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Abstract—The performance of three transmit antenna selec-
tion (TAS) strategies for dual-hop multiple-input–multiple-output
(MIMO) ideal channel-assisted amplify-and-forward (AF) re-
lay networks is analyzed. All channel fades are assumed to be
Nakagami-m (integer m) fading. The source, relay, and desti-
nation are MIMO terminals. The optimal TAS and two subop-
timal TAS strategies are considered. Since direct analysis of the
end-to-end signal-to-noise ratio (e2e SNR) of the optimal TAS is
intractable, a lower bound of the e2e SNR is derived. Its cumu-
lative distribution function and the moment generating function
(mgf) are derived and used to obtain the upper bounds of the
outage probability and the average symbol error rate (SER). For
the two suboptimal TAS strategies, we derive the exact mgfs
of the e2e SNR and obtain accurate and efficient closed-form
approximations for the outage probability and the average SER.
The asymptotic outage probability and the average SER, which
are exact in high SNR, are also derived, and they provide valuable
insights into the system design parameters, such as diversity order
and array gain. The exact outage probability, average SER, and
their high SNR approximations are also derived for the optimal
TAS when the direct path is ignored. The impact of outdated
channel state information (CSI) on the performance of TAS is
also studied. Specifically, the amount of performance degradation
due to feedback delays is studied by deriving the asymptotic
outage probability and the average SER and thereby quantifying
the reduction of diversity order and array gain. Numerical and
Monte Carlo simulation results are provided to analyze the system
performance and verify the accuracy of our analysis.

Index Terms—Amplify-and-forward (AF) relaying, cooperative
multiple-input–multiple-output (MIMO) relay networks, transmit
antenna selection (TAS).

I. INTRODUCTION

COOPERATIVE relay networks are currently being in-
vestigated for emerging wireless system standards, such

as IEEE 802.16m and Third-Generation Partnership Project
Long Term Evolution-Advanced [1], [2]. The performance of
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such relay networks can be improved by integrating multiple-
input–multiple-output (MIMO) technology [3], [4] and transmit
antenna selection (TAS) [5]–[10]. Although TAS is a sub-
optimal beamforming technique, it substantially reduces the
complexity and power requirements of the transmitter. Further,
it is more robust against channel estimation errors and time
variations of the channels than other beamforming techniques,
for example, transmit diversity [11], [12]. The current TAS
strategies for general MIMO relay networks [5], [6] lack a
suitable performance analysis framework.

Prior Related Research: The optimal TAS strategy (TASopt)
for dual-hop MIMO amplify-and-forward (AF) cooperative re-
lay networks involves maximizing the end-to-end (e2e) signal-
to-noise ratio (SNR) by selecting the best transmit antenna at
the source and relay by an exhaustive search [5]. Although
TASopt achieves the full diversity order of the MIMO relay
channel, its implementation complexity is relatively high due
to the requirement of the channel state information (CSI) of
all three channels (i.e., S → D, S → R, and R → D) at the
source. As a remedy, Cao et al. [6] propose two suboptimal
yet low-complexity TAS strategies (referred to as TASsubopt1
and TASsubopt2). The complexity reduction is achieved by
maximizing the individual channel SNRs rather than the e2e
SNR. More specifically, TASsubopt1 maximizes the source-to-
destination (S → D) and relay-to-destination (R → D) SNRs,
whereas TASsubopt2 maximizes the source-to-relay (S → R)
and R → D SNRs. In particular, TASsubopt1 and TASsubopt2
require only the CSI of either S → D or S → R channels only.
This reduction of CSI feedback and, thereby, the implementa-
tion complexity is the main motivation behind the TASsubopt1
and TASsubopt2 strategies. The performance of these three TAS
strategies has been evaluated by using Monte Carlo simulations
only without analysis [5], [6]. Recently, in [13], we investigated
the performance of these three TAS strategies for MIMO AF
relay networks over Rayleigh fading.

Other studies of TAS for MIMO AF relaying [7]–[10],
[14]–[18] differ from [5] and [6]. These studies either employ
TAS for only one S or R, or they all ignore the S → D direct
path. Thus, their TAS algorithms are completely different from
those of TASopt, TASsubopt1 , and TASsubopt2 in [5] and [6].
In [7], the outage probability of multihop MIMO relaying with
TAS is derived semianalytically. In [8], the relay is limited to
a single antenna, and the source and the destination employ
TAS and maximal ratio combining (MRC), respectively. The
outage and the average symbol error rate (SER) are derived. In
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[9], transmit/receive (Tx/Rx) antenna pair selection is proposed
for dual-hop MIMO AF relay networks. Here, the e2e trans-
mission takes place by selecting the best Tx/Rx antenna pair
at both S → R and R → D MIMO channels. Reference [10]
extends [9] by deriving the asymptotic outage probability and
average SER. In addition, [19] extends the analysis of [9] for
Nakagami-m fading. In [14], the diversity order of a suboptimal
TAS for MIMO relay networks is derived. In [16]–[18], the
performance of TAS for dual-hop AF relay networks is studied
by ignoring the direct path between S and D. Further, in [15],
three TAS strategies, which are optimal in terms of the out-
age probability, are developed for MIMO decode-and-forward
relaying.

Motivation and Our Contribution: Although [5] derives the
diversity order of TASopt, no closed-form performance metrics
are derived. Moreover, [5] resorts to Monte Carlo simulations
for the comparison of the average bit error rate (BER) of
binary phase-shift keying (BPSK) with that of several MIMO
AF beamforming strategies. Furthermore, [6] also utilizes the
Monte Carlo simulation framework for the performance of the
TASsubopt1 and TASsubopt2 strategies. In summary, an analyti-
cal framework for the TAS strategies of [5] and [6] for MIMO
AF relay networks is not available. Our main contribution is
thus to fill this gap.

In this paper, the performance of the three aforementioned
TAS strategies is analyzed. All channel fades are assumed
to be Nakagami-m (integer m) fading. Since direct analysis
of the e2e SNR of the optimal TAS is intractable, a lower
bound of the e2e SNR is derived. Its cumulative distribution
function (cdf) and the moment generating function (mgf) are
derived, and the upper bounds for the outage probability and
the average SER of TASopt are obtained. For TASsubopt1 and
TASsubopt2 , which, however, are amenable to exact analysis,
we derive the exact mgfs of the e2e SNRs and obtain the outage
probability and average SER approximations.1 The asymptotic
performance measures, which are exact in high SNR, are also
derived and provide valuable insights about the system design
parameters, such as the diversity order and the array gain. The
closed-form exact outage probability, average SER, and their
high SNR approximations are also derived for the optimal TAS
when the direct path is ignored. Finally, the impact of outdated
CSI due to feedback delays on the performance of TASopt is
studied. Specifically, the amount of performance degradation is
quantified by deriving the exact asymptotic outage probability
and average SER and thereby deriving the reduction in diversity
order and array gain. Numerical and Monte Carlo simulation
results are also provided to analyze the system performance and
to verify the accuracy of our analytical framework.

The rest of this paper is organized as follows: Section II
presents the system and the channel model. Section III summa-
rizes the three TAS strategies. In Section IV, the performance
analysis is presented. Section V contains the numerical and
simulation results. Section VI concludes this paper. The proofs
are given in the Appendix.

1The main motivation behind our analysis of TASsubopt1
and TASsubopt2

is that they require significantly less CSI feedback at S than the TASopt, and
thus, suboptimal TAS strategies can readily be employed in practical system
designing.

Fig. 1. Selection of the transmit antenna at the source (S) and relay (R) for
MIMO AF relay networks: System model.

Notations: Kν(z) is the modified Bessel function of the
second kind of order ν [20, eq. (8.407.1)]. 2F(α, φ; γ; z) is
the Gauss hypergeometric function [20, eq. (9.14.1)]. Iν(z)
is the modified Bessel function of the first kind of order ν
[20, eq. (8.406.1)]. Mν,µ(z) is the Whittaker-M function [20,
eq. (9.220.2)]. Q(z) denotes the Gaussian Q-function [21,
eq. (26.2.3)]. �{z} is the real part of z. ‖Z‖F is the Frobenius
norm of Z. A circular symmetric complex Gaussian distributed
random variable with mean µ and variance σ2 is defined by z ∼
CN (µ, σ2). γ ∼ G(α, β) is Gamma distributed with the prob-
ability density function (pdf) fγ(x) = (xα−1e−x/β/Γ(α)βα),
x ≥ 0, where α and β are the shape and scale parameters.

II. SYSTEM MODEL

We consider a dual-hop cooperative relay network with
MIMO-enabled S, R, and D having Ns, Nr, and Nd antennas,
respectively (see Fig. 1). All the terminals operate in half-
duplex mode, and cooperation takes place in two time slots [22].
Perfect CSI is assumed at R and D, and the feedback channels
are assumed to be perfect unless otherwise stated. The channel
matrix from terminal X to terminal Y , where X ∈ {S,R},
Y ∈ {R,D}, and X �= Y , is denoted by HXY . The elements
of HXY are denoted by hi,j

XY . The channel gains are assumed to
be independent and identical Nakagami-m fading (with integer
m). The channel vector from the jth transmit antenna at X to Y

is denoted by h(j)
XY . Moreover, the additive noise at the nodes is

modeled as complex zero-mean white Gaussian noise.
In the first time slot, S broadcasts to R and D by TAS, and R

employs MRC reception. Here, we consider an ideal channel-
assisted AF (CA-AF) relay2 with a gain G = 1/‖h(i)

SR‖2
F [7],

[23], [24] for the sake of mathematical tractability of the mgf
of the e2e SNR. In the second time slot, relay R amplifies and
forward the received signal to D again by TAS. Then, D com-
bines the two signals received in the two time slots by applying
the optimal receiver filter in the minimum mean-square error
sense [5], [8]. Under this system model, the postprocessing e2e

2The ideal CA-AF relays invert the source-to-relay channel gain, regardless of
its fading state. The performance metrics obtained by using ideal CA-AF relays
serves as extremely tight (in low-to-high SNR regime) and asymptotically exact
lower bounds to that of practical CA-AF relays [7], [23], [24], in which the relay

gain is given by G =

√
1/‖h(i)

SR‖4
F + σ2, where σ2 is the noise variance.

Specifically, the performance metrics derived by using ideal CA-AF relays
serve as useful benchmarks for practical CA-AF relay network designing [23].
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SNR at D when S and R use the ith and kth transmit antennas
is given by [5]

γ(i,k)
eq = γ

(i)
SD +

γ
(i)
SRγ

(k)
RD

γ
(i)
SR + γ

(k)
RD

(1)

where γ
(i)
SD = γ̄SD‖h(i)

SD‖2
F , γ

(i)
SR = γ̄SR‖h(i)

SR‖2
F , and γ

(k)
RD =

γ̄RD‖h(k)
RD‖2

F are the equivalent instantaneous SNRs, and γ̄SD,
γ̄SR, and γ̄RD are the average SNRs of the S → D, S → R,
and R → D channels, respectively. Here, γ

(i)
SD, γ

(i)
SR, and γ

(k)
RD

are independent Gamma distributed random variables; γ
(i)
SD ∼

G(M0, β0), γ
(i)
SR ∼ G(M1, β1), and γ

(k)
RD ∼ G(M2, β2), where

M0 = m0Nd, M1 = m1Nr, M2 = m2Nd, β0 = (γ̄SD/m0),
β1 = (γ̄SR/m1), and β2 = (γ̄RD/m2). Further, m0, m1, and
m2 are the integer severities of the fading parameters of the
Nakagami fading in the S → D, S → R, and R → D channels.

III. TRANSMIT ANTENNA SELECTION STRATEGIES

For the sake of completeness, this section summarizes the
optimal TAS and two suboptimal TAS strategies for the AF
MIMO relaying proposed in [5] and [6], respectively.

A. Optimal TAS for AF MIMO Relaying (TASopt)

The e2e SNR γ
(i,k)
eq for AF MIMO relaying, (1) can be

maximized by selecting the best transmit antenna at S and R
as follows [5]:

(I,K) = arg max
1≤i≤Ns,1≤k≤Nr

(
γ(i,k)
eq

)
(2)

where I and K are the optimal antenna indexes at S and R, and
arg maxθ f(θ) is the value of θ for which f(θ) is the largest.

B. Suboptimal TAS for AF MIMO Relaying

The search complexity and the amount of CSI feedback
of TASopt is high since the transmit antenna at S [i.e., an-

tenna index I in (2)] should be searched to maximize γ
(i,k)
eq

by considering both S → R and S → D channel SNRs. In
[6], two suboptimal TAS strategies are proposed, providing a
better tradeoff between the implementation complexity and the
performance, as follows:

1) TASsubopt1 : TAS is used at S and R separately to max-
imize the SNR of the S → D and R → D channels,
respectively. The antenna indices are obtained as

I = arg max
1≤i≤Ns

(
γ

(i)
SD

)
and K = arg max

1≤k≤Nr

(
γ

(k)
RD

)
. (3)

2) TASsubopt2 : TAS is used at S and R separately to max-
imize the SNR of the S → R and R → D channels,
respectively. The antenna indices are selected as

I = arg max
1≤i≤Ns

(
γ

(i)
SR

)
and K = arg max

1≤k≤Nr

(
γ

(k)
RD

)
. (4)

Remark III.1: In practice, the direct path between S and
D may be unavailable entirely due to heavy shadowing and
path loss. In this scenario, the optimal TAS strategy selects

the transmit antennas at S and R separately to maximize the
SNR of the S → R and R → D channels, respectively, without
considering the S → D channel. Under this scenario, the TAS
strategy is given by [13]

I = arg max
1≤i≤Ns

(
γ

(i)
SR

)
and K = arg max

1≤k≤Nr

(
γ

(k)
RD

)
. (5)

IV. PERFORMANCE ANALYSIS

This section presents our performance analyses of the TAS
strategies given in (2)–(4). Since the exact analysis of TASopt

appears to be mathematically intractable, a lower bound of
the e2e SNR of TASopt is used. The cdf and the mgf of this
lower bound are derived in closed form and used to obtain the
closed-form upper bounds for the outage probability and the
average SER. The exact mgfs of the e2e SNRs of TASsubopt1
and TASsubopt2 are derived as well. Accurate closed-form
approximations of the outage probability and average SER are
presented for each suboptimal TAS strategy by using efficient
numerical techniques. Further, the corresponding asymptotic
results are also derived.

A. Statistical Characterization of the e2e SNR

1) cdf of the e2e SNR for TASopt: Let γopt
eq denote the e2e

SNR at D for TASopt. In (2), for fixed γ
(i)
SD and γ

(i)
SR, γ

(i,k)
eq

is maximized when γ
(k)
RD is maximized, i.e., the TAS at R is

independent of the TAS at S. Thus, in TASopt, the antenna
indexes I and K can be selected as

K = arg max
1≤k≤Nr

(
γ

(k)
RD

)
and I = arg max

1≤i≤Ns

(
γ(i,K)

eq

)
. (6)

The upper bound3 of the cdf of γopt
eq in (32) can then be

derived as (see Appendix A for the proof)

Fγopt
eq,lb

(x) =


1 −

∑
a,b,p,q,l

A1x
M2+b+qe−xκKl−b+1(xλ)




×


 Ns∑

u=0

u(M2−1)∑
v=0

B1x
ve−

ux
β0


 (7a)

where A1, B1, κ, and λ are defined as

A1 =
2Nr

(
Ns

a

)(
Nr−1

p

)(
M1+b+q−1

l

)
(−1)a+p+1φb,a,M1φq,p,M2

Γ(M2)a
b−l−1

2 (p + 1)
l−b+1

2 β
l+b+1

2
1 β

2M2+2q−l+b−1
2

2

(7b)

B1 = (−1)u

(
Ns

u

)
φv,u,M0

β0
, κ =

a

β1
+

p + 1
β2

and (7c)

λ = 2

√
a(p + 1)

β1β2
. (7d)

3Alternatively, (7a) can be seen as the cdf of the lower bound of the
e2e SNR in (32). Specifically, this SNR lower bound is given by γopt

eq,lb
=

max1≤i≤Ns{γ
(i)
SD, γ

(i,K)
SRD }. In general, the SNR lower bound, which under-

estimates the exact SNR, results in the outage probability upper bound.
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Further,
∑

a,b,p,q,l =
∑Ns

a=1

∑a(M1−1)
b=0

∑Nr−1
p=0

∑p(M2−1)
q=0∑M2+b+q−1

l=0 , and φk,N,L is the coefficient of the expansion of

[
∑L−1

u=0(1/u!)(x/γ̄)u]N =
∑N(L−1)

k=0 φk,N,L(x/γ̄)k and given
by [25, eq. (44)]

φk,N,L =
k∑

i=k−L+1

φi,N−1,L

(k − i)!
I[0,(N−1)(L−1)](i). (8)

2) mgf of the e2e SNR for TASopt: The mgf of γopt
eq,lb

can be derived by substituting (7a) into Mγopt
eq,lb

(s) =

Eγopt
eq,lb

{e−sγ} =
∫ ∞
0 sFγopt

eq,lb
(γ)e−sγdγ and by using [20,

eq. (6.621.3)] as follows:

Mγopt
eq,lb

(s)

=
Ns∑

u=0

u(M0−1)∑
v=0

B1β
2
0Γ(v+1)

s

(u+sβ0)v+1

−
∑

a,b,p,q,l

Ns∑
u=0

m(M0−1)∑
v=0

A1
√

π(−1)u(2λ)ζΓ(η+ζ)Γ(η−ζ)
βv

0Γ
(
η+ 1

2

)

×
s 2F1

(
η+ζ, ζ+ 1

2 ; η+ 1
2 ; s+κ−λ

s+κ+λ

)
(s + κ + λ)η+ζ

(9)

where
∑

a,b,p,q,l is defined in (7a). Further, η, ζ, κ, and λ de-
pend on the summation variables and are defined as η = M2 +
b + q + v + 1, ζ = l − b + 1, κ = (a/β1) + (p + 1/β2), and
λ = 2

√
a(p + 1)/β1β2, respectively.

The pdf of γopt
eq,lb can readily be derived by differentiating the

cdf of γopt
eq,lb with respect to x by using [20, eq. (8.486.12)].

However, the pdf result is omitted for the sake of brevity.
3) mgf of the e2e SNR for TASsubopt1 : Let γ

subopt1
eq denote

the e2e SNR at D for TASsubopt1 . Define M
γ
subopt1
SRD

(s) as the

mgf of the SNR of the relayed path and given by

M
γ
subopt1
SRD

(s)=1−
Nr∑
a=1

a(M2−1)∑
b=0

b+M1−1∑
c=0

A2
√

π(2ν)ζΓ(η+ζ)
Γ(η+ 1

2 )

×
Γ(η−ζ)s 2F1

(
η+ζ, ζ+ 1

2 ; η+ 1
2 ; s+µ−ν

s+µ+ν

)
(s+µ+ν)η+ζ

(10a)

where A2 is given by

A2 =
2(−1)a+1φb,a,M2

(
Nr

a

)(
b+M1−1

c

)
a(ζ

2)

Γ(M1)β
2M1+b−c−1

2
1 β

c+b+1
2

2

. (10b)

Further, µ, η, ζ, and ν depend on the summation variables
and are defined as µ = (1/β1) + (a/β2), η = M1 + b + 1, ζ =
c − b + 1, and ν = 2

√
a/β1β2. Similarly, the mgf of the direct

path M
γ
subopt1
SD

(s) is given by

M
γ
subopt1
SD

(s)=
Ns∑
p=0

p(M0−1)∑
q=0

(
Ns

p

)
(−1)pφq,p,M0β0Γ(q+1)s

(sβ0+p)q+1
.

(11)
See the Appendix B for the proof of (10a) and (11).

The mgf of γ
subopt1
eq is then given by the product of (10a)

and (11).
4) mgf of the e2e SNR for TASsubopt2: Let γ

subopt2
eq denote

the e2e SNR at D for TASsubopt2 . Define M
γ
subopt2
SRD

(s) as the

mgfs of SNR of the relayed path and is given by

M
γ
subopt2
SRD

(s)=1−
∑

p,q,a,b,c

A3
√

π(2ε)c−q+1Γ(η+ζ)Γ(η−ζ)
Γ(η+ 1

2 )

×
s 2F1

(
η+ζ, ζ+ 1

2 ; η+ 1
2 ; s+δ−ε

s+δ+ε

)
(s+δ+ε)η+ζ

(12a)

where A3 is given by

A3 =
2(−1)p+q+1Nsp

ζ
2
(
Nr

p

)(
Ns−1

a

)(
M1+q+b−1

c

)
Γ(M1)(a + 1)

ζ
2

× φq,p,M2φb,a,M1

β
2M1+q+2b−c−1

2
1 β

c+q+1
2

2

. (12b)

In (12a),
∑

p,q,a,b,c =
∑Nr

p=1

∑p(M2−1)
q=0

∑Ns−1
a=0

∑a(M1−1)
b=0∑M1+q+b−1

c=0 . The parameters δ, η, ζ, and ε depend on
the summation variables and are defined as δ = (a +
1/β1) + (p/β2), η = M1 + b + q + 1, ζ = c − q + 1 and ε =
2
√

p(a + 1)/β1β2, respectively. The mgf of the SNR of the
direst path M

γ
subopt2
SD

(s) is given by

M
γ
subopt2
SD

(s) = (1 + β0s)M0 . (13)

See the Appendix D for the proof of (12a) and (13).
The mgf of the e2e SNR of TASsubopt2 is then given by the

product of (12a) and (13).

B. Outage Probability

The SNR outage probability4 Pout is the probability that the
instantaneous e2e SNR γeq falls below a threshold γth; Pout =
Pr(γeq ≤ γth) = Fγeq

(γth), where Fγeq
(γth) denotes the cdf

of γeq evaluated at γth. An upper bound of Pout for TASopt can
readily be obtained by using (7a). Further, Pout of TASsubopt1
and TASsubopt2 can accurately be computed by using [26], [27]

P
suboptj

out

∣∣∣2
j=1

= F
γ
suboptj
eq

(γth) =
1

5γth
Ψ

(
2Np

5γth

)
e

2Np
5

+
2

5γth

Np−1∑
k=1

�
{

eγthΥ(θk)Ψj (Υ(θk)) (1 + iΦ(θk))
}

+ RNp

(14)

where Ψj(s)|2j=1 = M
γ
suboptj
eq

(s)/s, θk = πk/Np, Υ(θ) =

(2Np/5γth)θ(cot θ + i), Φ(θ) = θ + (θ cot θ − 1) cot θ, i =√
−1, and RNp

is the remainder term, which is negligible for a
small number of terms (Np), such as 20 (see Section V).

4The information capacity outage probability can be defined as the probabil-
ity that the instantaneous mutual information I falls below the target rate Rth;
Pr(1/2 log 1 + γeq) ≤ Rth = Fγeq (γth), where γth = 22Rth − 1.
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C. Average SER

The conditional error probability (CEP) of the coher-
ent BPSK and M -ary pulse amplitude modulation can
be expressed as Pe|γ = αQ(

√
ϕγ), where α and ϕ are

modulation-dependent constants. The average SER can be
derived by integrating CEP Pe|γ over the pdf of the
SNR γeq. Thus, an upper bound for the average SER
of TASopt can be derived by substituting (7a) into P̄e =
(α/2)

√
ϕ/2π

∫ ∞
0 x−1/2e−ϕx/2Fγeq

(x)dx and solving the re-
sulting integral by using [20, eq. (6.621.3)] as follows:

P̄
TASopt
e,ub =

Ns∑
u=0

u(M2−1)∑
v=0

2v−1α
√

ϕβ
3
2
0 Γ

(
v + 1

2

)
√

π(2u + ϕβ0)v+ 1
2

−
∑

a,b,p,q,l

Ns∑
u=0

u(M2−1)∑
v=0

A1α
√

ϕ(−1)u(2λ)ζΓ(η+ζ)

2
3
2 βv

0Γ
(
η+ 1

2

)

×
Γ(η − ζ) 2F1

(
η + ζ, ζ + 1

2 ; η + 1
2 ; ψ−λ

ψ+λ

)
(ψ + λ)η+ζ

(15)

where A1 and
∑

a,b,p,q,l are defined in (7a). Furthermore, ψ, η,
ζ, and λ depend on the summation variables and are defined
as ψ = (ϕ/2) + (u/β0) + (a/β1) + (p + 1/β2), η = M2 +
b + q + v + 1/2, ζ = l − b + 1, and λ = 2

√
a(p + 1)/β1β2,

respectively.
The CEP can also be expressed in an alternative form [28]

Pe|γ = αQ(
√

ϕγ) =
α

π

√
ϕ

2

∞∫
0

e−γ(s2+ϕ/2)

s2 + ϕ/2
ds. (16)

By using the variable transformation s2 + ϕ/2 = ϕ/(γ + 1),
the average SER can be written as [28]

P̄e =

α
π

√
ϕ
2

∞∫
0

MTASsuboptj
γeq

(
s2 + ϕ/2)

)
s2 + ϕ/2

ds

=

α
2π

1∫
−1

MTASsuboptj
γeq (ϕ/(γ + 1))√

1 − γ2
dγ. (17)

Then, we use the accurate and computationally efficient method
proposed in [28], which uses the Gauss–Chebyshev approxima-
tion [21] to obtain a compact closed-form approximation for the
average BER of TASsubopt1 and TASsubopt2 as follows:

P̄
TASsuboptj
e

∣∣∣2
j=1

=
α

2Np

Np∑
k=1

M
γ
TASsuboptj
eq

(ϕ

2
sec2(θk)

)
+ RNp

(18)

where Np is a small positive integer, θk = (2k − 1)π/4Np),
and RNp

is the remainder term. RNp
becomes negligible as Np

increases, even for small values such as 10 (see Section V).

D. High SNR Analysis

To obtain direct system design insights such as diversity
order and array gain, the asymptotic outage probability and the
average SER are derived for the TASsubopt1 , TASsubopt2 , and
TASopt strategies.

1) Asymptotic Outage Probability: The cdf of γ
subopt1
eq can

be approximated by a single polynomial term for x → 0+ as
(see Appendix C for the proof)

F∞
γ
subopt1
eq

(x)

=




Ωsubopt1
1

(
x
γ̄

)d
subopt1
1

+o
(
xd

subopt1
1 +1

)
, m1 <m2Nd

Ωsubopt1
2

(
x
γ̄

)d
subopt1
2

+o
(
xd

subopt1
2 +1

)
, m1 >m2Nd

Ωsubopt1
3

(
x
γ̄

)d
subopt1
3

+o
(
xd

subopt1
3 +1

)
, m1 =m2Nd

(19a)

where Ωsubopt1
1 , Ωsubopt1

2 , and Ωsubopt1
3 are given by

Ωsubopt1
1 =

(m0/k0)m0NsNd(m1/k1)m1Nr (m0NsNd)!

((m0Nd)!)
Ns (m0NsNd + m1Nr)!

(19b)

Ωsubopt1
2 =

(m0/k0)m0NsNd(m2/k2)m2NrNd

((m0Nd)!)
Ns ((m2Nd)!)

Nr

× (m0NsNd)!(m2NrNd)!
(Nd[m0Ns + m2Nr])!

(19c)

Ωsubopt1
3 = Ωsubopt1

1 + Ωsubopt1
2 . (19d)

Moreover, d
subopt1
1 , d

subopt1
2 , and d

subopt1
3 are given

by d
subopt1
1 = m0NsNd + m1Nr, d

subopt1
2 = m0NsNd +

m2NrNd, and d
subopt1
3 = m0NsNd + L1Nr, where L1 is

defined as L1 = m1 = m2Nd. Next, the outage probability of
TASsubopt1 at high SNRs can be obtained by evaluating (19a)
at x = γth as P∞

out,subopt1
= F∞

γ
subopt1
eq

(γth).

Similarly, the cdf of γ
subopt2
eq can be approximated by a single

polynomial term for x → 0+ as (see Appendix E for the proof)

F∞
γ
subopt2
eq

(x)

=




Ωsubopt2
1

(
x
γ̄

)d
subopt2
1

+o
(
xd

subopt2
1 +1

)
, m1Ns <m2Nd

Ωsubopt2
2

(
x
γ̄

)d
subopt2
2

+o
(
xd

subopt2
2 +1

)
, m1Ns >m2Nd

Ωsubopt2
3

(
x
γ̄

)d
subopt2
3

+o
(
xd

subopt2
3 +1

)
, m1Ns =m2Nd

(20a)

where Ωsubopt2
1 , Ωsubopt2

2 , and Ωsubopt2
3 are given by

Ωsubopt2
1 =

(m0/k0)m0Nd(m1/k1)m1NsNr (m0NsNr)!

((m1Nr)!)
Ns (m0Nd + m1NsNr)!

(20b)

Ωsubopt2
2 =

(m0/k0)m1Nd(m2/k2)m2NrNd(m2NrNd)!

((m2Nd)!)
Nr (Nd[m0 + m2Nr])!

(20c)

Ωsubopt2
3 = Ωsubopt2

1 + Ωsubopt2
2 . (20d)
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TABLE I
DIVERSITY ORDERS OF THE THREE TAS STRATEGIES. m0 = m1 = m2 = m

In (20a), d
subopt2
1 , d

subopt2
2 , and d

subopt2
3 are given

by d
subopt2
1 = m0Nd + m1NsNr, d

subopt2
2 = m0Nd +

m2NrNd, and d
subopt2
3 = m0Nd + L2Nr, where L2 is defined

as L2 = m1N2 = m2Nd. Next, the outage probability of
TASsubopt2 at high SNRs can readily be derived by evaluating
(20a) at x = γth as P∞

out,subopt2
= F∞

γ
subopt2
eq

(γth).

Although [5] derives the diversity order of TASopt, the exact
asymptotic outage probability and the average SER analysis,
which provide the exact array gains, are still not available in [5].
To this end, the cdf of TASopt for x → 0+ can be approximated
by a single polynomial term as (see Appendix F for the proof)

F∞
γopt
eq

(x)=




Ωopt
1

(
x
γ̄

)dopt
1

+o
(
xdopt

1 +1
)

, m1Ns <m2Nd

Ωopt
2

(
x
γ̄

)dopt
2

+o
(
xdopt

2 +1
)

, m1Ns >m2Nd

Ωopt
3

(
x
γ̄

)dopt
3

+o
(
xdopt

3 +1
)

, m1Ns =m2Nd

(21a)

where Ωopt
1 , Ωopt

2 , and Ωopt
3 are given by

Ωopt
1 =

(m0/k0)m0NsNd(m1/k1)m1NsNr

((m0Nd)!(m1Nr)!)
Ns

× (m1NsNr)!(m0NsNd)!
(m0NsNd + m1NsNr)!

(21b)

Ωopt
2 =

(m0/k0)m0NsNd(m2/k2)m2NrNd

((m0Nd)!(m2Nd)!)
Ns

× (m2NrNd)!(m0NsNd)!
(m0NsNd + m2NrNd)!

(21c)

Ωopt
3 = Ωopt

1 + Ωopt
2 . (21d)

Furthermore, in (21a), dopt
1 , dopt

2 , and dopt
3 are defined by

dopt
1 = m0NsNd + m1NsNr, dopt

2 = m0NsNd + m2NrNd,
and dopt

3 = m0NsNd + L3Nr, where L3 = m1Ns = m2Nd.
Now, the asymptotic outage probability of TASopt, which is
exact at high SNRs, can readily be derived by evaluating (21a)
at x = γth as P∞

out,opt = F∞
γopt
eq

(γth).
2) Asymptotic Average SER: The asymptotic average SER

of TASsubopt1 and TASsubopt2 can readily be derived by sub-
stituting (19a) and (20a) into the integral representation of SER
in Section IV-C as follows:

P∞
e,TASsubopti

=
Ωsubopti

j α2d
subopti
j −1Γ

(
d
subopti
j + 1

2

)
√

π(ϕγ̄)d
subopti
j

+ o

(
γ̄
−
(
d
subopti
j +1

))
(22)

where i = 1, 2 stands for each suboptimal TAS strategy, and
j = 1, 2, 3 represents each case in (19a) and (20a). Similarly,
the asymptotic average SER of TASopt can readily be obtained

by replacing Ωsubopti
j and d

subopti
j in (22) by Ωopt

j |3j=1 and

dopt
1 |3j=1 defined in (21a).
3) Diversity Order and Array Gain: In the high SNR

regime, the average SER can be represented by P∞
e ≈

[Gaγ̄]−Gd , where Gd and Ga are referred to as the diversity
and array gains, respectively [29].

TASopt has been shown to provide the maximum achiev-
able diversity order (Gd) of cooperative MIMO AF relay
networks. Thus, the Gd of TASopt over Rayleigh fading is

given by G
TASopt
d = NsNd + Nr min (Ns, Nd) [5]. This result

can readily be extended for Nakagami-m fading by using our
asymptotic average SER of TASopt in Section IV-D as follows:

G
TASopt
d = m0NsNd + Nr min (m1Ns,m2Nd). (23)

By following (19a), (20a), and (22), the Gd of TASsubopt1
and TASsubopt2 can be written as

G
TASsubopt1
d = m0NsNd + Nr min (m1,m2Nd) (24)

G
TASsubopt2
d = m0Nd + Nr min (m1Ns,m2Nd). (25)

Similarly, the array gains of TASsubopt1 and TASsubopt2
can readily be obtained by substituting (22) into Ga =
((P∞

e )−1/Gd/γ̄).
In Table I, the Gd of each TAS strategy over symmetric

Nakagami-m fading (i.e., m0 = m1 = m2 = m) is presented
for several special cases to obtain valuable insights. For ex-
ample, when S has only one antenna (Ns = 1), all three
strategies achieve the same diversity order. Moreover, if D
has only one antenna (Nd = 1), then TASopt and TASsubopt1
provide the same diversity order. Thus, TASsubopt1 is preferred
over TASopt whenever Nd = 1. When the number of anten-
nas at each node is the same, the Gd provided by the both
TASsubopt1 and TASsubopt2 is identical. In practice, the direct
channel may be completely unavailable due to heavy shadow-
ing. In this case, the diversity orders of the three strategies are

given by G
TASopt
d = G

TASsubopt2
d = Nr min (m1Ns,m2Nd)

and G
TASsubopt1
d = Nr min (m1,m2Nd). Thus, TASsubopt2 is

a preferable choice than the others since it always provides a
better Gd than TASsubopt1 and the same Gd as TASopt.

E. Performance Analysis Without the Direct Path

In dual-hop MIMO AF relaying, when the direct path is not
taken into account [13], the optimal TAS strategy is to select
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the antenna indices I and K at S and R to maximize the SNRs
of the S → R and R → D channels as (5) in Remark III.1.

The cdf and the mgf of the e2e SNR of the optimal TAS for
dual-hop MIMO AF relaying, when the direct path is ignored,
are given by (45) and (12a). Moreover, the average SER can be
derived by substituting (45) into the integral representation of
P̄e in Section IV-C and by using [20, eq. (6.621.3)] as follows:

P̄e =
α

2
− α

2

√
ϕ

2

∑
p,q,a,b,c

A4(2ε)νΓ(µ + ν)Γ(µ − ν)
Γ

(
µ + 1

2

)

×
2F1

(
µ + ν, ν + 1

2 ;µ + 1
2 ;

ϕ
2 +δ−ε
ϕ
2 +δ+ε

)
(

ϕ
2 + δ + ε

)µ+ν (26a)

where A4 is given by

A4 =
2Ns

(
Nr

p

)(
Ns−1

a

)(
M1+q+b−1

c

)
(−1)p+q+1p(c−q+1

2 )

Γ(M1)(a + 1)
c−q+1

2

× φq,p,M2φb,a,M1

β
2M1+2b+q−c−1

2
1 β

c+q+1
2

2

. (26b)

In (26a),
∑

p,q,a,b,c =
∑Nr

p=1

∑p(M2−1)
q=0

∑Ns−1
a=0

∑a(M1−1)
b=0∑M1+q+b−1

c=0 . Furthermore, µ, ν, δ, and ε depend on the
summation variables and are defined as µ = M1 + b +
q + 1/2, ν = l − q + 1, δ = (a + 1/β1) + (p/β2), and ε =
2
√

p(a + 1)/β1β2, respectively.
The asymptotic outage probability is given by (46), and

the asymptotic average SER can readily be obtained by us-
ing (46) and (22). The diversity order is given by Gd =
Nr min(m1Ns,m2Nd). These results are also novel.

F. Feedback Delay Effect on the Performance of TAS for
Dual-Hop MIMO AF Relay Networks

In practice, the transmit antennas could be selected by using
outdated CSI due to feedback delays. Thus, in this section, the
impact of feedback delays on the system performance of TAS
strategies for dual-hop MIMO relay networks is studied.

In practical systems, the feedback channel from the receiver
to the transmitter experiences delays. We thus assume that the
transmit antennas at S and R are selected based on the outdated
CSI received via feedback channels of S → D, S → R, and
R → D having τ0, τ1, and τ2 time delays, respectively. These
three channels can be modeled as [30], [31]

Hl(t)|2l=0 = ρlHl(t − τl) + Ed,l (27)

where ρl is the normalized correlation coefficients between
hi,j

l (t) and hi,j
l (t − τl). For Clarke’s fading spectrum, ρl =

J0(2πflτl), where fl is the Doppler fading bandwidth. Further,
Ed,l is the error matrix, which is incurred by feedback delay,
having mean zero and variance (1 − ρ2

l ) Gaussian entries.
1) Feedback Delay Effect on the Performance of TASopt

When the Direct Path Is Ignored: In the first time slot, S selects
the Ith transmit antenna based on the CSI received by the local
R → S feedback channel, which is assumed to experience a

time delay τ1. Similarly, in the second time slot, the relay R
selects the Kth transmit antenna based on the τ2-delayed CSI.

Under this channel model, the exact cdf of the e2e SNR can
be derived as (see Appendix G for the proof)

Fγ̃opt
eq

(x) = 1 −
∑

a,b,k,l

∑
p,q,u,v

βb
1β

q
2ρk

1(1 − ρ1)b−k

× ρu
2 (1 − ρ2)q−uΨΦ

2b+v+l+1
2 Θ

2(M2+q+u)+v−l+1
2

× xM2+u+le−(Φ+Θ)xKv−l+1

(
2x

√
ΦΘ

)
(28a)

where Ψ, Φ, and Θ depend on the summation variables and are
defined as

Ψ =
2(−1)a+pNsNr

(
Ns−1

a

)(
Nr−1

p

)(
b
k

)(
q
u

)(
M2+u+l−1

v

)
Γ(M1)Γ(M2)Γ(M2 + u)(l)!

× φb,a,M1φq,b,M2Γ(M1 + b)Γ(M2 + q)
(a + 1)M1+b+k(p + 1)M2+q+u

(28b)

Φ =
a + 1

β1 (1 + a(1 − ρ1))
and Θ =

p + 1
β2 (1 + p(1 − ρ2))

.

(28c)

Moreover, the two summations in (28a) are defined
as

∑
a,b,k,l =

∑Ns−1
a=0

∑a(M1−1)
b=0

∑b
k=0

∑M1+k−1
l=1 and∑

p,q,u,v =
∑Nr−1

p=0

∑p(M2−1)
q=0

∑q
u=0

∑M2+u+l−1
v=0 . Now, the

exact outage probability can readily be obtained by using
evaluation (28a) at γth.

The average SER for the outdated CSI case can readily be
derived by substituting (28a) into the integral representation of
P̄e in Section IV-C and evaluating the integral by using [20, eq.
(6.621.3)] as follows:

P̄e =
α

2
− α

√
ϕ

∑
a,b,k,l

∑
p,q,u,v

ρk
1(1 − ρ1)b−kρu

2 (1 − ρ2)q−u

× 2v−l− 1
2 ΨΦb+v+1ΘM2+q+u+v−l+1βb

1β
q
2Γ(µ + ν)

Γ
(
µ + 1

2

)

×
Γ(µ − ν) 2F1

(
µ + ν, ν + 1

2 ;µ + 1
2 ;

ϕ
2 +δ−ε
ϕ
2 +δ+ε

)
(

ϕ
2 + δ + ε

)µ+ν

(29)

where µ, ν, δ, and ε depend on the summation variables and are
defined as µ = M2 + u + l + 1/2, ν = v − l + 1, δ = Φ + Θ,
and ε = 2

√
ΦΘ, respectively.

By following similar steps to those in Appendices A
and G, the upper bounds for the outage and average SER of
TASopt, when the direct path is considered, can be derived.
Similarly, the exact outage and the average SER of TASsubopt1
and TASsubopt2 can be derived as well. However, for the sake
of brevity, these results are omitted.

2) High SNR Performance Metrics When the Antenna Se-
lection Is Based on Outdated CSI: To quantify the amount
of performance degradation in terms of reduction in diversity
order and array gain, when the transmit antennas at S, R, and D
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are selected based on the outdated CSI, the asymptotic outage
probability and the average SER of TASopt are derived.

Case I: When the direct path is considered, the cdf of the e2e
SNR can be approximated by a single polynomial term for
x → 0+ as

F∞
γopt
eq

(x)=




Φ1

(
x
γ̄

)d0+d1

+o
(
xd0+d1+1

)
, m1Nr <m2Nd

Φ2

(
x
γ̄

)d0+d2

+ o
(
xd0+d2+1

)
, m1Nr >m2Nd

Φ3

(
x
γ̄

)d0+d3

+o
(
xd0+d3+1

)
, m1Nr =m2Nd

(30a)

where Φj |3j=1 is given as

Φj =
∆0∆jΓ(d0 + 1)Γ(dj + 1)

Γ(d0 + dj + 1)
, for j = 1, 2, 3. (30b)

Further, ∆0, ∆1, ∆2, and ∆3 are defined as

∆j |2j=0 =
Nj−1∑
a=0

a(Mj−1)∑
b=0

Njm
Mj

j

(
Nj−1

a

)
(−1)aφb,a,Mj

Γ(Mj +b)

Mjk
Mj

j Γ2(Mj)

× (1 − ρj)b

(1 + a(1 − ρj))
Mj+b

, for j = 0, 1, 2 (30c)

∆3 = ∆1 + ∆2. (30d)

In (30c), N0 = N1 = Ns, and N2 = Nr. Furthermore, in
(30a), d0 = m0Nd, d1 = m1Nr, d2 = m2Nd, and d3 =
m2Nd = m1Ns. Here, ρj |2j=0 = J0(2πBfj

τj), where
Bfj

|2j=0 is the Doppler fading frequency, and τj |2j=0 is the
time delay for the S → D, S → R, and R → D feedback
channels, respectively.

Case II: When the direct path is ignored, the cdf of the e2e
SNR can be approximated by a single polynomial term for
x → 0+ as

F∞
γopt
eq

(x) =




Φ′
1

(
x
γ̄

)d1

+ o
(
xd1+1

)
, m1Nr < m2Nd

Φ′
2

(
x
γ̄

)d2

+ o
(
xd2+1

)
, m1Nr > m2Nd

Φ′
3

(
x
γ̄

)d3

+ o
(
xd3+1

)
, m1Nr = m2Nd

(31)

where Φ′
1 = ∆1, Φ′

2 = ∆2, and Φ′
3 = ∆1 + ∆2. Here, d1,

d2, and d3 are same as in (30a).

The asymptotic outage probability, which is exact at high
SNRs, for both of the above cases can be obtained by evaluating
the corresponding cdfs at γth. The proofs of (30a) and (31)
follow similar steps to those in Appendix B and omitted for
the sake of brevity.

The asymptotic average SER can readily be obtained
by using P∞

e = (Φα2Gd−1Γ(Gd + 1/2)/
√

π(ϕγ̄)Gd) +
o(γ̄−(Gd+1)). When the direct path is considered, the diversity
order is given by Gd = m0Nd + min (m1Nr,m2Nd), and
Φ is defined in (30a) as Φ1, Φ2, and Φ3 for the three cases
m1Ns < m2Nd, m1Ns = m2Nd, and m1Ns > m2Nd,
respectively. Similarly, when the direct path is ignored, the

Fig. 2. Outage probability of TASopt for AF MIMO relay networks. The
direct path is considered. The distances are l1 = l0/3 and l2 = 2l0/3, and
the path loss exponent is � = 2.5.

diversity order is given by Gd = min(m1Nr,m2Nd), and Φ is
defined as Φ′

1, Φ′
2, and Φ′

3 in (31).
3) Amount of Performance Degradation Due to Outdated

CSI: In this section, the amount of performance degradation
of TASopt due to feedback delay is quantified. The diversity
order reduction of TASopt due to the feedback delay effect over
the perfect CSI can be derived by using our high SNR analysis
in Sections IV-D and F2 as follows: For case I (with the direct
path), the diversity order reduction is GR

d = m0Nd(Ns − 1) +
Nr min(m1Ns,m2Nd) − min(m1Nr,m2Nd). The array gain
is degraded by a factor Ωopt

j /Φj |3j=1, where Ωopt
j and Φj are

defined in (21a) and (30a), respectively. Similarly, for case II
(without direct path), the reduction of diversity order is given
by GR

d = Nr min(m1Ns,m2Nd) − min(m1Nr,m2Nd).

V. NUMERICAL RESULTS

This section verifies our analysis through Monte Carlo sim-
ulations. To capture the effect of the network geometry, the
average SNR of the ith hop is modeled by γ̄i|2i=1 = γ̄0(l0/li)�,
where γ̄0 is the average SNR of the direct path, and � is the path
loss exponent. The distances between the terminals S → D,
S → R, and R → D are denoted by l0, l1, and l2, respectively.

1) Outage Probability of TASopt: In Fig. 2, the exact outage
probability of TASopt, which is obtained via Monte Carlo
simulations, is compared with our outage upper bound (7a) for
several antenna configurations. Our outage upper bound is just
a fraction of a decibel off of the exact. The asymptotic outage
curves are plotted to obtain direct insights about the diversity
order and array gain. Thus, the bound provides accurate insights
about the important system parameters, such as the diversity
order, and can be used as a benchmark to design practical
MIMO TAS relay networks.

2) Average BER of TASopt: Similarly, in Fig. 3, the closed-
form upper bound for the average BER of BPSK for TASopt is
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Fig. 3. Average BER of BPSK of TASopt for AF MIMO relay networks. The
direct path is considered. The distances are d1 = l0/3 and l2 = 2l0/3, and the
path loss exponent is � = 2.5.

Fig. 4. Outage probability of TASopt, TASsubopt1
, and TASsubopt2

strate-
gies for AF MIMO relay networks. The direct path is considered. The distances
are l1 = l2 = l0, and the path loss exponent is � = 2.5.

compared for different antenna configurations when the direct
path is considered. Fig. 3 also shows the tightness of our BER
bound for different fading parameters (i.e., m0, m1, and m2).
Similar to the outage bound, the BER bound is always exact
within 1 dB and predicts the diversity order accurately. The
asymptotic BER curves are plotted to obtain valuable system-
design insights, such as diversity order and array gain.

3) Outage Probability Comparison: Fig. 4 shows the outage
probability of the three TAS strategies for several antenna
setups. Here, the three nodes are placed in the vertices of
an equilateral triangle. Further, all the channels experience
the same severity of fading (when m0 = m1 = m2 = 2). The
exact outage probability of TASopt is computed by using

Fig. 5. Average BER of TASopt, TASsubopt1
and TASsubopt2

strategies for
AF MIMO relay networks. The direct path is considered. The distances are
l1 = 3l0/7 and l2 = 4l0/7, and the path loss exponent is � = 2.5.

Monte Carlo simulations, whereas those of TASsubopt1 and
TASsubopt2 are obtained by using (14) with RNp

= 20. The
outage probability of a relay network with single-antenna nodes
(i.e., Ns = Nr = Nd = 1) is also plotted as a benchmark to
illustrate the performance gain obtained by TAS for AF MIMO
relaying. The following conclusions can be drawn from Fig. 4.

1) As expected, TASopt always performs better than
TASsubopt1 and TASsubopt2 for the given antenna setups,
at the expense of higher implementation complexity.

2) TASsubopt1 performs very close to TASopt in terms
of outage when D is equipped with a single antenna.
TASsubopt1 is thus a better choice than TASopt for net-
works with Nd = 1.

3) Under this system setup, TASsubopt1 always performs
better than TASsubopt2 . This behavior is well explained
because the S → D channel is strong, compared with
those of S → R and R → D, and the performance of
TASsubopt1 is dominated by the S → D channel.

4) Fig. 4 also shows the impact of the number of antennas
at D on the outage probability for a fixed number of
antennas at S and R. Whenever S is equipped with a
single antenna, the performance of the three TAS strate-
gies is identical. This insight thus shows that any of the
three strategies can effectively be used for S → R → D
uplink, where S is usually a mobile device equipped with
a single antenna due to power and space constraints.

5) Similarly, TASsubopt1 can be used instead of TASopt for
the D → R → S downlink as both of them provide the
same diversity order whenever Nd = 1.

These observations/insights can also be verified through as-
ymptotic analysis in Section IV-D. The Monte Carlo simulation
results agree well with our closed-form outage probability
approximation.

4) Average BER Comparison: Similarly, Fig. 5 compares the
average BER of the BPSK of the three TAS strategies, taking
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Fig. 6. Asymptotic outage probability of the two suboptimal TAS strategies.
The direct path is considered. The distances are l0 = l1 = l2, and the path loss
exponent is � = 2.5.

into account an asymmetric relay network, where l1 = 3l0/7,
and l2 = 4l0/7. Further, the S → D, S → R, and R → D
channels undergo dissimilar severities of fading (with m0 = 1,
m1 = 2, and m2 = 2). The exact average BER of TASopt is
again computed by using Monte Carlo simulation, whereas
those of TASsubopt1 and TASsubopt2 are computed by using
(18) with RNp

= 10. As expected, TASopt outperforms the
other TAS strategies in terms of BER. Contradictory to what we
observed in the case of the outage probability, under this system
setup, TASsubopt2 always performs better than TASsubopt1 .
This behavior can be explained as follows: The system setup
consists of a stronger S → R channel than the S → D, and
the performance of TASsubopt2 is dominated by the S → R
channel. We thus obtain the valuable system-design insight
that the performance of suboptimal TAS strategies heavily
depends upon the strength of S → D and S → R channels.
Under a stronger S → D channel, TASsubopt1 performs better
than TASsubopt2 , whereas TASsubopt2 outperforms TASsubopt1
whenever the S → R channel is stronger. Moreover, the exact
agreement between the Monte Carlo simulation points and
the analytical results verifies the accuracy of our closed-form
average BER approximations.

5) Verification of the High SNR Analysis: Fig. 6 shows the
exact and asymptotic outage probability of TASsubopt1 and
TASsubopt2 . The exact outage curves are from (14), and the
asymptotic outage curves are from (19a) and (20a). The exact
agreement of the exact and asymptotic outage curves verifies
the accuracy of our high SNR analysis. Further, the exact
average SER in (18) can also be compared with our asymptotic
SER derived in (22). However, for the sake of brevity, this
comparison is omitted.

6) Impact of Outdated CSI on the Outage Probability and
Average SER: In Figs. 7 and 8, the impact of outdated CSI
due to feedback delay on the outage probability of TASopt is
shown. Two system scenarios, i.e., 1) without the direct path

Fig. 7. Impact of outdated CSI on the outage performance of TASopt for
MIMO relaying. The direct path is not considered. The distances are l1 = l2 =
l0/2, and the path loss exponent is � = 2.5.

Fig. 8. Impact of outdated CSI on the outage performance of TASopt for
MIMO relaying. The direct path is considered. The distances are l1 = l2 =
l0/2, and the path loss exponent is � = 2.5.

and 2) with the direct path, are treated. The exact outage curves
of the former scenario is plotted in Fig. 7 by using the closed-
form outage expression in (28a), whereas the outage curves
corresponding to the latter scenario are plotted in Fig. 8 by
using Monte Carlo simulations. The TAS at S and R is based on
the outdated CSI received via the local feedbacks D → S, R →
S, and D → R having time delays τ0, τ1, and τ2, respectively.
Several outage curves are obtained by changing ρ0, ρ1, and ρ2,
where ρl is related to τl by following Clarke’s fading model;
ρl|l=2

l=0 = J0(2πBfl
τl), where Bfl

is the Doppler fading fre-
quency. The two extreme cases ρl = 1 and ρl = 0 correspond
to the perfect and fully outdated CSI cases. To obtain valuable
insights, the asymptotic outage curves are plotted as by using
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Fig. 9. Impact of outdated CSI on the average BER of BPSK of TASopt for
MIMO relaying. Direct path is not considered. The distances are l1 = l2 =
l0/2, and the path loss exponent is � = 2.5.

(30a) and (31) for both scenarios. Figs. 7 and 8 show that with
even a slight time delay in the feedback channel, the diversity
order of the system reduces to Gd = min(m1Nr,m2Nd) from
the full diversity order Gd = Nr min(m1Ns,m2Nd). Thus, the
outdated CSI has a significant detrimental effect on the outage
performance.

Similarly, in Fig. 9, the feedback delay effect on the average
BER of BPSK of TASopt, when the direct path is ignored, is
shown. The asymptotic SER curves are plotted to depict the
reduction of the diversity order and array gain due to feedback
delay. Just as in outage probability case, the feedback delay in
TAS has a severe detrimental effect on the average BER.

VI. CONCLUSION

The performance of three TAS strategies for dual-hop MIMO
ideal CA-AF relay networks has been analyzed. An upper
bound of the cdf of the e2e SNR was derived and used to obtain
the upper bounds of the outage probability and the average SER
for TASopt. The exact mgfs of the e2e SNR of TASsubopt1
and TASsubopt2 were derived. Closed-form approximations and
asymptotic metrics for the outage probability and the average
SER were obtained. The diversity orders of the TAS strategies
were summarized to provide valuable insights. Both exact and
asymptotic performance metrics are derived for optimal TAS
when the direct path is ignored. Our numerical results showed
that the choice between TASsubopt1 and TASsubopt2 depends
upon the availability of stronger S → D or S → R channels,
and the suboptimal TAS strategies closely perform to the opti-
mal TAS strategy, while retaining significant implementation
simplicity than the optimal TAS. Further, our results proved
that the TAS based on the outdated CSI incurs significant
performance losses. Monte Carlo simulations were provided
to validate the accuracy of our analytical developments. Our
results clearly provide valuable insights and show that MIMO
TAS AF relaying achieves significant performance gains.

APPENDIX A
PROOF OF THE cdf OF A LOWER BOUND

OF THE e2e SNR FOR TASopt

In TASopt, the antenna indexes I and K are selected at S and
R, respectively, according to (6). The upper bound for the cdf
of the e2e SNR, i.e., TASopt, can be derived as

Fγopt
eq

(x) = P

(
max

1≤i≤Ns

γ(i,K)
eq ≤ x

)

= P

(
max

1≤i≤Ns

{
γ

(i)
SD + γ

(i,K)
SRD

}
≤ x

)

≤P

(
max

1≤i≤Ns

{
γ

(i)
SD, γ

(i,K)
SRD

}
≤ x

)
(32)

where γ
(i,K)
SRD = (γ(i)

SRγ
(K)
RD /γ

(i)
SR + γ

(K)
RD ). The probability

in (32), i.e., P (max1≤i≤Ns
{γ(i)

SD, γ
(i,K)
SRD } ≤ x), can

further be lower bounded by F
γ
(I)
SD

(x)F
γ
(I,K)
SRD

(x), where

F
γ
(I)
SD

(x) = P (max1≤i≤Ns
γ

(i)
SD ≤ x), and F

γ
(I,K)
SRD

(x) =

P (max1≤i≤Ns
γ

(i,K)
SRD ≤ x). The cdf of γ

(I)
SD is given by

F
γ
(I)
SD

(x) =

[
1 − e−

x
β0

M0−1∑
t=0

1
t!

(
x

β0

)t
]Ns

=
Ns∑

u=0

u(M0−1)∑
v=0

(
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u

)
(−1)uφv,u,M0

(β0)v
xve−

ux
β0 (33)

where M0 = moNd, and φn,m,M0 is given by (8). The
F

γ
(I,K)
SRD

(x) is written as

F
γ
(I,K)
SRD

(x) =

∞∫
0

P

(
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1≤i≤Ns

{
γ

(i)
SRλ

γ
(i)
SR + λ

}
≤ x
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F
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)
f

γ
(K)
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(34)

where the cdf of γ
(K)
RD is given by

F
γ
(K)
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x
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1
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(
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=
Nr∑
p=0

p(M2−1)∑
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Nr
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(−1)pφq,p,M2

(β2)q
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and the pdf of γ
(K)
RD can be obtained by differentiation of

(35) as

f
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RD
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}
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Nr−1∑
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(
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In (35) and (36), M2 = m2Nd. The cdf of γ
(I)
SR is given by

F
γ
(I)
SR

(x) =

[
1 − e−

x
β1

M1−1∑
t=0

1
t!

(
x

β1

)t
]Ns

=
Ns∑
a=0

a(M1−1)∑
b=0

(
Ns

a

)
(−1)aφb,a,M1

(β1)b
xbe−

ax
β1 (37)

where M1 = m2Nd. Next, by substituting (35)–(37) into (34),
a single integral expression involving

∫ ∞
0 λM2+q−b−1(x +

λ)b exp(−(p + 1)λ/β2) − (ax2/β1λ))dλ for γ
(I,K)
SRD can be

obtained. The foregoing integral can readily be evaluated in
closed form by first using the binomial expansion of (x + λ)b

and then using [20, eq. (3.471.9)]. Finally, the desired result
(7a) can be obtained in closed form by substituting γ

(I,K)
SRD and

(33) into (32).

APPENDIX B
PROOF OF THE mgf OF THE e2e SNR FOR TASsubopt1

In TASsubopt1 , the antenna indexes I and K are selected at
S and R, respectively, by following (3). The e2e SNR of the
TASsubopt1 is given by γ

subopt1
eq = γ

subopt1
SD + γ

subopt1
SRD , where

γ
subopt1
SRD = (γsubopt1

SR γ
(K)
RD /γ

subopt1
SR + γ

(K)
RD ) is the SNR of the

relayed path, and γ
subopt1
SR is the SNR at R received by the Ith

transmit antenna at S. Because in TASsubopt1 the Ith antenna
at S is selected to maximize the SNR of S → D separately
without considering the S → R channel, the pdf of γ

subopt1
SR

is given by f
γ
subopt1
SR

(x) = (xM1−1e−x/β1/Γ(M1)(β1)M1). The

cdf of γ
subopt1
SD is the same as that of γ

(I)
SD and is given in

Appendix A. By substituting FγK
RD

(x) and f
γ
subopt1
SR

(x) into the

integral representation F
γ
subopt1
SRD

(x) = 1 −
∫ ∞
0 [1 − FγK

RD
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x)x/z)]f
γ
(subopt1)
SR

(z + x)dz and evaluating the integral by us-

ing [20, eq. (3.471.9)], the F
γ
(subopt1)
SRD

(x) can be obtained as

follows:

F
γ
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SRD

(x)=1−
Nr∑
a=1

a(M2−1)∑
b=0

b+M1−1∑
c=0

A2x
b+M1e−µxKc−b+1(νx)

(38)

where µ = (1/β1) + (a/β2), and ν = 2
√

a/β1β2. Further, A2

is defined in (10b).
The mgfs of γ

subopt1
SD and γ

subopt1
SRD can be derived by substi-

tuting their cdfs into

MΓ(s) = EΓ{e−sγ} =

∞∫
0

sFΓ(γ)e−sγdγ (39)

and solving the resulting integrals by using [20, eq. (6.621.3)],
as given in (10a) and (11). The desired result can easily be
obtained by multiplying (10a) and (11).

APPENDIX C
SINGLE POLYNOMIAL APPROXIMATION OF

THE cdf OF THE e2e SNR FOR TASsubopt1

The behavior of the cdf of γ
subopt1
SRD for a large γ̄ is equivalent

to the behavior of F
γ
subopt1
SRD

(y) around y = 0 [29]. By substi-

tuting β1 = (k1/m1)γ̄, β2 = (k2/m2)γ̄, and x = γ̄y, where γ̄
is the transmit SNR, into (38), an alternative expression for
F

γ
subopt1
SRD

(x) can be obtained as follows:

F
γ
subopt1
SRD

(y)

= 1−
Nr∑
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where A is defined as
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(
m2
k2
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2

(40b)

where µ′ = (m1/k1) + (am2/k2), and ν ′ =
2
√

am1m2/k1k2. Next, by expressing the exponential
function and the Bessel function in terms of their Taylor
series expansions around y = 0 [20, eqs. (1.211) and (8.446)],
F

γ
subopt1
SRD

(x) can be approximated as a polynomial of the

lowest powers of x as follows:

F
γ
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SRD
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=1−
Nr∑
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where A′ is given by

A′ =
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2

×
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2

(
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2

. (41b)

Now, by substituting y = x/γ̄ into (41a) and finding the first
nonzero derivative order of (41a) and discarding the higher-
order terms, F

γ
subopt1
SRD

(x) can be approximated by a single

polynomial term for x → 0+ as

F∞
γ
subopt1
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(x)

=
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+ o
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+ o
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, m1 > m2Nd

Λ3

(
x
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)m1Nr

+ o
(
xm1Nr+1

)
, m1 = m2Nd.

(42)

Λ1 = (m1/k1)m1Nr/(m1Nr)!, Λ2 = (m2/k2)m2NdNr/
((m2Nd)!)Nr , and Λ3 = Λ1 + Λ2, where k1 = γ̄SR/γ̄, and



3042 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 7, SEPTEMBER 2011

k2 = γ̄RD/γ̄. Thus, from (42), the diversity order of the
relayed path (S → R → D) of TASsubopt1 is given by

G
TASsubopt1
d,SRD = Nr min(m1,m2Nd). The single polynomial

approximation of the cdf of γ
subopt1
SD for x → 0+ is given by

F∞
γ
subopt1
SD

(x)

=
(m0/k0)m0N

d
Ns

((m0Nd)!)
Ns

(
x

γ̄

)m0NdNs

+ o
(
xm0NdNs+1

)
(43)

where k0 = γ̄SD/γ̄. The diversity order of the direct channel is

given by G
TASsubopt1
d,SD = m0NdNs.

For the sake of notational simplicity, the single polynomial
cdf approximations for x → 0+ of the relayed path and di-
rect path SNRs are denoted by Fγ∞

SRD
(x) = βSRD(x/γ̄)dSRD +

o(xdSRD+1) and Fγ∞
SD

(x) = βSD(x/γ̄)dSD + o(xdSD+1), re-
spectively. The single polynomial approximations for the mgfs
of γSRD and γSD can be derived by substituting Fγ∞

SRD
(x) and

F∞
γSD

(x) into (39) as follows: Mγ∞
SRD

(s) = βSRDΓ(dSRD +
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SD
(s) = βSDΓ(dSD +

1)/(γ̄s)dSD + o(s−(dSD+1)). Next, a single polynomial approx-
imation of the cdf of the e2e SNR (γeq = γSD + γSRD) for
x → 0+ can be derived by using L−1(Mγ∞

SD
(s)Mγ∞

SRD
(s)/s),

where L−1(·) denotes the inverse Laplace transform, as
follows:
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+ o
(
xdSD+dSRD+1

)
. (44)

Now, by substituting corresponding values of βSD, βSRD,
dSD, and dSRD given in (42) and (43) into (44), the desired
result can be obtained as in (19a).

APPENDIX D
PROOF OF THE mgf OF THE e2e SNR FOR TASsubopt2

In TAS-AFsubopt2 , the antenna indexes I and K are selected
at S and R, respectively, according to (4). The corresponding
e2e SNR is given by γ

subopt2
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subopt2
SD + γ
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SRD , where

γ
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SRD = (γ(I)

SRγ
(K)
RD /γ
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RD ) is the SNR of the relayed

path, and γ
subopt2
SD is the SNR received at D by the Ith an-

tenna at S. In TASsubopt2 , the Ith antenna at S is selected to
maximize the SNR of S → R separately, without considering
the S → D channel. Thus, the pdf of γ

subopt2
SD is given by

f
γ
subopt2
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(x) = (xM0−1e−x/β2/Γ(M0)(β2)M0), and the corre-

sponding mgf is given by M
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(s) = 1/(1 + β0s)M0 The
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γRD (x), as given in Appendix A, into F
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integral by using [20, eq. (6.621.3)] as

F
γ
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(x) = 1 −
∑

p,q,a,b,c

A3x
M1+b+qe−δxKc−q+1(εx).

(45)

∑
p,q,a,b,c and A3 are defined in (12b) and (12a), where δ =

(a + 1/β1) + (p/β2), and ε = 2
√

p(a + 1)/β1β2). The corre-
sponding mgf of e2e SNR can readily be obtained by following
similar steps to those used for the mgfs in Appendix B.

APPENDIX E
SINGLE POLYNOMIAL APPROXIMATION OF

THE cdf OF THE e2e SNR FOR TASsubopt2

The cdf of γ
subopt2
SRD (45) can be approximated by a single

polynomial term for x → 0+ by following similar steps to those
in Appendix C as

F∞
γ
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=
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)
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where Π1 = (m1/k1)m1NsNr/((m1Nr)!)Ns , Π2 = (m2/
k2)m2NrNd/((m2Nd)!)Nr , and Π3 = Π1 + Π2. Thus, from
(46), the diversity order of the relayed path of TASsubopt2 is

given by G
TASsubopt2
d,SRD = Nr min(m1Ns,m2Nd). The cdf of

γ
subopt2
SD can be approximated by a single polynomial term for

x → 0+ as
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+ o
(
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)
.

(47)

The diversity order of the direct path is given by

G
TASsubopt1
d,SD = m0Nd. Now, by following steps similar to those

in Appendix C, the desired results in (20a) can be derived.

APPENDIX F
SINGLE POLYNOMIAL APPROXIMATION OF

THE cdf OF THE e2e SNR FOR TASopt

At high SNRs, the TAS corresponding to the relayed path
can be approximated as I = arg max1≤i≤Ns

(γ(i)
SR) and K =

arg max1≤k≤Nr
(γ(k)

RD). Thus, the cdf of the relayed path SNR
(γopt

SRD) for x → 0+ can be approximated by (46). Further,
the cdf of the direct path SNR (γopt

SD ) for x → 0+ can be
approximated by (43). Next, by following similar steps to
those in Appendix C, the cdf of the e2e SNR (γopt

eq ) can be
approximated by a single polynomial term for x → 0+, as given
in (21a).

APPENDIX G
PROOF OF THE cdf OF THE e2e SNR γ̃opt

eq WHEN

THE TAS IS BASED ON THE OUTDATED CSI

Let γ̃
(i)
SR denote the delayed version of γ

(i)
SR by time τ1. The

average fading power is assumed to remain constant over the
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time delay τ1. By following the outdated CSI approach in [32],
the joint pdf of γ̃

(i)
SR and γ

(i)
SR can be written as follows:

f
γ̃
(i)
SR

,γ
(i)
SR

(x, y)=
mm1Nr+1

1 (xy)
m1Nr−1

2

(m1Nr−1)!ρ
m1Nr−1

2
1 (1−ρ1) (γ̄SR)m1Nr+1

× e
− x+y

(1−ρ1)γ̄SR Im1Nr−1

(
2m1Nr

√
xyρ1

(1−ρ1) γ̄SR

)
(48)

where ρ1 is the normalized correlation coefficient between
γ̃

(i)
SR and γ

(i)
SR. The feedback delay τ1 can be related to ρ1

by following Clarke’s fading model, as ρ1 = J0(2πBf1τ1),
where Bf1 is the Doppler fading frequency. In fact, (48) is
the joint pdf of two correlated Gamma distributed random
variables.

The cdf of γ̃opt
eq can be derived by using Fγopt

eq
(x) = 1 −∫ ∞

0 [1 − F
γ̃
(I)
SR

((z + x)x/z)]f
γ̃
(K)
RD

(z + x)dz. Now, one needs to

obtain the cdf of γ̃
(I)
SR and the pdf of γ̃

(K)
RD . To this end, we

start deriving the cdf of γ̃
(I)
SR. In fact, γ̃

(I)
SR is the induced order

statistic of the original order statistic γ
(I)
SR [33]. The pdf of γ̃

(I)
SR

can be obtained by using [32], [33]

f
γ̃
(I)
SR

(x) =

∞∫
0

f
γ̃
(I)
SR

|γ(I)
SR

(x|y)f
γ
(I)
SR

(y)dy (49)

where f
γ̃
(I)
SR

|γ(I)
SR

(x|y) = f
γ̃
(i)
SR

,γ
(i)
SR

(x, y)/f
γ
(i)
SR

(y) is the pdf of

γ̃
(I)
SR conditioned on γ

(I)
SR. The pdf of γ

(I)
SR is given by f

γ
(I)
SR

(y) =

Nr[Fγ
(i)
SR

(y)]Nr−1f
γ
(i)
SR

(y). By substituting (48) into (49) and

solving the resulting integral by using [34, eq. (4.16.20)], the
pdf of γ̃

(I)
SR can be obtained as follows:

f
γ̃
(I)
SR

(x) =
Ns−1∑
a=0

a(M1−1)∑
b=0

Ns(−1)a
(
Ns−1

a

)
φb,a,M1Γ(M1 + b)

Γ2(M1)ρ
M1
2

1 β
M1
2

1

× (1 − ρ1)ξ

(1 + a(1 − ρ1))
ξ
x

M1−2
2 e−Ξx

M−ξ,ϑ(θx) (50)

where ξ = (M1 + 2b/2), ϑ = (M1 − 1/2), Ξ = (2 + 2a(1 −
ρ) − ρ)/(2β1(1 − ρ)(1 + a(1 − ρ))), and θ=ρ/β1(1−ρ)(1+
a(1 − ρ)). First, by using the confluent hypergeometric func-
tion 1F1(·; ·; ·) representation of Whittaker-M function [20,
eq. (9.220.2)] and then by expressing 1F1(·; ·; ·) as a finite
series expansion [35], a mathematically tractable form for (50)
can be obtained as follows:

f
γ̃
(I)
SR

(x) =
Ns−1∑
a=0

a(M1−1)∑
b=0

b∑
k=0

Ns(−1)a
(
Ns−1

a

)(
b
k

)
φb,a,M1

Γ(M1)Γ(M1 + k)βM1+k
1

× Γ(M1 + b)ρk
1(1 − ρ1)b−k

(1 + a(1 − ρ))M1+b+k
xM1+k−1e−Φx (51)

where Φ = (a + 1)/β1(1 + a(1 − ρ1)). Now, the cdf of γ̃
(I)
SR

can readily be derived as

F
γ̃
(I)
SR

(x) = 1 −
Ns−1∑
a=0

a(M1−1)∑
b=0

b∑
k=0

M1+k−1∑
l=0

Ns(−1)a
(
Ns−1

a

)(
b
k

)
Γ(M1)βl

1(l!)

× φb,a,M1Γ(M1 + b)ρk
1(1 − ρ1)b−k

(a + 1)M1+k−l (1 + a(1 − ρ1))
b+l

xle−Φx. (52)

By using similar steps to those of the derivation of f
γ̃
(I)
SR

(x),

the pdf of γ̃
(K)
RD , i.e., f

γ̃
(K)
RD

(x), can be derived as well.

Now, the cdf of e2e SNR, when the direct path is ignored,
can be derived by using Fγopt

eq
(x) = 1 −

∫ ∞
0 [1 − F

γ̃
(I)
SR

((z +

x)x/z)]f (K)
γ̃RD

(z + x)dz, as given in (28a).
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