
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 10, NO. 12, DECEMBER 2011 4193

A Mixture Gamma Distribution to Model the
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Abstract—Composite fading (i.e., multipath fading and shad-
owing together) has increasingly been analyzed by means of the
𝐾 channel and related models. Nevertheless, these models do
have computational and analytical difficulties. Motivated by this
context, we propose a mixture gamma (MG) distribution for
the signal-to-noise ratio (SNR) of wireless channels. Not only is
it a more accurate model for composite fading, but is also a
versatile approximation for any fading SNR. As this distribution
consists of 𝑁 (≥ 1) component gamma distributions, we show
how its parameters can be determined by using probability
density function (PDF) or moment generating function (MGF)
matching. We demonstrate the accuracy of the MG model by
computing the mean square error (MSE) or the Kullback-Leibler
(KL) divergence or by comparing the moments. With this model,
performance metrics such as the average channel capacity, the
outage probability, the symbol error rate (SER), and the detection
capability of an energy detector are readily derived.

Index Terms—Fading channels, mixture of gamma distribu-
tions, signal-to-noise ratio (SNR).

I. INTRODUCTION

FUNDAMENTAL wireless propagation effects include
macroscopic (large scale or slow) fading and microscopic

(small scale or fast) fading. Macroscopic fading results from
the shadowing effect by buildings, foliage and other objects.
Microscopic fading results from multipath, which occurs in
indoor environments, and also both macrocellular and mi-
crocellular outdoor environments [2]. Shadowing can signif-
icantly impact satellite channels, point-to-point long distance
microwave links and macrocellular outdoor environments [3].
Both microscopic and macroscopic fading together are mod-
eled by composite shadowing/fading distributions, of which
Rayleigh-lognormal (RL) and Nakagami-lognormal (NL) are
the two most common models [2]. But the probability density
function (PDF) of these two composite models are not in
closed form, making performance analysis of some applica-
tions difficult or intractable. Hence, several other composite
models have been developed including the Suzuki distribution,
the 𝐾 and generalized-𝐾 (𝐾𝐺) distributions, the 𝒢- distri-
bution, and the Gamma distribution [4]–[8]. Note that these
models are approximations of the RL and NL models.
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A. Performance Analysis Based on 𝐾 and 𝐾𝐺 Models

The use of 𝐾 and 𝐾𝐺 models for performance analysis has
greatly increased recently (see [9]–[19], among many others).
For instance, the statistics of signal-to-noise ratio (SNR), the
average channel capacity and the bit error rate (BER) are
analyzed in [9], [10]. The outage performance, the average
BER, and the channel capacity of several adaptive schemes
are derived in [11]. The average output SNR, amount of
fading and outage probability of different diversity receivers
are derived in [12]. The closed-form BER is derived for
(post-detection) equal gain combining (EGC) in [13]. The
performance of dual-hop non-regenerative relays and multihop
regenerative relays is analyzed in [14]–[16]. The average
BER of orthogonal frequency-division multiplexing (OFDM)
systems is evaluated in [17]. The ergodic capacity of multiple-
input multiple-output (MIMO) systems is investigated in [18].
In [19], the performance of an energy detector is analyzed.
These studies and others show the importance of 𝐾 and 𝐾𝐺

models.

B. Limitations of 𝐾 and 𝐾𝐺 Models

While RL and NL do not have closed-form PDFs, the 𝐾 ,
𝐾𝐺 and 𝒢- models do. Nevertheless, their PDFs include spe-
cial functions (e.g., modified Bessel functions). Consequently,
mathematical complications arise in the evaluation of wireless
performance metrics. For instance, the cumulative distribution
function (CDF) of the 𝐾𝐺 model is derived in [9] by using
generalized hypergeometric functions. The computation of
such functions can be difficult as their series expressions may
give rise to numerical issues. Asymptotic expansions may
hence be required for certain ranges of the parameters and
the variables. Moreover, the PDF of a sum of SNRs (required
in maximal ratio combining [MRC]) is intractable. As well,
even numerical methods for MRC by using the characteristic
function approach are quite difficult due to the Whittaker
function [8]. To avoid these difficulties, 𝐾𝐺 random variables
(RVs) are approximated by Gamma RVs in [8], and the PDF
of the sum of independent 𝐾𝐺 RVs is further approximated
by PDF of another 𝐾𝐺 RV [20]. These approximations are
based on moment matching.

C. Mixture Gamma Distribution

While performance evaluation over composite channels is
highly important, the use of 𝐾 , 𝐾𝐺 and 𝒢 models is not
without analytical and/or computational difficulties. Hence, we
develop an alternative approach by using the mixture gamma
(MG) distribution [21], [22].
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This distribution avoids the problems mentioned above due
to several reasons. First, since it is a linearly weighted sum
of gamma distributions, it inherits several advantages of the
gamma distribution. For example, the moment generating
function (MGF) and CDF, which are required in wireless
system analysis, have mathematically tractable expressions.
Second, this distribution can approximate not only composite
fading channels, but also any small-scale fading channels.
Third, high accuracy is possible by adjusting the parameters.
Overall, by using the MG model, performance of any wireless
systems over a variety of fading channels can be analyzed in
a unified framework.

D. Contributions

Our main contributions are summarized as follows.

∙ We propose an MG distribution to model the SNR of
wireless channels. Although primarily intended to model
composite shadowing/fading channels, this distribution is
nevertheless effective for many other existing small-scale
fading channels as well. The MG distribution is discussed
in the statistics literature [21], [22]. The use of such a
distribution to model wireless channels is new as far as
we know.

∙ In the existing literature [6]–[8], 𝐾𝐺, 𝒢 and Gamma
distributions are used to approximate the composite
shadowing/fading models. The MG distribution is more
accurate than all those. The accuracy is measured by
the mean square error (MSE), the Kullback-Leibler (KL)
divergence, or by a comparison of the moments or the
PDFs.

∙ The PDFs of 𝐾 , 𝐾𝐺, 𝜂-𝜇, Nakagami-𝑞 (Hoyt), 𝜅-
𝜇, or Nakagami-𝑛 (Rician) distributions contain special
functions, and thus, performance analysis is complicated
or intractable. The MG model, a linear combination of
gamma distributions, offers a solution. Thus, the distribu-
tions mentioned above can be approximated by the MG
model, facilitating performance analysis.

∙ Another advantage of the MG distribution is the sim-
plicity of performance analysis. Specifically, its CDF,
MGF and moments are readily mathematically tractable.
Typical performance analysis scenarios are derived under
a unified framework. Therefore, case-by-case analysis
of different channel models is unnecessary. Moreover,
performance metrics, such as the average capacity, the
outage probability, the symbol error rate (SER), and
particularly, performance of an energy detector (essential
for future cognitive radio networks), are derived by using
the unified framework.

The rest of the paper is organized as follows. The MG dis-
tribution is described in Section II. Several common wireless
channels are represented by using the MG model in Section
III. In Section IV, the accuracy of the MG representation of
composite fading channels and small-scale fading channels
is examined. Performance analysis and the numerical results
from the unified framework are shown in Section V. The
concluding remarks are in Section VI.

II. THE MG WIRELESS CHANNEL MODEL

We start with the SNR distribution, which is required for
analysis of wireless communication systems. The instanta-
neous received SNR and the average SNR are denoted by
𝛾 and 𝛾, respectively.

A. Probability Density Function (PDF)

In [23], it is shown that any function 𝑓(𝑥), where 𝑥 ∈
(0,∞) and lim𝑥→+∞ 𝑓(𝑥) → 0, can be given as 𝑓(𝑥) =

lim𝑢→+∞ 𝑆𝑢(𝑥) where 𝑆𝑢(𝑥) := 𝑒−𝑢𝑥
∑∞

𝑘=0
(𝑢𝑥)𝑘

𝑘! 𝑓
(
𝑘
𝑢

)
,

𝑢 > 0. Thus, an arbitrarily close approximation to 𝑓(𝑥) can
be obtained by increasing the number of terms in the mixture
[22]. Note that 𝑆𝑢(𝑥) is a weighted sum of gamma PDFs. This
result provides the motivation for using the MG distribution
to represent any wireless SNR models.

Therefore, we propose to use the following MG distribution
to approximate the PDF of 𝛾 as

𝑓𝛾(𝑥) =

𝑁∑
𝑖=1

𝑤𝑖𝑓𝑖(𝑥) =

𝑁∑
𝑖=1

𝛼𝑖𝑥
𝛽𝑖−1𝑒−𝜁𝑖𝑥, 𝑥 ≥ 0 (1)

where 𝑓𝑖(𝑥) =
𝜁
𝛽𝑖
𝑖 𝑥𝛽𝑖−1𝑒−𝜁𝑖𝑥

Γ(𝛽𝑖)
is a standard Gamma distri-

bution, Γ(⋅) is the gamma function, 𝑤𝑖 = 𝛼𝑖Γ(𝛽𝑖)

𝜁
𝛽𝑖
𝑖

, 𝑁 is

the number of terms, and 𝛼𝑖, 𝛽𝑖 and 𝜁𝑖 are the parameters
of the 𝑖th Gamma component. Further,

∑𝑁
𝑖=1 𝑤𝑖 = 1 as∫∞

0
𝑓𝛾(𝑥)𝑑𝑥 = 1. The special case 𝑁 = 1 reverts to Rayleigh

and Nakagami-𝑚 fading. Discussion of how to choose 𝑁 is
provided in Section IV. Note that formula (1) can approximate
the PDF 𝑓(𝑥) of any positive random variable.

B. Cumulative Distribution Function (CDF)

The CDF of the MG distribution can be evaluated as
𝐹𝛾(𝑥) =

∫ 𝑥
0 𝑓𝛾(𝑡)𝑑𝑡 to yield

𝐹𝛾(𝑥) =
𝑁∑
𝑖=1

𝛼𝑖𝜁
−𝛽𝑖

𝑖 𝛾 (𝛽𝑖, 𝜁𝑖𝑥) (2)

where 𝛾(⋅, ⋅) is the lower incomplete gamma function defined
as 𝛾(𝑎, 𝜌) ≜

∫ 𝜌
0
𝑡𝑎−1𝑒−𝑡𝑑𝑡 [24], [25]. This function is readily

available in mathematical software packages.

C. Moment Generating Function (MGF)

The MGF of MG distribution, ℳ𝛾(𝑠), can be evaluated
as ℳ𝛾(𝑠) = 𝔼(𝑒−𝑠𝑥) where 𝔼(⋅) denotes the expectation
operator. Thus, ℳ𝛾(𝑠) =

∫∞
0 𝑒−𝑠𝑥𝑓𝛾(𝑥)𝑑𝑥 can be derived

as

ℳ𝛾(𝑠) =
𝑁∑
𝑖=1

𝛼𝑖Γ(𝛽𝑖)

(𝑠+ 𝜁𝑖)𝛽𝑖
. (3)

D. Moments

The 𝑟𝑡ℎ moment associated with the MG distribution,
𝑚𝛾(𝑟), can be calculated as 𝑚𝛾(𝑟) = 𝔼(𝛾𝑟), to yield

𝑚𝛾(𝑟) =

𝑁∑
𝑖=1

𝛼𝑖Γ(𝛽𝑖 + 𝑟)𝜁
−(𝛽𝑖+𝑟)
𝑖 . (4)



ATAPATTU et al.: A MIXTURE GAMMA DISTRIBUTION TO MODEL THE SNR OF WIRELESS CHANNELS 4195

The mathematically tractable expressions (1)-(4) demon-
strate the major benefit of the MG distribution. The perfor-
mance metrics have convenient expressions, i.e., no compli-
cated special functions are required. This fact can facilitate the
performance studies enormously. If a given wireless channel
can be represented as an MG distribution, the common per-
formance metrics such as error rates, outage and others are
immediately derived, with details given in Section V.

III. MG DISTRIBUTION FOR TYPICAL WIRELESS

CHANNELS

This section shows how to represent the SNR PDF of the
NL, 𝐾 , 𝐾𝐺, 𝜅-𝜇, Nakagami-𝑞 (Hoyt), 𝜂-𝜇 and Nakagami-𝑛
(Rician) channel models in the form of an MG model, as in
(1).

A. NL Composite Channel

The SNR distribution of the NL channel is a gamma-
lognormal (GL) distribution, given as [26]

𝑓𝛾(𝑥) =

∫ ∞

0

𝑥𝑚−1𝑒−
𝑚𝑥
𝜌𝑦

Γ(𝑚)

(
𝑚

𝜌𝑦

)𝑚
𝑒−

(ln 𝑦−𝜇)2

2𝜆2

√
2𝜋𝜆𝑦

𝑑𝑦 (5)

where 𝑚 is the fading parameter in Nakagami-𝑚 fading, 𝜌 is
the unfaded SNR, and 𝜇 and 𝜆 are the mean and the standard
deviation of the lognormal distribution, respectively. When
𝑚 = 1, expression (5) is the SNR distribution of the RL
distribution. The fading and shadowing effects diminish for
larger𝑚 and smaller 𝜆, respectively. A closed-form expression
of the composite GL SNR distribution is not available in the
literature.

By using substitution 𝑡 = ln 𝑦−𝜇√
2𝜆

, expression (5) can be
written as

𝑓𝛾(𝑥) =
𝑥𝑚−1

√
𝜋 Γ(𝑚)

(
𝑚

𝜌

)𝑚 ∫ ∞

−∞
𝑒−𝑡2𝑔(𝑡)𝑑𝑡 (6)

where 𝑔(𝑡) = 𝑒−𝑚(
√
2𝜆𝑡+𝜇)𝑒−

𝑚
𝜌 𝑒−(

√
2𝜆𝑡+𝜇)𝑥. The integration

in (6), 𝐼 =
∫∞
−∞ 𝑒−𝑡2𝑔(𝑡)𝑑𝑡, is a Gaussian-Hermite integration

which can be approximated as 𝐼 ≈ ∑𝑁
𝑖=1 𝑤𝑖𝑔(𝑡𝑖) where 𝑡𝑖

and 𝑤𝑖 are the abscissas and weight factors for the Gaussian-
Hermite integration [27]. Therefore, we can express 𝑓𝛾(𝑥) in
(6) as the MG distribution given in (1). After normalization
of
∫∞
0 𝑓𝛾(𝑥)𝑑𝑥 = 1, we find

𝛼𝑖 =𝜓(𝜃𝑖, 𝛽𝑖, 𝜁𝑖), 𝛽𝑖 = 𝑚, 𝜁𝑖 =
𝑚

𝜌
𝑒−(

√
2𝜆𝑡𝑖+𝜇),

𝜃𝑖 =

(
𝑚

𝜌

)𝑚
𝑤𝑖𝑒

−𝑚(
√
2𝜆𝑡𝑖+𝜇)

√
𝜋Γ(𝑚)

(7)

where 𝜓(𝜃𝑖, 𝛽𝑖, 𝜁𝑖) = 𝜃𝑖
∑

𝑁
𝑗=1 𝜃𝑗Γ(𝛽𝑗)𝜁

−𝛽𝑗
𝑗

. Function 𝜓(𝜃𝑖, 𝛽𝑖, 𝜁𝑖)

is also used for subsequent cases.

B. 𝐾 and 𝐾𝐺 Channels

The SNR distribution of the 𝐾𝐺 channel has a closed-form
expression with the 𝑛th-order modified Bessel function of
the second kind [9]. With some mathematical simplifications,

the SNR distribution of the 𝐾𝐺 channel, which is a gamma-
gamma distribution, can be rewritten in an integral form as

𝑓𝛾(𝑥) =
𝜆𝑚𝑥𝑚−1

Γ(𝑚)Γ(𝑘)

∫ ∞

0

𝑒−𝑡𝑔(𝑡)𝑑𝑡 (8)

where 𝑔(𝑡) = 𝑡𝛼−1𝑒−
𝜆𝑥
𝑡 , 𝜆 = 𝑘𝑚

𝛾 and 𝛼 = 𝑘−𝑚. Here 𝑘 and
𝑚 are the distribution shaping parameters, which represent
the multipath fading and shadowing effects of the wireless
channel, respectively. The integral in (8), 𝐼 =

∫∞
0 𝑒−𝑡𝑔(𝑡)𝑑𝑡,

can be approximated as a Gaussian-Laguerre quadrature sum
as 𝐼 ≈ ∑𝑁

𝑖=1 𝑤𝑖𝑔(𝑡𝑖) where 𝑡𝑖 and 𝑤𝑖 are the abscissas
and weight factors for the Gaussian- Laguerre integration
[27]. Thus, (8) can be written as the MG distribution with
parameters

𝛼𝑖 = 𝜓(𝜃𝑖, 𝛽𝑖, 𝜁𝑖), 𝛽𝑖 = 𝑚, 𝜁𝑖 =
𝜆

𝑡𝑖
, 𝜃𝑖 =

𝜆𝑚𝑤𝑖𝑡
𝛼−1
𝑖

Γ(𝑚)Γ(𝑘)
. (9)

C. 𝜂-𝜇 Channel

The 𝜂-𝜇 channel model is a generalized form to model the
non-line of sight small-scale fading of a wireless channel [28].
The Rayleigh, Nakagami-𝑚 and Hoyt distributions are special
cases of the 𝜂-𝜇 channel model. The 𝜂-𝜇 SNR distribution is
given as [29]

𝑓𝛾(𝑥) =
2
√
𝜋𝜇𝜇+

1
2ℎ𝜇𝑥𝜇−

1
2 𝑒

−2𝜇ℎ𝑥
𝛾

Γ(𝜇)𝐻𝜇− 1
2 𝛾𝜇+

1
2

𝐼𝜇− 1
2

(
2𝜇𝐻𝑥

𝛾

)
(10)

where the parameter 𝜇 =
(1+𝐻2/ℎ2)𝔼2(𝛾)

2𝑉 𝑎𝑟(𝛾) (𝜇 > 0) represents
the number of multipath clusters (𝑉 𝑎𝑟(⋅) represents the vari-
ance), and 𝐼𝑣(⋅) is the 𝑣th-order modified Bessel function of
the first kind. Parameters ℎ and 𝐻 are to be explained in
the following. The 𝜂-𝜇 channel includes two fading formats,
Format 1 and Format 2, for two different physical represen-
tations. In Format 1, the independent in-phase and quadrature
components of the fading signal have different powers, and 𝜂
(0 < 𝜂 < ∞) is the power ratio of the in-phase component
to the quadrature component. Two parameters ℎ and 𝐻 are
defined as ℎ = 2+𝜂−1+𝜂

4 and 𝐻 = 𝜂−1−𝜂
4 , respectively. In

Format 2, the in-phase and quadrature components of the
fading signal are correlated and have identical powers. 𝜂
(−1 < 𝜂 < 1) is the correlation coefficient between the in-
phase and quadrature components. Two parameters ℎ and 𝐻
are defined as ℎ = 1

1−𝜂2 and 𝐻 = 𝜂
1−𝜂2 , respectively [28].

Only a few performance studies for the 𝜂-𝜇 channel have
been published in the literature, probably because the modified
Bessel function of the first kind in (10) leads to mathematical
complexity [29]–[33]. In the following, the 𝜂-𝜇 SNR distribu-
tion is approximated by using the MG distribution.

For a real number 𝑣, the function 𝐼𝑣(𝑧) can be computed
using [25]

𝐼𝑣(𝑧) =

∞∑
𝑘=0

1

𝑘!Γ(𝑣 + 𝑘 + 1)

(𝑧
2

)2𝑘+𝑣

. (11)

Therefore, the 𝜂-𝜇 SNR distribution (10) can be given in an
alternative form as

𝑓𝛾(𝑥) =
2
√
𝜋𝜇𝜇+

1
2ℎ𝜇𝑒

−2𝜇ℎ𝑥
𝛾

Γ(𝜇)𝐻𝜇− 1
2 𝛾𝜇+

1
2

∞∑
𝑖=1

(
𝜇𝐻
𝛾

)2𝑖+𝜇− 5
2

𝑥2𝜇−3+2𝑖

(𝑖− 1)!Γ(𝜇+ 𝑖− 1
2 )

.

(12)
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The required accuracy1 to approximate the exact 𝑓𝛾(𝑥) can be
achieved by summing a finite number, 𝑁 , of terms in (12). By
matching the two PDFs given in (10) and (12), the parameters
of the MG distribution can be evaluated as

𝛼𝑖 =𝜓(𝜃𝑖, 𝛽𝑖, 𝜁𝑖), 𝛽𝑖 = 2(𝜇− 1 + 𝑖), 𝜁𝑖 =
2𝜇ℎ

𝛾
,

𝜃𝑖 =
2
√
𝜋𝜇𝜇+

1
2 ℎ𝜇

Γ(𝜇)𝐻𝜇− 1
2 𝛾𝜇+

1
2

(
𝜇𝐻
𝛾

)2𝑖+𝜇− 5
2

(𝑖 − 1)!Γ(𝜇+ 𝑖− 1
2 )
.

(13)

Alternatively, the 𝑣th-order modified Bessel function of the
first kind, 𝐼𝑣(𝑧), can be approximated by using the integral
representation [25, eq. (8.431.5)]

𝐼𝑣(𝑧) =

∫ 𝜋

0

𝑒𝑧 cos𝜗 cos(𝑣𝜗)𝑑𝜗

𝜋
−
∫ ∞

0

sin(𝑣𝜋)𝑒−𝑧 cosh 𝑡−𝑣𝑡𝑑𝑡

𝜋
.

(14)
With 𝜗 = 𝑢𝜋

2 + 𝜋
2 and 𝑣𝑡 = 𝑝, 𝐼𝑣(𝑧) can be

further written as 𝐼𝑣(𝑧) = 𝐼1 − 𝐼2, where 𝐼1 =∫ 1

−1 𝑔1(𝑢)𝑑𝑢 is a Gaussian-Legendre integration, and 𝐼2 =∫∞
0 𝑒−𝑝𝑔2(𝑝)𝑑𝑝 is a Gaussian-Laguerre integration where
𝑔1(𝑢) = 1

2𝑒
−𝑧 sin(𝜋𝑢

2 ) cos
(
(𝑢+ 1)𝜋𝑣2

)
and 𝑔2(𝑝) =

sin(𝜋𝑣)𝑒−𝑧 cosh( 𝑝
𝑣 )/(𝜋𝑣). Similar to Section III-A with

Gaussian-Hermite integration, the SNR distribution of the 𝜂-𝜇
channel can be approximated by the MG model.

D. Nakagami-𝑞 (Hoyt) Channel

Satellite links with strong ionospheric scintillation can be
modeled with the Nakagami-𝑞 distribution, and the SNR
distribution of the Nakagami-𝑞 channel is given as [26]

𝑓𝛾(𝑥) =
1 + 𝑞2

2𝑞𝛾
𝑒
− (1+𝑞2)2

4𝑞2𝛾
𝑥
𝐼0

(
1− 𝑞4

4𝑞2𝛾
𝑥

)
(15)

where 𝐼0(⋅) is the zeroth-order modified Bessel function of
the first kind. The fading parameter 𝑞 varies from 0 to 1,
where 𝑞 = 0 and 𝑞 = 1 represent the one-sided Gaussian and
Rayleigh distributions, respectively. Further, this distribution is
a special case of the 𝜂-𝜇 distribution when 𝜇 = 1

2 and 𝜂 = 𝑞2.
Using Format 1 of the 𝜂-𝜇 distribution, the parameters of the
MG distribution for the Nakagami-𝑞 channel can be derived
from (13) to yield

𝛼𝑖 =𝜓(𝜃𝑖, 𝛽𝑖, 𝜁𝑖), 𝛽𝑖 = 2𝑖− 1, 𝜁𝑖 =
(1 + 𝑞2)2

4𝑞2𝛾
,

𝜃𝑖 =
(1 + 𝑞2)

2𝑞𝛾Γ(𝑖)(𝑖 − 1)!

(
1− 𝑞4

8𝑞2𝛾

)2𝑖−2

.

(16)

E. 𝜅-𝜇 Channel

The 𝜅-𝜇 distribution fits well with channels having line-
of-sight components. Nakagami-𝑛 (Rician) and Nakagami-𝑚
channels are special cases of the 𝜅-𝜇 channel. The 𝜅-𝜇 SNR
distribution is [29]

𝑓𝛾(𝑥) =
𝜇(1 + 𝜅)

𝜇+1
2

𝜅
𝜇−1
2 𝑒𝜇𝜅𝛾

𝜇+1
2

⋅ 𝑥𝜇−1
2 𝑒−

𝜇(1+𝜅)
𝛾 𝑥𝐼𝜇−1

(
2𝜇

√
𝜅(1 + 𝜅)

𝛾
𝑥

) (17)

1The required accuracy can be defined in terms of the mean-square error
(MSE) between the exact and approximated expressions or by matching the
first 𝑟 moments.

where 𝜅 (𝜅 > 0) is the power ratio of the dominant compo-
nents to the scattered components of the signal, and 𝜇 (𝜇 > 0)
is defined as 𝜇 = (1+2𝜅)𝔼2(𝛾)

(1+𝜅)2𝑉 𝑎𝑟(𝛾) . Since 𝑓𝛾(𝑥) includes the
modified Bessel function of the first kind with the square root
of the random parameter 𝑥, it is difficult to obtain the MG form
with one of the Gaussian integration methods, as discussed in
previous subsections. To address this difficulty, the 𝜅-𝜇 SNR
distribution given in (17) can be written using (11) as

𝑓𝛾(𝑥) =
𝜇(1 + 𝜅)

𝜇+1
2

𝜅
𝜇−1
2 𝑒𝜇𝜅𝛾

𝜇+1
2

∞∑
𝑖=1

[
𝜇2𝑖+𝜇−3

Γ(𝜇− 1 + 𝑖)(𝑖− 1)!

⋅
(
𝜅(1 + 𝜅)

𝛾

) 2𝑖+𝜇−3
2

𝑥𝜇+𝑖−2𝑒−
𝜇(1+𝜅)

𝛾 𝑥

]
.

(18)

The required accuracy for approximating the exact 𝑓𝛾(𝑥) can
be achieved by summing a finite number, 𝑁 , of terms in
(18). By matching the two PDFs given in (17) and (18), the
parameters of the MG distribution can be evaluated as

𝛼𝑖 =𝜓(𝜃𝑖, 𝛽𝑖, 𝜁𝑖), 𝛽𝑖 = 𝜇+ 𝑖− 1, 𝜁𝑖 =
𝜇(1 + 𝜅)

𝛾
,

𝜃𝑖 =
𝜇(1 + 𝜅)

𝜇+1
2

𝜅
𝜇−1
2 𝑒𝜇𝜅𝛾

𝜇+1
2

𝜇2𝑖+𝜇−3
(
𝜅(1+𝜅)

𝛾

) 2𝑖+𝜇−3
2

Γ(𝜇− 1 + 𝑖)(𝑖− 1)!
.

(19)

Alternatively, one can use a different approach in which the
MGF of SNR under 𝜅 − 𝜇 distribution can be matched with
the MGF of SNR under the MG distribution given in (3).
Using the power series expansion of the exponential function
𝑒𝑥 =

∑∞
𝑛=0

𝑥𝑛

𝑛! , the MGF of the 𝜅-𝜇 SNR distribution given
in [30] can be re-written as an infinite form. By matching the
two MGFs, the parameters of (1) can be evaluated. Details are
omitted due to space limit.

F. Nakagami-𝑛 (Rician) Channel

The Nakagami-𝑛 or Rician channel model fits well with
channels having a strong line-of-sight component. The corre-
sponding SNR distribution is given as [26]

𝑓𝛾(𝑥) =
(1 + 𝑛2)𝑒−𝑛2

𝛾
𝑒−

(1+𝑛2)
𝛾 𝑥𝐼0

(
2𝑛

√
(1 + 𝑛2)

𝛾
𝑥

)
(20)

where 𝑛 is the fading parameter (0 ≤ 𝑛 < ∞), and the Rician
factor 𝐾 is given as 𝐾 = 𝑛2. The Nakagami-𝑛 distribution is
a special case of the 𝜅-𝜇 distribution when 𝜇 = 1 and 𝜅 = 𝑛2.
Therefore, the parameters of the MG distribution given in (1)
can be evaluated as

𝛼𝑖 =𝜓(𝜃𝑖, 𝛽𝑖, 𝜁𝑖), 𝛽𝑖 = 𝑖, 𝜁𝑖 =
(1 + 𝑛2)

𝛾
,

𝜃𝑖 =
(1 + 𝑛2)

𝑒𝑛2 [(𝑖− 1)!]2𝛾

(
𝑛2(1 + 𝑛2)

𝛾

)𝑖−1

.

(21)

G. Rayleigh and Nakagami-𝑚 Channels

The SNR distributions of the Rayleigh and Nakagami-𝑚
channels are exponential and gamma distributions, respec-
tively [26, eq. (2.7) and (2.21)]. The two distributions are
special cases of the MG distribution. When the Rayleigh
distribution is written in the MG form given in (1), the
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Fig. 1. The MSE versus 𝑁 when the GL distribution is approximated by
𝐾𝐺, 𝒢, Gamma and MG for 𝑚 = 2.7, 𝜆 = 1, 𝜇 = 0, and the average SNR
= 0 dB.
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Fig. 2. The KL divergence (𝒟𝐾𝐿) versus 𝑁 when the GL distribution is
approximated by 𝐾𝐺, 𝒢, Gamma and MG for 𝑚 = 2.7, 𝜆 = 1, 𝜇 = 0, and
the average SNR = 0 dB.

corresponding parameters are 𝑁 = 1, 𝛼1 = 1
𝛾 , 𝛽1 = 1 and

𝜁1 = 1
𝛾 . For the Nakagami-𝑚 distribution, the corresponding

parameters are 𝑁 = 1, 𝛼1 = 𝑚𝑚

Γ(𝑚)𝛾𝑚 , 𝛽1 = 𝑚 and 𝜁1 = 𝑚
𝛾 .

IV. DETERMINATION OF THE NUMBER 𝑁 IN THE MG
DISTRIBUTION

For the MG distribution to approximate other channel
models, the number of components𝑁 needs to be determined.
This can be selected as the minimum value such that (i)
the mean-square error (MSE) or Kullback-Leibler (KL) diver-
gence between the target distribution and the MG distribution
is below a threshold; or (ii) the first 𝑟 moments of the two
distributions match.

A. Accuracy of MG Distribution to Approximate Wireless
Channel SNR

In the literature, the composite GL model has been ap-
proximated by 𝐾𝐺, 𝒢 and Gamma models. Here, we com-
pare the accuracy of the MG approximation with that of
those approximations. One of the possible measures of ac-
curacy is the MSE between two PDFs: the approximate
PDF 𝑓𝐴𝑝𝑝(𝑥) and the exact PDF 𝑓𝐸𝑥𝑡(𝑥). It is defined

as MSE = 𝔼

[
(𝑓𝐸𝑥𝑡(𝑥)− 𝑓𝐴𝑝𝑝(𝑥))

2
]
. Another possible

measure of accuracy is the KL divergence (𝒟𝐾𝐿) be-
tween 𝑓𝐴𝑝𝑝(𝑥) and 𝑓𝐸𝑥𝑡(𝑥), which is defined as 𝒟𝐾𝐿 =∫∞
−∞ 𝑓𝐸𝑥𝑡(𝑥) log

𝑓𝐸𝑥𝑡(𝑥)
𝑓𝐴𝑝𝑝(𝑥)

𝑑𝑥.2

We select 𝐾𝐺, 𝒢 and Gamma distributions for the compari-
son. The Gamma approximation is obtained by approximating
𝐾𝐺 PDF by a Gamma PDF [8]. The MSEs and 𝒟𝐾𝐿s between
the GL and its MG approximation (eq. (7)), GL and 𝐾𝐺, GL
and 𝒢, and GL and Gamma can be calculated numerically, as
shown in Fig. 1 and Fig. 2, respectively, for 𝑚 = 2.7, 𝜆 = 1,
𝜇 = 0, and the average SNR = 0 dB. The parameters of 𝐾𝐺, 𝒢
and Gamma distributions to match the target GL distribution
are obtained from [5], [7], [8]. The MSE and 𝒟𝐾𝐿 between
GL and MG distributions are less than 10−3 when the number
of components 𝑁 ≥ 6 and 𝑁 ≥ 8, respectively. Based on
MSE, MG model is better than Gamma, 𝐾𝐺 and 𝒢 models
when 𝑁 ≥ 2, 4 and 5, respectively. Based on KL divergence,
MG model is better than Gamma, 𝐾𝐺 and 𝒢 models when
𝑁 ≥ 3, 4 and 6, respectively. It can be seen that MSE and KL
divergence give similar results for the minimum value of 𝑁
that makes the MG model more accurate than Gamma, 𝐾𝐺

or 𝒢 model. Further, these MSE and 𝒟𝐾𝐿 with MG model
decrease significantly as 𝑁 slightly increases.

This fact is also evidenced by Fig. 3, which shows the
CDFs of the GL and its approximations 𝐾𝐺, 𝒢, Gamma and
MG. These curves are plotted on a GL paper. The ordinate
of the GL paper is obtained using the transformation 𝐹−1

GL (𝑡)
where 𝐹GL(𝑥) is the CDF of GL distribution. Thus the GL
distribution is a straight line on the GL paper, and others
are not. The inverse function is numerically calculated using
MATLAB. The following observations are made:

1) The exact GL CDF (solid line) matches perfectly with
the MG approximation (small circles) for all 𝑥. Just 𝑁 =
5 terms have been used in this case. Even better accuracy
is possible by slightly increasing 𝑁 .

2) The 𝐾𝐺 approximation [5],[6] deviates significantly in
the lower tail (𝑥 < 0.09) and also in the upper tail
(𝑥 > 5).

3) The 𝒢 approximation [7] deviates in the lower tail (𝑥 <
0.1).

4) The Gamma approximation [8] deviates significantly in
both lower tail (𝑥 < 1) and the upper tail (𝑥 > 5).

Clearly, the MG distribution is a more accurate representation
of composite fading channels.

2Although both the mean-square error (MSE) and the Kullback-Leibler
(KL) divergence are measures of the difference between two PDFs, they
give different measurements. Nevertheless, they give similar results for the
minimum value of 𝑁 that makes the MG model more accurate than Gamma,
𝐾𝐺 or 𝒢 model, as shown subsequently.
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Fig. 3. The exact CDF of GL distribution and the CDFs of the 𝐾𝐺, 𝒢,
Gamma and MG approximations. The parameter values are 𝑚 = 2.7, 𝜆 = 1,
𝜇 = 0, and the average SNR = 0 dB. The number of components in the MG
model is 𝑁 = 5.
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Fig. 4. Exact SNR distributions of 𝐾𝐺, Nakagami-𝑞 (Hoyt), 𝜂-𝜇 (Format
1), Rician and 𝜅-𝜇 channel models and their MG approximations.

Similarly, Fig. 4 shows the SNR distributions of the 𝐾𝐺,
Nakagami-𝑞 (Hoyt), 𝜂-𝜇 (Format 1), Rician and 𝜅-𝜇 channel
models and their corresponding approximations in the MG
form, when the value of 𝑁 in the MG distribution is selected
as the minimum value that satisfies MSE ≤ 10−6. Excellent
match is also observed in all curves. Note that in Fig. 4 and
subsequent figures, the continuous lines and discrete markers
show the curves corresponding to the exact distribution and
the approximated MG distribution, respectively.

B. Moment Matching

The parameters of 𝛼𝑖, 𝛽𝑖 and 𝜁𝑖 in the MG distribution
can be determined based on matching the MGFs of the exact
distribution and the MG distribution. For brevity, we determine
the value of 𝑁 as the minimum value such that the first 𝑟

TABLE I
THE SELECTED VALUE OF 𝑁 AND THE NEAREST INTEGER VALUES OF THE

FIRST THREE MOMENTS OF BOTH EXACT AND APPROXIMATED SNR
DISTRIBUTIONS OF 𝜅-𝜇 CHANNEL.

(𝜅, 𝜇)

(3, 0.5) (3, 1) (3, 2) (7, 0.5) (7, 1) (7, 2)

1st moment 3 3 3 3 3 3

2nd moment 19 14 12 15 12 11

3rd moment 154 83 55 87 57 43

𝑁 8 11 16 12 20 26

moments of the two distributions have the same nearest integer
values. Table I shows the selected 𝑁 value when 𝑟 = 3 for
𝜅-𝜇 distribution. The exact distribution and the approximated
MG distribution have the same nearest integer values for the
first 3 moments, which are also shown in Table I. In Table I,
the (3, 1) and (7, 1) columns are corresponding to Nakagami-
𝑛 distribution (Rician) with Rician factors 𝐾 = 3 and 𝐾 = 7,
respectively.

To determine the parameters of the MG distribution to
approximate other channel models, the exact SNR moment
expressions (𝑚𝛾(𝑟) = 𝔼(𝛾𝑟)) for the Nakagami-lognormal,
𝐾𝐺, Nakagami-𝑞 and Nakagami-𝑛 are available in the litera-
ture [9], [26], [34], and the exact SNR moment expressions of
𝜂-𝜇 and 𝜅-𝜇 distributions can be derived from their moments
of the envelop distribution given in [28, eqs. (5), (43), and
(46)].

C. Complexity of Determining 𝑁

The number of terms 𝑁 in the MG model may be deter-
mined iteratively. 𝑁 can be increased until the MSE or KL di-
vergence requirements are met. In our numerical result shown
in Figs. 1 and 2, approximately 𝑁 = 8 can meet the accuracy
requirement of 10−3. To achieve 10−6 accuracy (although we
may not need that level of accuracy), approximately 𝑁 = 15
is needed.

Each iteration (corresponding to a particular 𝑁 ) requires
3𝑁 parameters 𝛼𝑖, 𝛽𝑖 and 𝜁𝑖 (𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁 ). If Gaussian
integration methods (Gaussian-Legendre, Gaussian- Laguerre,
or Gaussian-Hermite) are used, their abscissas and weight
factors are already tabulated (e.g., in [27]), or can be gen-
erated efficiently by using simple MATLAB codes. Note that
special functions are not involved in the calculations of the
parameters.

V. PERFORMANCE ANALYSIS BASED ON THE MG
CHANNEL MODEL

Performance analysis of wireless technologies such as
MIMO, cooperative communications, cognitive radio and
ultra-wideband (UWB) radio has become important recently.
The MG distribution helps to provide a unified performance
analysis framework, because of the mathematical tractability
of its CDF, MGF and moments (Section II) and because of its
versatility (Section III). To this end, this section shows how the
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MG distribution allows the derivation of typical performance
metrics such as error rate, outage, and others.

A. Diversity Order and Array Gain

The diversity order is the magnitude of the slope of the
error probability versus SNR curve (log-log scale) in the high
SNR region. The array gain measures the shift of the error
probability curve to the left. The diversity order and the array
gain relate to the asymptotic value of the MGF near the
infinity, i.e., if the MGF, ℳ𝛾(𝑡), can be written in the form

∣ℳ𝛾(𝑡)∣ = 𝑏∣𝑡∣−𝑑 +𝒪(∣𝑡∣−(𝑑+1)) as 𝑡 → ∞
then 𝑏 and 𝑑 define the array gain and diversity order,
respectively [35]. Clearly, using the binomial series expansion,
(3) can be rewritten as

∣ℳ𝛾(𝑠)∣ =
𝑁∑
𝑖=1

𝛼𝑖Γ(𝛽𝑖)

(
𝑠−𝛽𝑖 +

∞∑
𝑘=1

(−𝛽𝑖
𝑘

)
𝜁𝑘𝑖 𝑠

−(𝛽𝑖+𝑘)

)
.

(22)
Therefore, the array gain is 𝑏 ≈ 𝛼𝑛Γ(𝛽𝑛) and the diversity
order is 𝑑 = 𝛽𝑛, where 𝑛 is the index of the first nonzero 𝛼𝑖,
i.e., 𝛼𝑖 = 0 ∀𝑖 < 𝑛, and 𝛼𝑛 ∕= 0. Accordingly, the diversity
orders of NL, 𝐾 , 𝐾𝐺, 𝜂-𝜇, Hoyt, 𝜅-𝜇, Rician, Rayleigh and
Nakagami-𝑚 fading channels are 𝑚, 1, 𝑚, 2𝜇, 1, 𝜇, 1, 1, and
𝑚 , respectively.

B. Average Channel Capacity

By using Shannon’s theorem, the average channel capacity
of a single-input single-output (SISO) channel, 𝐶, can be
calculated by averaging the instantaneous channel capacity
over the SNR distribution as 𝐶 =

∫∞
0 𝐵 log2(1+𝑥)𝑓𝛾(𝑥)𝑑𝑥,

where 𝐵 is the signal transmission bandwidth. If 𝛽𝑖 is an
integer, the average channel capacity over the MG distribution,
𝐶, can be calculated by using results in [36], as

𝐶 =
𝐵

ln 2

𝑁∑
𝑖=1

𝛼𝑖(𝛽𝑖 − 1)!𝑒𝜁𝑖
𝛽𝑖∑
𝑘=1

Γ(𝑘 − 𝛽𝑖, 𝜁𝑖)

𝜁𝑘𝑖
(23)

where Γ(⋅, ⋅) is the upper incomplete gamma function defined
as Γ(𝑎, 𝜌) ≜

∫∞
𝜌

𝑡𝑎−1𝑒−𝑡𝑑𝑡 [25, eq. (8.350.2)]. Next we
provide a method to calculate 𝐶 for any value of 𝛽𝑖. By
replacing log2(1 + 𝑥) with the Meijer’s G-function [37, eq.
(01.04.26.0003.01)],𝐶 can be evaluated in closed-form, which
is valid for any 𝛽𝑖, as

𝐶 =
𝐵

ln 2

𝑁∑
𝑖=1

𝛼𝑖𝜁
−𝛽𝑖

𝑖 𝐺1,3
3,2

[
𝜁−1
𝑖

∣∣∣∣ 1− 𝛽𝑖, 1, 1
1, 0

]
. (24)

For integer 𝛽𝑖, both expressions in (23) and (24) are equal
numerically.

C. Average Symbol Error Rate (SER)

Since we have a MGF without special functions in the MG
channel model, it can be used to evaluate the average SER of
𝑀 -PSK, 𝑀 -QAM and 𝑀 -AM, as follows.

1) M-PSK: The average SER for 𝑀 -PSK, 𝑃 𝑝𝑠𝑘
𝑒 , is given in

[26, eq. (9.15)] for some channel models. With the MGF given
in (3), the average SER for 𝑀 -PSK over the MG distribution
𝑃 𝑝𝑠𝑘
𝑒 can be evaluated as

𝑃 𝑝𝑠𝑘
𝑒 =

𝑁∑
𝑖=1

𝛼𝑖Γ(𝛽𝑖)

𝜋𝜁𝑖
𝛽𝑖

∫ (𝑀−1)𝜋
𝑀

0

(
sin2 𝜃

sin2 𝜃 +
𝑔𝑝𝑠𝑘
𝜁𝑖

)𝛽𝑖

𝑑𝜃 (25)

where 𝑔𝑝𝑠𝑘 = sin2( 𝜋
𝑀 ). Therefore, the average SER of the

𝑀 -PSK modulation can be evaluated in closed-form for any
value of 𝛽𝑖 with the aid of [38, eq. (10)].

2) M-QAM: Square 𝑀 -QAM signals with a constellation
size 𝑀 = 2𝑘 with even 𝑘 values are considered. The average
SER for 𝑀 -QAM, 𝑃 𝑞𝑎𝑚

𝑒 , is given in [26, eq. (9.21)] for some
channel models. When the MG distribution is used, 𝑃 𝑞𝑎𝑚

𝑒 can
be evaluated as

𝑃 𝑞𝑎𝑚
𝑒 =

𝑁∑
𝑖=1

𝐾𝛼𝑖Γ(𝛽𝑖)

𝜁𝑖
𝛽𝑖

[∫ 𝜋
2

0

(
sin2 𝜃

sin2 𝜃 +
𝑔𝑞𝑎𝑚

𝜁𝑖

)𝛽𝑖

𝑑𝜃

−
√
𝑀 − 1√
𝑀

∫ 𝜋
4

0

(
sin2 𝜃

sin2 𝜃 +
𝑔𝑞𝑎𝑚

𝜁𝑖

)𝛽𝑖

𝑑𝜃

] (26)

where 𝑔𝑞𝑎𝑚 = 3
2(𝑀−1) and 𝐾 = 4

𝜋 (1− 1√
𝑀
) . 𝑃 𝑞𝑎𝑚

𝑒 in (26)
can be evaluated in closed-form for any value of 𝛽𝑖 with the
aid of [38, eq. (12)].

3) M-AM: Similarly, the average SER for 𝑀 -AM, 𝑃 𝑎𝑚
𝑒 , is

given in [26, eq. (9.19)] for some channels. If it is evaluated
based on the MG distribution, we have

𝑃 𝑎𝑚
𝑒 =

2(𝑀 − 1)

𝜋𝑀

𝑁∑
𝑖=1

𝛼𝑖Γ(𝛽𝑖)

𝜋𝜁𝑖
𝛽𝑖

∫ 𝜋
2

0

(
sin2 𝜃

sin2 𝜃 + 𝑔𝑎𝑚

𝜁𝑖

)𝛽𝑖

𝑑𝜃

(27)
where 𝑔𝑎𝑚 = 3

(𝑀2−1) . With the aid of [26, eq. (5A.1)] or [38,
eq. (5)], 𝑃 𝑎𝑚

𝑒 can be evaluated in closed-form for any value
of 𝛽𝑖.

Similarly, the SER analysis for other modulation schemes
over different digital communication systems, for example,
as given in [39], [40], can be performed using the MG
distribution.

D. Outage Probability

The outage probability, which is the probability that the
received SNR is below a given threshold 𝛾𝑡ℎ, can easily be
calculated as 𝑃𝑜𝑢𝑡 = 𝐹𝛾(𝛾𝑡ℎ), where 𝐹𝛾(𝑥) is given in (2).

E. Energy Detection in Cognitive Radio

In cognitive radio networks, energy detection of a primary
signal is essential. The detection performance is typically
illustrated by using the receiver operating characteristic (ROC)
curve. Although such performance analysis for the Rayleigh,
Nakagami-𝑚, Rician and 𝜂-𝜇 fading channels is available
in [41], [42], the results for the Rician channel are limited.
This is due to the detection probability being expressed by
the generalized Marcum-𝑄 function with limited analytical
results. This problem can be circumvented by using the MG
model, as we will illustrate next.
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1) Average Detection Probability: When a primary signal
exists, the detection probability is defined as the probabil-
ity that the received energy is higher than a pre-defined
threshold 𝜆. The probability of detection (𝑃𝑑) is expressed
as 𝑃𝑑 = 𝑄𝑢(

√
2𝛾,

√
𝜆), where 𝑄𝑢(⋅, ⋅) is the generalized

Marcum-Q function. The number of samples, 𝑢, is an in-
teger value [41]. The average detection probability, 𝑃𝑑 =∫∞
0 𝑄𝑢(

√
2𝑥,

√
𝜆)𝑓𝛾(𝑥)𝑑𝑥, can further be re-written by re-

placing the Marcum-𝑄 function by its circular contour integral
representation [31] to yield

𝑃𝑑 =
𝑒−

𝜆
2

𝑗2𝜋

∮
Γ

ℳ𝛾

(
1− 1

𝑧

)
𝑒

𝜆
2 𝑧

𝑧𝑢(1 − 𝑧)
𝑑𝑧 (28)

where Γ is a circular contour with radius 𝑟 ∈ [0, 1). After
substituting the MGF given in (3), the average detection
probability can be re-written as

𝑃𝑑 = 𝑒−
𝜆
2

𝑁∑
𝑖=1

𝛼𝑖Γ(𝛽𝑖)

(𝜁𝑖 + 1)
𝛽𝑖

1

𝑗2𝜋

∮
Γ

𝑔(𝑧)𝑑𝑧 (29)

where

𝑔(𝑧) =
𝑒

𝜆
2 𝑧

𝑧𝑢−𝛽𝑖(1− 𝑧)
(
𝑧 − 1

1+𝜁𝑖

)𝛽𝑖
.

We can solve the contour integral by applying the Residue
Theorem assuming integer values for 𝛽𝑖. There are two
possible scenarios, 𝑢 > 𝛽𝑖 and 𝑢 ≤ 𝛽𝑖.

When 𝑢 > 𝛽𝑖: There are (𝑢 − 𝛽𝑖) poles at 𝑧 = 0 and 𝛽𝑖
poles at 𝑧 = 1

1+𝜁𝑖
. Therefore, 𝑃𝑑 can be calculated as

𝑃𝑑 = 𝑒−
𝜆
2

𝑁∑
𝑖=1

𝛼𝑖Γ(𝛽𝑖)

(𝜁𝑖 + 1)
𝛽𝑖

[
Res (𝑔; 0) + Res

(
𝑔;

1

1 + 𝜁𝑖

)]
(30)

where Res (𝑔; 0) and Res
(
𝑔; 1

1+𝜁𝑖

)
are the residues of 𝑔(𝑧)

at 𝑧 = 0 and 𝑧 = 1
1+𝜁𝑖

, respectively. Further, Res (𝑔; 0) and

Res
(
𝑔; 1

1+𝜁𝑖

)
can be evaluated as

Res (𝑔; 0) =

[
𝑑𝑢−𝛽𝑖−1

𝑑𝑧𝑢−𝛽𝑖−1 𝑔(𝑧)𝑧
𝑢−𝛽𝑖

] ∣∣∣∣
𝑧=0

(𝑢− 𝛽𝑖 − 1)!

Res

(
𝑔;

1

1 + 𝜁𝑖

)
=

[
𝑑𝛽𝑖−1

𝑑𝑧𝛽𝑖−1 𝑔(𝑧)(𝑧 − 1
1+𝜁𝑖

)𝛽𝑖

] ∣∣∣∣
𝑧= 1

1+𝜁𝑖

(𝛽𝑖 − 1)!
.

When 𝑢 ≤ 𝛽𝑖: There are 𝛽𝑖 poles at 𝑧 = 1
1+𝜁𝑖

. Therefore,
𝑃𝑑 can be calculated as

𝑃𝑑 = 𝑒−
𝜆
2

𝑁∑
𝑖=1

𝛼𝑖Γ(𝛽𝑖)

(𝜁𝑖 + 1)
𝛽𝑖

Res

(
𝑔;

1

1 + 𝜁𝑖

)
. (31)

2) Area Under the ROC Curve (AUC): The area under
the ROC curve (AUC) is another method to describe the
overall energy detector performance, which has been recently
introduced to the wireless communication field [43]. The AUC
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Fig. 5. The average capacity of an SISO channel versus average SNR over
different fading channels.

of an energy detector for a specific value of instantaneous SNR
𝛾, 𝐴(𝛾), is derived as [43]

𝐴(𝛾) =1−
𝑢−1∑
𝑘=0

1

2𝑘 𝑘!
𝛾𝑘𝑒−

𝛾
2

+

𝑢−1∑
𝑘=1−𝑢

Γ(𝑢 + 𝑘)

2𝑢+𝑘Γ(𝑢)
𝑒−𝛾

1𝐹1

(
𝑢+ 𝑘; 1 + 𝑘;

𝛾

2

) (32)

where 1𝐹1(⋅; ⋅; ⋅) is the regularized confluent hypergeometric
function of 1𝐹1(⋅; ⋅; ⋅) [37]. The average AUC under the MG
distribution, 𝐴, can be derived as 𝐴 =

∫∞
0

𝐴(𝑥)𝑓𝛾(𝑥)𝑑𝑥 to
yield

𝐴 =1−
𝑢−1∑
𝑘=0

1

2𝑘𝑘!

𝑁∑
𝑖=1

𝛼𝑖
Γ(𝑘 + 𝛽𝑖)

(12 + 𝜁𝑖)𝑘+𝛽𝑖
+

𝑢−1∑
𝑘=1−𝑢

Γ(𝑢+ 𝑘)

2𝑢+𝑘Γ(𝑢)

𝑁∑
𝑖=1

𝛼𝑖
Γ(𝛽𝑖)

(1 + 𝜁𝑖)𝛽𝑖
2𝐹1

(
𝛽𝑖;𝑢+ 𝑘; 1 + 𝑘;

1

2(1 + 𝜁𝑖)

)
(33)

where 2𝐹1(⋅; ⋅; ⋅; ⋅) is the regularized confluent hypergeometric
function of 2𝐹1(⋅; ⋅; ⋅) [37]. This derivation is very similar to
the derivation given in [43] for Nakagami-𝑚 fading.

Note that the performance of cooperative relay channels
has been extensively studied over Rayleigh and Nakagami-𝑚
fading channels (e.g., [44], [45]). However, analysis may be
lacking for lognormal shadowing, Rician, Hoyt, 𝐾 , 𝜂-𝜇 and 𝜅-
𝜇 fading channels. The MG distribution may help in this case.
For example, in [46], energy detector performance is analyzed
for cooperative spectrum sensing in a cognitive radio network
over fading and shadowing, which are modeled by using the
MG distribution. The SER analysis of an amplify-and-forward
relay network [45] and optimal resource allocation [47] are
two potential applications of the MG model. Due to the space
limitation, these topics are omitted here.
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Fig. 6. The outage probability of an SISO channel versus average SNR over
different fading channels for 𝛾𝑡ℎ = 0 dB.
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F. Numerical Results

Two main focuses of this sub-section are (1) to show
how the performance analysis based on the MG approx-
imation matches with the exact results, and (2) to com-
pare the performance of different fading channels. We
choose typical distribution parameters. The value of 𝑁
is selected as the minimum value to satisfy MSE ≤
10−6. As an example, the parameters and 𝑁 for the NL,
𝐾𝐺, 𝜂-𝜇 (Format 1), Hoyt, 𝜅-𝜇 and Rician channels are
chosen as (𝑚,𝜆, 𝜇,𝑁 )=(2, 1, 0.25, 10), (𝑚, 𝑘,𝑁 )=(2, 5, 6),
(𝜂, 𝜇,𝑁 )=(0.5, 1.5, 5), (𝑞2, 𝑁 )=(0.5, 3), (𝜅, 𝜇,𝑁 )= (7, 2, 36)
and (𝑛2, 𝑁 )=(3, 16), respectively.

The performance curves for the average channel capacity,
the outage probability, average SER for BPSK and QAM, the
ROC and the complementary AUC (CAUC = 1-AUC) of an
energy detector are plotted in Figs. 5-9, respectively, based
on both exact (continuous lines) and approximated (discrete
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Fig. 8. The receiver operating characteristic (ROC) curves of an energy
detector over different fading channels for average SNR 𝛾 = 0 dB, 5 dB and
𝑢 = 1.
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Fig. 9. The average complementary area under the ROC curves (𝐶𝐴𝑈𝐶 =
1 − 𝐴𝑈𝐶) of an energy detector versus average SNR over different fading
channels for 𝑢 = 1.

points) MG distributions. All figures show an excellent match.
As discussed in Section V-A, the achievable diversity or-

ders of NL, 𝐾 , 𝐾𝐺, 𝜂-𝜇, Hoyt, 𝜅-𝜇, Rician, Rayleigh and
Nakagami-𝑚 fading channels are 𝑚, 1, 𝑚, 2𝜇, 1, 𝜇, 1, 1, and
𝑚, respectively. The diversity order can be illustrated by using
outage probability (Fig. 6), SER (Fig. 7) or complementary
AUC (Fig. 9) versus average SNR plots in the high SNR
region. From the figures, NL and 𝐾𝐺 models show diversity
order 2 because their fading parameters are 𝑚 = 2. Hoyt and
Rician models always have diversity order 1. Since 𝜂-𝜇 and
𝜅-𝜇 models have 𝜇 = 1.5 and 𝜇 = 2, they have diversity
order 3 and 2, respectively. All these confirm accuracy of our
analysis in Section V-A. Further, we compare the performance
of 𝜂-𝜇 and Hoyt channels. Although both channels have same
power ratios in our numerical examples (i.e., 𝜂=𝑞2=0.5), the
𝜂-𝜇 channel has higher effective multipath clusters, which help
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to achieve a diversity order of 3 (=2𝜇) while the Hoyt channel
has diversity order of one. Therefore, performance of 𝜂-𝜇
channel with (𝜂, 𝜇)=(0.5,1.5) is better than the performance of
Hoyt channel with 𝑞2=0.5 in terms of channel capacity, outage,
SER, and energy detection capability (Figs. 5-9). Similarly,
we can compare performance of 𝜅-𝜇 and Rician channels.
For the two channels in our numerical examples, the power
ratios of the dominant components to the scattered components
of the signal are 𝜅 = 7 and 𝑛2 = 3, respectively, and the
diversity orders are 2 and 1, respectively. So performance of
𝜅-𝜇 channel with (𝜅, 𝜇)=(7,2) is better than the performance
of Rician channel with 𝑛2=3 in terms of channel capacity,
outage, SER, and energy detection capability (Figs. 5-9).
Since NL, 𝐾𝐺, 𝜂-𝜇, and 𝜅-𝜇 channel models do not have
straightforward relationships among each other, no clear-cut
performance comparison can be done.

VI. CONCLUSIONS

The MG distribution to model the SNR of the wireless
channels has been proposed. Theoretical results [23][48] show
it converges to any PDF over (0,∞), a justification of this
model. It is not only ideal for composite channels, but also
effective for small-scale fading channels. The parameters of
the MG distribution to match a target distribution can be ob-
tained by approximating with Gaussian quadrature formulas,
by matching moments or (MGF) or by matching PDFs. We
demonstrate that the MG model offers a more accurate repre-
sentation of composite fading channels than those provided by
the 𝐾 models and other alternatives, which have recently been
used in wireless research. Due to its mathematically tractable
form and high accuracy, the MG distribution thus allows rapid
evaluation of performance metrics such as channel capacity,
outage, error rate and others of MIMO systems, cooperative
relay channels, cognitive radio, UWB and others. Further
research directions include the performance analysis of other
wireless systems and model fitting based on measured channel
data. We believe that the MG distribution opens up these and
other research opportunities.
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