka))×1

R(1+ε′)(k+ka)×1

]
(3)

In the above equations [C|C(a)] is the coefficient matrix of
the parity check equations corresponding to the received bits
where, C part represents the coefficients of the intermediate
bits and C

(a) represents the coefficients of the annotation
bits. Notice that na extra intermediate bits, which carry ka
new information bits, are now added to the system. Thus, ε′
represents the new overhead. Finally upon reordering of rows
the final form after successful ED decoding is
⎡
⎣ In On×na

Ona×n Ina

Oε′(k+ka)×(n+na)

⎤
⎦
⎡
⎢⎢⎣ Xn×1

X
(a)
na×1

⎤
⎥⎥⎦ =

⎡
⎣ Bn×1

Ana×1

Oε′(k+ka)×1

⎤
⎦

The details of ED decoding for an annotated equation
system is provided in Section IV-B. Here, to make the main
idea more clear, we present a toy example. Assume that we
have a block of three bits x1, x2, x3, and we produce output
symbols of degrees 1 to 3 with equal probabilities. Now,
if for example the receiver receives r1 = x1 ⊕ x2, r2 =
x1 ⊕ x2 ⊕ x3, r3 = x2 ⊕ x3, and r4 = x1, then the ED
decoding of intermediate bits will not perform any elimination
process before receiving r4. When r4 is received, it goes
to the ripple and ED decoding starts recovering the values
of intermediate bits. The received equation system before
performing elimination is⎡

⎢⎢⎣
1 1 0
1 1 1
0 1 1
1 0 0

⎤
⎥⎥⎦
⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎢⎢⎣

r1
r2
r3
r4

⎤
⎥⎥⎦

It is easy to check that ED decoding will recover all the
intermediate bits with this equation system and after ED
decoding we have⎡

⎢⎢⎣
0 1 0
0 0 1
0 0 0
1 0 0

⎤
⎥⎥⎦
⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎢⎢⎣

r1 ⊕ r4
r1 ⊕ r2

r2 ⊕ r3 ⊕ r4
r4

⎤
⎥⎥⎦

In the above, obviously, the third row is an overhead row and
contains no new information about the intermediate bits given
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all the other rows. But if we annotate some of the transmitted
bits (say r2, r3 and r4) with a single A-variable a, then the
representation of equation system after receiving r4 is⎡

⎢⎢⎣
1 1 0 1
1 1 1 1
0 1 1 1
1 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

a

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

r1
r2
r3
r4

⎤
⎥⎥⎦

The ED decoding can start the elimination and recovery
procedure at this point, if we perform the decoding only based
on the intermediate bits and in terms of the annotated variable
a. As a result, when the ED decoding of intermediate bits
finishes, the resulting equation system has the following form⎡

⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

x2

x3

a

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

r1 ⊕ r4
r1 ⊕ r2

r2 ⊕ r3 ⊕ r4
r4

⎤
⎥⎥⎦

Notice that still the third equation does not play any role in the
recovery of the intermediate bits, but this row can be used to
recover the value of the A-variable a as a = r2⊕ r3⊕ r4. The
A-variable can in turn be used to recover any intermediate
bit which was computed in terms of the A-variable (in this
case x1 in the fourth row). This example shows that with
the same number of received bits, it is possible to recover
more intermediate bits using annotation. Of course this was a
highly fabricated example, in which the overhead was reduced
to zero. Clearly, we do not expect zero overhead in a practical
setup. However, as will be seen, the annotation idea retrieves
a portion of the overhead at no extra cost. In fact, in order
to keep the decoding complexity unchanged per information
bit, we will see that the decoding procedure used in this toy
example is not desirable. In Section IV-B we propose a revised
version of ED decoding for annotated raptor codes.

IV. ANNOTATED RAPTOR CODES
Ideally we prefer to perform the annotation such that it

will not affect any of the desirable properties of the original
raptor codes. More specifically, we do not want to increase the
complexity per bit (neither at the encoder nor at the decoder).
Achieving this goal, however, requires careful annotation and
decoding. To see why the trivial approach (similar to the one
in the toy example above) may fail, note that when the ED
decoder uses annotated rows as pivots in row operations, extra
complexity is resulted from the 1’s in the corresponding rows
of the A-columns. Thus a high-density of 1’s in the A-columns
is against the goal of a low-complexity design. Unfortunately,
even starting with sparse A-columns, the density of 1’s in the
A-columns gradually increases as ED decoding progresses.
Our numerical simulation shows that the complexity will
grow super linear with an approximate exponent of 1.3. In
the following, we briefly outline an annotation method that
achieves linear complexity.
Let us assume that we could know beforehand which

transmissions end up as overhead rows. If this knowledge
existed, we could annotate only these transmissions. Although

such a knowledge cannot exist in a real setup, we can annotate
a small portion of rows and pretend that they will end up
being the overhead rows. Thus, the decoding will start from
the non-annotated rows. Our interesting observation is that if
annotated rows are selected carefully, ED decoding of non-
annotated rows will recover a large portion of intermediate
bits. In other words, assume in a conventional raptor code, we
carefully select and mark a σ0 portion of the transmissions for
annotation. Then, in the receiver, we first exclude the marked
received bits and perform ED decoding on the unmarked
received equations and the parity check equations of the outer
code. When the total number of received bits is close to the
number of input bits, we observe that the decoder recovers
a (1 − δ0) portion of the intermediate bits. Typically for
σ0 = 0.05, we have δ0 = 0.3.

After recovery of (1 − δ0) portion of the intermediate
bits, it is easy to see that with probability (1 − δ0)

i, an
annotated equation which originally contains i intermediate
bits, is reduced to an equation based only on the A-variables.
We call these reduced equations the “A-equations”. From these
A-equations a fixed portion of A-variables will be recoverable.
Now, if the rate of the outer code of the A-variables is
selected properly, it will be possible to decode all the A-
variables. Consequently, it will be possible to de-annotate all
the annotated rows in linear complexity. In fact to keep the
complexity of this de-annotation at its absolute minimum, in
this work, each annotated row has a single A-variable in it.
This also keeps the encoding complexity linear.
Finally, after de-annotation, the rest of the intermediate

bits will be recovered using ED decoding. In terms of ED
decoding of the intermediate bits, the only difference between
an annotated raptor code and a conventional one is that here
we have changed the order of using the received equations.
We use some of the equations at first and postpone using the
others (the annotated ones) for a while. Between these two
phases, we recover some information bits that are embedded
in the annotation.
In the next section we will go through more details of the

encoding and decoding algorithms for the annotated raptor
codes.

A. Encoding

The encoding process in annotated raptor codes has two
separate steps. In the first step, two information blocks of
length k and ka are coded into two encoded blocks (i.e.,
the intermediate variables and the A-variables), using fixed
rate outer codes with parity check matrices H(n−k)×n, and
H

(a)
(na−ka)×na

.
The second step, which contains two phases, will generate

an output bit. First an integer m ∈ {1, . . . , D}, D ≤ n will
be sampled based on a probability distribution represented by
its generating polynomial

Θ(x) =

D∑
i=1

(Φi +Ψi)x
i.
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Herem = i happens with probability (Φi+Ψi). Consequently,
based on the selected value of m, encoder samples another
random variable b ∼ B

(
Ψm

Φm+Ψm

)
, where B (p) represents

the Bernoulli distribution with probability of success equal to
p. The encoder then chooses m intermediate bits uniformly
at random. If the Bernoulli outcome is success, a single A-
variable bit is also selected uniformly at random. Finally, the
XOR of all the selected bits forms an output bit for trans-
mission. Output bits are generated and transmitted iteratively,
until successful transmission of the whole data block.

B. Decoding
The decoding procedure has already been described earlier

in this section. Here we summarize the procedure. Two sepa-
rate edge deletion decoders are used. The first one decodes the
intermediate bits, using the non-annotated equations and the
rows of matrix H. The second one decodes the A-variables
using any row whose first n elements are all zeros including
the rows of matrix H

(a). Obviously, as the decoders recover
some of the intermediate bits and A-variables they remove
them from all the equations and hence each decoder may
provide the other with some new equations to be used in the
rest of the decoding process. When both the decoders run
out of ripple, receiver listens to the channel to receive new
equations and refill at least one of the ripples again.

V. SOME COMMENTS ON DESIGN

Assume that the decoder has already received n = (1+ ε)k
bits. Moreover, assume that through numerical search we have
obtained the probability distributionΘ(x) for which, excluding
the annotated received bits, ED decoding is able to recover
a δ0 portion of the intermediate bits. Based on the previous
discussions, the probability that a randomly selected row be
reduced to an A-equation is

P ∗ =
D∑
i=1

Ψi(δ0)
i.

Therefore, the average number of A-equations released by ED
decoding of intermediate bits excluding annotated equations,
is (1+ ε)kP ∗. According to the single-bit annotation strategy
taken in this paper, the probability that a randomly selected
A-variable is not covered in the released A-equations is

(1−
1

na

)((1+ε)kP∗) � e(
−(1+ε)kP

∗

na
).

Hence, the average number of A-variables which are now
recovered is approximately

ma = na

(
1− e

−(1+ε)kP
∗

na

)
. (4)

It is seen from (4) that ma is an increasing function of na

and that ma < (1 + ε)kP ∗. Therefore, the new overhead ε′

can be found as

ε′ =
εk −ma

k +ma

. (5)
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Fig. 1. Complexity per information bit vs. rate for capacity approaching
sequences of LDPC codes designed for the BEC.

It is easily seen that ε′ < ε as long as ma > 0 (i.e., na > 0).
Moreover, ε′ is a strictly decreasing function of na. It means
that as the number of A-variables increases, more information
bits can be transmitted using annotation, and thus, a larger
portion of the overhead can be retrieved. As a result the lower
the rate of the outer code for A-variables, the smaller the
overhead will be. The improvement in the overhead, however,
is bounded because ma saturates as a function of na (see Eq.
(4)).
A very low rate outer code, however, introduces a significant

source of complexity. Although there exist very good low rate
codes with linear complexity such as LDPC codes designed for
erasure channels [9]–[11], when the rate of these codes tend to
zero, the coefficient of the linear complexity tends to infinity.
Figure 1 depicts complexity per information bit, measured as
the number of XORs needed for encoding/decoding of LDPC
codes designed in [9]. This figure is based on codes that
achieve 95% of the channel capacity.
To keep the complexity of annotated raptor codes equal to

that of conventional raptor codes, we must use an outer code
for the A-variables whose complexity per information bit is
the same as conventional raptor codes. The complexity per
information bit of a conventional raptor code is equal to the
average weight of its output bits which is typically at least
eight (considering the complexity of the high-rate outer code).
Thus, Fig. 1 suggests that the A-variables must be encoded
using an outer code of rate around 0.25. Obviously, lower rate
codes can be used to retrieve a higher portion of the overhead,
but at the cost of a higher complexity per information bit. This
extra complexity, however, is quite small since it affects only
the parity check equations of the A-variables, which represent
a small fraction of all equations (typically less than 4%).
Nonetheless, for any fixed rate outer code, the complexity
remains linear.
Now assume we have selected an outer code of rate Ra
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for A-variables which guarantees successful decoding of A-
variables for erasure rates less than 1 − Ra with high proba-
bility. According to the above discussions, we can now select
the number of information bits ka to be encoded to na A-
variables as ka = naRa, where na must satisfy

Ra < 1− e
(−(1+ε)kP

∗

na
)
.

Thus we have

ka < Ra

−(1 + ε)kP ∗

ln(1 −Ra)
. (6)

This equation can be used to choose the number of information
bits to be encoded by the rate Ra outer code and be used as
A-variables for annotations.

VI. EXAMPLE CODE AND NUMERICAL RESULTS
This section provides a numerical example of an annotated

raptor code. As the optimization of the code is out of the
scope of this paper, our example here does not represent
an optimal design. Indeed, in order to better justify the
benefits of annotated raptor codes, we focus on the impact of
annotation on an existing probability distribution optimized for
conventional raptor code. Clearly, we expect even better results
through optimizing a probability distribution for annotated
raptor codes.
Our focus in this example is on the highly optimized

probability distribution Ω(x) presented in [2] for a raptor code
with an information block of k = 64, 520 bits and an outer
code of rate R = 0.9845 to produce a block of n = 65, 536
intermediate bits. As mentioned before, we use a single bit
annotation for the output bits that are selected to be annotated.
This represents the simplest form of annotation. One may
consider a degree distribution for the A-variables and optimize
it for improved performance. Such optimizations, however, are
out of the capacity of this paper.
Based on a set of numerical experiments we selected the

probability distribution presented in Table I for this example.
Please notice that the third column represents the probability
distribution of the raptor code presented in [2]. The rate of the
outer code of the A-variable is selected to be 0.25 to encode
ka = 800 information bits into na = 3200 A-variables. These
A-variables are annotated to the 65,536 intermediate bits of
the above mentioned raptor code. Simulations show that the
average overhead based on the annotation method introduced
in this paper is 3.4%. This amounts to 10% overhead reduction
compared to the average 3.8% overhead of the original raptor
code. We emphasize that the complexity per information bit is
exactly the same for both codes. It is worthwhile to mention
that by using conventional raptor codes, an overhead of 3.4%
could not be achieved for block lengths less than 80,000 bits
[2], which would involve a much more memory complexity.

VII. CONCLUSION
Since raptor codes need a reception overhead to be able

to recover the information bits, some of the received bits
are indeed never used in the process of decoding. In this

i Φi Ψi Ωi = Φi +Ψi

1 0.007969 0 0.007969
2 0.478570 0.015 0.493570
3 0.161220 0.005 0.166220
4 0.072646 0 0.072646
5 0.082558 0 0.082558
8 0.056058 0 0.056058
9 0.037229 0 0.037229
19 0.055590 0 0.055590
65 0.025023 0 0.025023
66 0.003135 0 0.003135

TABLE I
EXAMPLE CODE WITH k = 64520 AND ka = 800

work, we presented an extension of the well known raptor
codes showing that extra information bits can be embedded
through careful annotation of a subset of transmissions. We
then detailed the encoding and the decoding process of the
proposed codes based on the changes made in the design of
the original raptor codes. Finally, we provided a numerical
example verifying the improved performance even without
optimization a probability distribution for the annotated raptor
codes. Finding the optimal probability distribution for the new
encoding/decoding structure will reveal its full potentials.
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