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Abstract—The performance of three transmit antenna selec-
tion (TAS) strategies for dual-hop multiple-input-multiple-output
(MIMO) ideal channel-assisted amplify-and-forward (AF) re-
lay networks is analyzed. All channel fades are assumed to be
Nakagami-m (integer m) fading. The source, relay, and desti-
nation are MIMO terminals. The optimal TAS and two subop-
timal TAS strategies are considered. Since direct analysis of the
end-to-end signal-to-noise ratio (e2e SNR) of the optimal TAS is
intractable, a lower bound of the e2e SNR is derived. Its cumu-
lative distribution function and the moment generating function
(mgf) are derived and used to obtain the upper bounds of the
outage probability and the average symbol error rate (SER). For
the two suboptimal TAS strategies, we derive the exact mgfs
of the e2e SNR and obtain accurate and efficient closed-form
approximations for the outage probability and the average SER.
The asymptotic outage probability and the average SER, which
are exact in high SNR, are also derived, and they provide valuable
insights into the system design parameters, such as diversity order
and array gain. The exact outage probability, average SER, and
their high SNR approximations are also derived for the optimal
TAS when the direct path is ignored. The impact of outdated
channel state information (CSI) on the performance of TAS is
also studied. Specifically, the amount of performance degradation
due to feedback delays is studied by deriving the asymptotic
outage probability and the average SER and thereby quantifying
the reduction of diversity order and array gain. Numerical and
Monte Carlo simulation results are provided to analyze the system
performance and verify the accuracy of our analysis.

Index Terms—Amplify-and-forward (AF) relaying, cooperative
multiple-input-multiple-output (MIMO) relay networks, transmit
antenna selection (TAS).

I. INTRODUCTION

OOPERATIVE relay networks are currently being in-
vestigated for emerging wireless system standards, such
as IEEE 802.16m and Third-Generation Partnership Project
Long Term Evolution-Advanced [1], [2]. The performance of
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such relay networks can be improved by integrating multiple-
input-multiple-output (MIMO) technology [3], [4] and transmit
antenna selection (TAS) [5]-[10]. Although TAS is a sub-
optimal beamforming technique, it substantially reduces the
complexity and power requirements of the transmitter. Further,
it is more robust against channel estimation errors and time
variations of the channels than other beamforming techniques,
for example, transmit diversity [11], [12]. The current TAS
strategies for general MIMO relay networks [5], [6] lack a
suitable performance analysis framework.

Prior Related Research: The optimal TAS strategy (TASopt)
for dual-hop MIMO amplify-and-forward (AF) cooperative re-
lay networks involves maximizing the end-to-end (e2e) signal-
to-noise ratio (SNR) by selecting the best transmit antenna at
the source and relay by an exhaustive search [5]. Although
TAS, ¢ achieves the full diversity order of the MIMO relay
channel, its implementation complexity is relatively high due
to the requirement of the channel state information (CSI) of
all three channels (i.e., S — D, S — R, and R — D) at the
source. As a remedy, Cao et al. [6] propose two suboptimal
yet low-complexity TAS strategies (referred to as TASgupopt,
and TASgupopt,). The complexity reduction is achieved by
maximizing the individual channel SNRs rather than the e2e
SNR. More specifically, TASg,popt, maximizes the source-to-
destination (S — D) and relay-to-destination (R — D) SNRs,
whereas TAS upopt, maximizes the source-to-relay (S — R)
and R — D SNRs. In particular, TASgp0pt, and TASgupopt,
require only the CSI of either S — D or S — R channels only.
This reduction of CSI feedback and, thereby, the implementa-
tion complexity is the main motivation behind the TASgubopt,
and TASgypopt, strategies. The performance of these three TAS
strategies has been evaluated by using Monte Carlo simulations
only without analysis [5], [6]. Recently, in [13], we investigated
the performance of these three TAS strategies for MIMO AF
relay networks over Rayleigh fading.

Other studies of TAS for MIMO AF relaying [7]-[10],
[14]-[18] differ from [5] and [6]. These studies either employ
TAS for only one S or R, or they all ignore the S — D direct
path. Thus, their TAS algorithms are completely different from
those of TAS,pt, TASsubopt,» and TASgupopt, in [S] and [6].
In [7], the outage probability of multihop MIMO relaying with
TAS is derived semianalytically. In [8], the relay is limited to
a single antenna, and the source and the destination employ
TAS and maximal ratio combining (MRC), respectively. The
outage and the average symbol error rate (SER) are derived. In

0018-9545/$26.00 © 2011 IEEE


ctlabadmin
2011


AMARASURIYA et al.: PERFORMANCE ANALY SIS FOR TAS STRATEGIES OF MIMO AF NETWORKS

[9], transmit/receive (Tx/Rx) antenna pair selection is proposed
for dual-hop MIMO AF relay networks. Here, the e2e trans-
mission takes place by selecting the best Tx/Rx antenna pair
at both S — R and R — D MIMO channels. Reference [10]
extends [9] by deriving the asymptotic outage probability and
average SER. In addition, [19] extends the analysis of [9] for
Nakagami-m fading. In [14], the diversity order of a suboptimal
TAS for MIMO relay networks is derived. In [16]-[18], the
performance of TAS for dual-hop AF relay networks is studied
by ignoring the direct path between .S and D. Further, in [15],
three TAS strategies, which are optimal in terms of the out-
age probability, are developed for MIMO decode-and-forward
relaying.

Motivation and Our Contribution: Although [5] derives the
diversity order of TAS,,, no closed-form performance metrics
are derived. Moreover, [5] resorts to Monte Carlo simulations
for the comparison of the average bit error rate (BER) of
binary phase-shift keying (BPSK) with that of several MIMO
AF beamforming strategies. Furthermore, [6] also utilizes the
Monte Carlo simulation framework for the performance of the
TASsubopt, and TASgupopt, Strategies. In summary, an analyti-
cal framework for the TAS strategies of [5] and [6] for MIMO
AF relay networks is not available. Our main contribution is
thus to fill this gap.

In this paper, the performance of the three aforementioned
TAS strategies is analyzed. All channel fades are assumed
to be Nakagami-m (integer m) fading. Since direct analysis
of the e2e SNR of the optimal TAS is intractable, a lower
bound of the e2e SNR is derived. Its cumulative distribution
function (cdf) and the moment generating function (mgf) are
derived, and the upper bounds for the outage probability and
the average SER of TAS,; are obtained. For TASgupopt, and
TASsubopt,» Which, however, are amenable to exact analysis,
we derive the exact mgfs of the e2e SNRs and obtain the outage
probability and average SER approximations.' The asymptotic
performance measures, which are exact in high SNR, are also
derived and provide valuable insights about the system design
parameters, such as the diversity order and the array gain. The
closed-form exact outage probability, average SER, and their
high SNR approximations are also derived for the optimal TAS
when the direct path is ignored. Finally, the impact of outdated
CSI due to feedback delays on the performance of TAS, is
studied. Specifically, the amount of performance degradation is
quantified by deriving the exact asymptotic outage probability
and average SER and thereby deriving the reduction in diversity
order and array gain. Numerical and Monte Carlo simulation
results are also provided to analyze the system performance and
to verify the accuracy of our analytical framework.

The rest of this paper is organized as follows: Section II
presents the system and the channel model. Section III summa-
rizes the three TAS strategies. In Section IV, the performance
analysis is presented. Section V contains the numerical and
simulation results. Section VI concludes this paper. The proofs
are given in the Appendix.

The main motivation behind our analysis of TASsubopt, and TASsubopt,
is that they require significantly less CSI feedback at S than the TAS,p¢, and
thus, suboptimal TAS strategies can readily be employed in practical system
designing.
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Fig. 1. Selection of the transmit antenna at the source (.5) and relay (R) for
MIMO AF relay networks: System model.

Notations: K, (z) is the modified Bessel function of the
second kind of order v [20, eq. (8.407.1)]. o F (v, ¢;7y; 2) is
the Gauss hypergeometric function [20, eq. (9.14.1)]. I,(z)
is the modified Bessel function of the first kind of order v
[20, eq. (8.406.1)]. M, ,,(2) is the Whittaker-M function [20,
eq. (9.220.2)]. Q(z) denotes the Gaussian ()-function [21,
eq. (26.2.3)]. R{z} is the real part of z. ||Z|| is the Frobenius
norm of Z. A circular symmetric complex Gaussian distributed
random variable with mean ;. and variance o2 is defined by z ~
CN(p,02). v ~ G(a, 3) is Gamma distributed with the prob-
ability density function (pdf) f,(z) = (z*"te™*/#/T'(a)B?),
x > 0, where o and [ are the shape and scale parameters.

II. SYSTEM MODEL

We consider a dual-hop cooperative relay network with
MIMO-enabled S, R, and D having Ny, N,., and N, antennas,
respectively (see Fig. 1). All the terminals operate in half-
duplex mode, and cooperation takes place in two time slots [22].
Perfect CSI is assumed at R and D, and the feedback channels
are assumed to be perfect unless otherwise stated. The channel
matrix from terminal X to terminal Y, where X € {S, R},
Y € {R,D}, and X # Y, is denoted by Hxy. The elements
of Hyy are denoted by h'/,.. The channel gains are assumed to
be independent and identical Nakagami-m fading (with integer
m). The channel vector from the jth transmit antenna at X to Y’
is denoted by hgg.)y Moreover, the additive noise at the nodes is
modeled as complex zero-mean white Gaussian noise.

In the first time slot, S broadcasts to R and D by TAS, and R
employs MRC reception. Here, we consider an ideal channel-
assisted AF (CA-AF) relay? with a gain G = 1/|[h} |12 [7],
[23], [24] for the sake of mathematical tractability of the mgf
of the e2e SNR. In the second time slot, relay R amplifies and
forward the received signal to D again by TAS. Then, D com-
bines the two signals received in the two time slots by applying
the optimal receiver filter in the minimum mean-square error
sense [5], [8]. Under this system model, the postprocessing e2e

2The ideal CA-AF relays invert the source-to-relay channel gain, regardless of
its fading state. The performance metrics obtained by using ideal CA-AF relays
serves as extremely tight (in low-to-high SNR regime) and asymptotically exact
lower bounds to that of practical CA-AF relays [7], [23], [24], in which the relay

gain is given by G = 1/||hng%: + 02, where o is the noise variance.
Specifically, the performance metrics derived by using ideal CA-AF relays

serve as useful benchmarks for practical CA-AF relay network designing [23].
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SNR at D when S and R use the ith and kth transmit antennas
is given by [5]
(@) . (k)
Ay o
sk T VrD
i i i k

where 75p = 5o |5 . 15 = FsrlBiglE. and vy =
Yro| b rpll3 are the equivalent instantaneous SNRs, and Ysp,
sr, and yrp are the average SNRs of the S — D, S — R,

and R — D channels, respectively. Here, ’yg 1))’ 'yg})%, and v(k)

are mdependent Gamma distributed random variables; fyfg,):,

G(Mo, Bo), v ~ G(Mn, Br), and y(z), ~ G(Ms, ), where
My = moNg, My =mN,, My =maNg, Bo = (Ysp/mo),
51 = ('VSR/ml), and 52 = (WRD/mg). Further, mg, m1, and
mo are the integer severities of the fading parameters of the
Nakagami fading inthe S — D, S — R, and R — D channels.

AR = 4G

III. TRANSMIT ANTENNA SELECTION STRATEGIES

For the sake of completeness, this section summarizes the
optimal TAS and two suboptimal TAS strategies for the AF
MIMO relaying proposed in [5] and [6], respectively.

A. Optimal TAS for AF MIMO Relaying (TASqpy)

The e2e SNR fy(Z ) for AF MIMO relaying, (1) can be
maximized by selecting the best transmit antenna at .S and R
as follows [5]:

(1K) = argmax (47) )

1<i<N,,1<k<N,
where I and K are the optimal antenna indexes at S and R, and
arg maxy f(0) is the value of @ for which f(0) is the largest.

B. Suboptimal TAS for AF MIMO Relaying

The search complexity and the amount of CSI feedback
of TAS,p¢ is high since the transmit antenna at S [i.e., an-
tenna index I in (2)] should be searched to maximize 'yég’k)
by considering both S — R and S — D channel SNRs. In
[6], two suboptimal TAS strategies are proposed, providing a
better tradeoff between the implementation complexity and the

performance, as follows:

1) TASsubopt, : TAS is used at S and R separately to max-
imize the SNR of the S — D and R — D channels,
respectively. The antenna indices are obtained as

and K = argmax (’yg%) .3

I = argmax ('VSJ)D) g A

1<i<N,

2) TASsubopt,: TAS is used at S and R separately to max-
imize the SNR of the S — R and R — D channels,
respectively. The antenna indices are selected as

and K = argmax (753 g) 4)

I = argmax (V(SI)?) rg ma

1<i<N,
Remark I1I.1: In practice, the direct path between S and
D may be unavailable entirely due to heavy shadowing and
path loss. In this scenario, the optimal TAS strategy selects
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the transmit antennas at S and R separately to maximize the
SNR of the S — R and R — D channels, respectively, without
considering the S — D channel. Under this scenario, the TAS
strategy is given by [13]

I = arg max (ng)%)

1<i<N,

and K = argmax (7%%) (&)
1<k<N,

IV. PERFORMANCE ANALYSIS

This section presents our performance analyses of the TAS
strategies given in (2)—(4). Since the exact analysis of TAS ¢
appears to be mathematically intractable, a lower bound of
the e2e SNR of TAS, is used. The cdf and the mgf of this
lower bound are derived in closed form and used to obtain the
closed-form upper bounds for the outage probability and the
average SER. The exact mgfs of the e2e SNRs of TASgubopt,
and TASgupopt, are derived as well. Accurate closed-form
approximations of the outage probability and average SER are
presented for each suboptimal TAS strategy by using efficient
numerical techniques. Further, the corresponding asymptotic
results are also derived.

A. Statistical Characterization of the e2e SNR

1) cdf of the e2e SNR for TAS,p;: Let fy"pt denote the e2e
SNR at D for TAS,p. In (2), for fixed ng and 7\, Ao5")

is maximized when fy( ) is maximized, i.e., the TAS at R is
independent of the TAS at S. Thus, in TAS,, the antenna
indexes I and K can be selected as

and [ = argmax ('yéfl’K)) . (6)

1<i<N,

K = argmax (’71(21)3)
1<k<N,

The upper bound® of the cdf of 7°pt in (32) can then be
derived as (see Appendix A for the proof)

Foon (1) =

Veq,1b

Z AjgMetbtagenge, o (x))

a,b,p,q,l

N, u(My—1)

Z Z leeﬁo

where A1, Bi, k, and ) are defined as

2N, () (N;l) (MAbRaY (1) a4y o ar, by

I4btr1  2Mof2q—l4b—1
p

(7a)

A =

—1—1 1— b+1

D(My)a™= (p+ 1) B, 7 B,
(7b)
a(p+1)
=2y ———. 7d
B152 7o

2Alternatlvely (7a) can be seen as the cdf of the lower bound of the

e2e SNR in (32). Spec1ﬁcally this SNR lower bound is given by 'ch b=

maxi<;< N, {75D , ’YSRD } In general, the SNR lower bound, which under-
estimates the exact SNR, results in the outage probability upper bound.
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N, —a(M;-1) M 1
Further, -, .00 = 2 et b0 Z p >
fM?OJqu_l and ¢y, N, 1, is the coefﬁ01ent of the expansmn of
N(L k .
[Z (1/U')(33/7) R k=0 ¢kNL(x/’y) and given
by [25 eq. (44)]
®iN-1,L

k
oeNL= D W=y tov-ne-ni@- @
i=k—L+1 :

2) mgf of the e2e SNR for TASopi: The mgf of ’ygg_tlb

can be derived by substituting (7a) into M ,Yoptlb(8> =
Eyort {77} = [57 sFyom (v)e"*dy and by using  [20,

elb

eq. (6.621.3)] as follows:

Mgz )
N, u(My—1)
_Z Z 6160 U—i—l)( —I—Sﬂ Yo+l
S imz DAL H+OT6-C)
a,b,p,q,l u=0 v=0 ﬂ F(’r]—i_%)
1. s+rk—A\
o 32'7:1 (77+C C+2777+27 S+H+,\) (9)

(s+ K+ N)1t¢

where Zaﬁb,p,q,l is defined in (7a). Further, 7, {, x, and \ de-
pend on the summation variables and are defined as 7 = Ms +
b+q+uv+l, ¢=1-b+1 r=(a/B)+(p+1/P2), and
A =2y/a(p+ 1)/B1 32, respectively.

The pdf of 7°p 11, can readily be derived by differentiating the
cdf of *y°pt with respect to by using [20, eq. (8.486.12)].
However, the pdf result is omitted for the sake of brevity.

3) mgf of the e2e SNR for TASsubopt,: Let vsuboml denote
the e2e SNR at D for TASsubopt, - Define M_unop, (s) as the

TSrD

mgf of the SNR of the relayed path and given by

N, a(Mz—1) b+M;— 1

VT (2v CF(nJrC)
; Z CZ 1)

M suboptl
Ysrp

T(n—Q)saFi (n+C, <+2,n+;,§1;:;,) 0
. (s+p+v)rte (102)

where A, is given by

21" G () ()l
2M14b—c—1 c+b+1 *

PMOB 2 By °

Further, u, 1, ¢, and v depend on the summation variables
and are defined as ¢ = (1/31) + (a/B2),n = My +b+1,( =
c¢c—b+ 1,and v = 2y/a/(132. Similarly, the mgf of the direct
path Mﬁgopcl (s) is given by

Ay = (10b)

" . N, p(1\§:1> (1\;5)(—1)p¢q,p,Moﬂ0F(Q+1)S
suboptq S)= .
o L L (sfo+p)att

(11)

See the Appendix B for the proof of (10a) and (11).
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subopt;

The mgf of veq
and (11).

4) mgf of the e2e SNR for TASsunopt,: Let 7oy ' denote
the e2e SNR at D for TASupopt,- Define M’Y;;‘};)th (s) as the

mgfs of SNR of the relayed path and is given by

Z As\/m(2€)° T (n+ ()T (n—()
= L(n+3)

is then given by the product of (10a)

M euby (5) =1

SRD

sofy (G gt i)
. (s+6+e)te (120

where A3 is given by
2(—1)PHati N, ps (Nr) (Nem1y (Mrtatooty
p a c
I(M)(a+1)%

As =

Pg,p, My Po,a, M,
OM1+q+2b—c—1 ctqil *

By : By *
Ms—1
In (lza)’ Zp,q,a,b,c = Zp 1 ZP( o )Z

Z?iloﬂﬁbfl. The parameters 0, 7, ¢, and € depend on

the summation variables and are defined as ¢ = (a

1/81) + (p/B2),n =M1 +b+q+1,{=c—q+1ande=
p(a + 1)/P102, respectively. The mgf of the SNR of the

direst path M_cuvopt, () is given by
Tsp
(1 + 508)M

X

(12b)

a(M1 1)

M}Ysuboptz (S) == (13)
SD

See the Appendix D for the proof of (12a) and (13).

The mgf of the e2e SNR of TASgupopt, is then given by the
product of (12a) and (13).

B. Outage Probability

The SNR outage probability* P, is the probability that the
instantaneous e2e SNR . falls below a threshold ;1,5 Pout, =
Pr(veq < vn) = Fy., (7en), where F,_ (vn) denotes the cdf
of 7y, evaluated at ~y¢,. An upper bound of P,; for TAS,; can
readily be obtained by using (7a). Further, Poy of TASsubopt,
and TASgupopt, can accurately be computed by using [26], [27]

2 1 2N. 2N
) =F subopt; (’Yth) =—U ( p) e ‘Jp
j=1 Yeq Yt Yt

N,—1

%Z [ T@Iw; (T(04)) (1 +i@(81)) } + R,
k=

subopt;
Paut

(14)

where W;(s)|5_; = M J2uborts (s)/s, Oy =mk/N,, Y(0)=
(2N, /5vn)0(cot 0 + z) (9) =0+ (Ocoth —1)cotl, i=
v—1,and R N, is the remainder term, which is negligible for a
small number of terms (N,,), such as 20 (see Section V).

4The information capacity outage probability can be defined as the probabil-
ity that the instantaneous mutual information 7 falls below the target rate R ¢y, ;
Pr(1/2 log1+ ’qu) <Rin = F’ycq (’Yth)» where vt = 22Rth — 1.



3034

C. Average SER

The conditional error probability (CEP) of the coher-
ent BPSK and M-ary pulse amplitude modulation can
be expressed as Py = aQ(,/p7), where a and ¢ are
modulation-dependent constants. The average SER can be
derived by integrating CEP P.|y over the pdf of the
SNR veq. Thus, an upper bound for the average SER

of TAS,,; can be derived by substituting (7a) into P, =

(a/2)\/ /27 [;° x~1/2e=#*/2F, (x)dz and solving the re-
sulting integral by using [20, eq. (6.621.3)] as follows:

Ny UJ\/IQ 1) v—1
PTASapt _ 2 a\fﬂo (v+3)
eub Z Z 2U+<,0ﬂ0)v+2
Ny u(]\/fz 1)
A /p(—1)"(2A)T (1+¢)
-2 X Y T
a,bp,qlu=0 v=0 25T ( 2)
(77 4)2-7'—1(77+CC+2’77+27¢+§)
X 15)
(¢ + A)rte

where A; and Zmbm’%l are defined in (7a). Furthermore, v, 1,
¢, and A depend on the summation variables and are defined

as 1 = (¢/2) + (u/Bo) + (a/B1) + (p+1/02), n= M, +
b+q+v+1/2, (=1-b+1, and A =2/a(p+1)/6102.
respectively.

The CEP can also be expressed in an alternative form [28]
e~ (8% +¢/2)

/ 3 —ds.
\/ s24 /2

By using the variable transformation s? + ¢ /2 = /(v + 1),
the average SER can be written as [28]

TASsu opt .
] %TJMM (s + 0/2)
Pe: 52+@/2 ds
TAS

mewmwww+m

= e dy.

P.ly = aQ(V77 (16)

a7

Then, we use the accurate and computationally efficient method
proposed in [28], which uses the Gauss—Chebyshev approxima-
tion [21] to obtain a compact closed-form approximation for the
average BER of TASgupopt, and TASgupopt, as follows:

= TASsuboptj 2
€

j=1

ZM TAssubopt ( sec (Gk)) + Ry, (18)

pk1

where N, is a small positive integer, 8, = (2k — 1)7/4N,,),
and Ry, is the remainder term. 12y, becomes negligible as NV,
increases, even for small values such as 10 (see Section V).
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D. High SNR Analysis

To obtain direct system design insights such as diversity
order and array gain, the asymptotic outage probability and the
average SER are derived for the TASgupopt, > TASsubopt,» and
TAS,¢ strategies.

1) Asymptotic Outage Probability: The cdf of veq can
be approximated by a single polynomial term for x — 0% as
(see Appendix C for the proof)

subopt;

Fjg\)bnptl (Z‘)

eq

. dSUboptl subopty
Q;Ub()ptl(%) 1 —|—0(£L'd1 K +1> , ma <moNy
JEPoPtL -
_ Q;uboptl(%> 2 +0($d2 bop 1+1) , my >m2Nd
subopt
Q;‘lboml(%) ’ +0(xd;ubop 1+1> , m1=maNy
(192)
where Q5"PP" Q3PP and Q3POP' are given by
quboptl _ (mo/ko)moNsNd (m1/k‘1)m1N"' (moNSNd)!
! ((moNa))™* (moN,Ng + my N,)!
(19b)
Qsubopty _ (mo/ko)™0N=Na (my [ kg)m2NrNa
5 =
((moNa)h™ ((m2Na))™
(moNsNa)!(ma Ny Na)! (19¢)
(Nd[mONs +m2Nr])'
QZUbOptl _ Qiubopt] + Q;uboptl . (19d)

subopt subopt -
Moreover, d; " ", , and d3" """ are given

by diubOptl = m()NSNd + mlNT, dZUbOptl = m()NSNd +
mo N, Ny, and dZUbOptl =moNsNg + L1 N,, where L; is
defined as L; = m; = myNy. Next, the outage probability of
TASgsubopt, at high SNRs can be obtained by evaluating (19a)

— _ o
at z = 7Ytn as Pout ,subopt; F,ysuboptl (’Yth)'
eq
subopt,

d;ubopt1

Similarly, the cdf of yeq can be approximated by a single
polynomial term for 2 — 0T as (see Appendix E for the proof)

E:bOPtQ (33)

bont dcl;uboth bopta

ubo subopt

Qe 2(%) —i—o(xdl +1> , miNs<maNyg
JEPopta -

— subopt 2 subopta

=057 2(%) +0(xd2 “) , miNg>maNyg

dsubopt2
quboptz (z) 3
3 =

=2

+O(xd§ubopt2+1> , mlNS :msz
(20a)

subopt, qubopt2

bopt
where (2, and QZU OPt2

are given by

(mo ko)™ N4 (my [ k1) ™ NeNr (mo N N,.)!

qubopt2 _
! ((mlNT)!)NS (mONd —i—mleNr)!
(20b)
Qubopts _ (mo/ko)™ N (my ko) ™2NrNa (my N, Ny)!
((m2Ng))™ (Ng[mo + maN,])!
(20c)
Qzuboptz _ QiubOth + Q;uboth . (20(1)
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TABLE 1
DIVERSITY ORDERS OF THE THREE TAS STRATEGIES. mo = m1 = ma = m
Diversity Order
TAS Strategy |—5-— N—1 No=1 | N.=N,=N,—N
TASopt m(N,+Ng) | m(NgNgtmin( Ny, Ny)) | m{N+N,) 2mN?
TASsuhoml m (AN,.%an) m (AVS Ngt+l ) m (ANS%»AV,') mN (AH»I )
TASsubopt, m(N,+Ng) | m(Ngtmin(Ng,Ng)) m(N,+1) mN(N+1)

In (20a), diub‘)pt?, d;ub°pt2, and d;ub°pt2 are given
by "' = mgNg +myi NN, dyP' = moNy +
MmN, Ng, and d5™°"*> = mo Ny + Ly N, where Ly is defined
as Lo =m1Ny = moN,. Next, the outage probability of
TASgsubopt, at high SNRs can readily be derived by evaluating
(20a) at x = 4, as Pgst,suboptz = F’:gubom (Ven)-

Although [5] derives the diversity or(zier of TAS,, the exact
asymptotic outage probability and the average SER analysis,
which provide the exact array gains, are still not available in [5].
To this end, the cdf of TAS,p¢ for x — 07 can be approximated
by a single polynomial term as (see Appendix F for the proof)

JoPt
t 1 opt
QP (%) +o0 (xdl “), m1Ng<moNy

Egt (J,‘) =

opt dgpt opt
A (5) " ro(#H) ez maNy
JOPt N
Qgpt <%) 3 +o (xdgpt_,_l) . miNs=moN,
(21a)
where Q7P', Q9" and Q2P" are given by
Qopt _ (mo/ko)moNsNd(ml/kl)m1NsN7.

' ((moNa)!(my N, )™

% (mleNr)!(mONGNd)!
(moNsNd + mlNSNT)!

(21b)

(o ko)™ NN (mg [ kg) ™2 Nr N

((moNa)!(maNa)) ™

opt __
Q0 =

(mQNTNd)!(mONsNd)!
(moNsNd + mgNrNd)!

(21c)

QP = QPP + Q9P (21d)

Furthermore, in (21a), d‘fpt, dsP*, and dgf’t are defined by
;™" = moN Ny +mi NNy, d*" =moNNg+myN,Na,
and dgpt = moNgNg + L3N,, where Ly = mi Ny, = maNy.
Now, the asymptotic outage probability of TAS,,;, which is
exact at high SNRs, can readily be derived by evaluating (21a)
at z = Yn a8 Pogy opt = F;PS};t (Ven)-

2) Asymptotic Average SER: The asymptotic average SER
of TASqubopt, and TASgupopt, can readily be derived by sub-
stituting (19a) and (20a) into the integral representation of SER
in Section IV-C as follows:

subopt;
24T (djs“bo"t‘ + %)

subopt;

Va(ey)h
+o (T(df"b“’“*l)) (22)

Q‘subopti
J

00
PevTASsubopti -

where ¢ = 1,2 stands for each suboptimal TAS strategy, and
7 = 1,2,3 represents each case in (19a) and (20a). Similarly,
the asymptotic average SER of TAS,,; can readily be obtained
by replacing stub(’pt‘ and djSubopti in (22) by Q;?pt 3
diP'|3_, defined in (21a).

3) Diversity Order and Array Gain: In the high SNR
regime, the average SER can be represented by P ~
[Go.7]~C4, where G4 and G, are referred to as the diversity
and array gains, respectively [29].

TAS,¢ has been shown to provide the maximum achiev-
able diversity order (G4) of cooperative MIMO AF relay
networks. Thus, the G4 of TAS,,, over Rayleigh fading is
given by G %" = NN, + N, min (N, Ny) [5]. This result
can readily be extended for Nakagami-m fading by using our
asymptotic average SER of TAS, ¢ in Section IV-D as follows:

; and

G5 = mo NNy + Ny min (mi Ny, maNg).  (23)

By following (19a), (20a), and (22), the G4 of TASsupopt,
and TASg,popt, can be written as

TASsubopty

G, =moNsNg + N, min (mq1,maNg) (24)
TAS.ubopty .
G, =moNg + N, min (m1 Ns,maNg). (25)

Similarly, the array gains of TASgupopt, and TASsupopt,
can readily be obtained by substituting (22) into G, =
((P)~1/Ga)y).

In Table I, the G4 of each TAS strategy over symmetric
Nakagami-m fading (i.e., mg = m1 = mo = m) is presented
for several special cases to obtain valuable insights. For ex-
ample, when S has only one antenna (Ng = 1), all three
strategies achieve the same diversity order. Moreover, if D
has only one antenna (Ng = 1), then TAS,,; and TASgupopt,
provide the same diversity order. Thus, TASgup0pt, is preferred
over TAS,,; whenever N; = 1. When the number of anten-
nas at each node is the same, the G; provided by the both
TASgubopt, and TASgupopt, is identical. In practice, the direct
channel may be completely unavailable due to heavy shadow-
ing. In this case, the diversity orders of the three strategies are

. TAS, TASeubo .
given by G, ' =G, """ = N, min (mq Ny, maNy)
TASsubopt;

and G = N, min (m1, moNg). Thus, TAS upopt, is
a preferable choice than the others since it always provides a
better G4 than TASp0pt, and the same Gy as TAS .

E. Performance Analysis Without the Direct Path

In dual-hop MIMO AF relaying, when the direct path is not
taken into account [13], the optimal TAS strategy is to select
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the antenna indices I and K at S and R to maximize the SNRs
of the S — R and R — D channels as (5) in Remark III.1.
The cdf and the mgf of the e2e SNR of the optimal TAS for
dual-hop MIMO AF relaying, when the direct path is ignored,
are given by (45) and (12a). Moreover, the average SER can be
derived by substituting (45) into the integral representation of
P, in Section IV-C and by using [20, eq. (6.621.3)] as follows:

\f 3

As(26)"T(u+ v)T'(pn — v)

P,q,a,b,c u+§)
+d0—¢
2.7:1(M+VV+2,,U+2,¢+5+6) y
) (*+6+6)H+V (20w
2

where Ay is given by

2N5 (]\If),) (Ni;l) (Ml+q+b—1) (71)p+q+1p(c73+1)

o c
4 = c—q+1

L(Mi)(a+1)

Pq,p, Mo Pb,a, M,
2Mq1+42b4+g—c—1 ctqg+1 "

By : By *
Ms—1
In (263), Zp,q,a,b,c = Zp 1 ZP( 2 )Za 0

Zi\iloﬂﬁb*l. Furthermore, p, v, §, and € depend on the
summation variables and are defined as u= M;+b+
q+1/2, v=1—q+1 é=(a+1/p1)+ (p/B2), and €=
2+/p(a + 1)/ B2, respectively.

The asymptotic outage probability is given by (46), and
the asymptotic average SER can readily be obtained by us-
ing (46) and (22). The diversity order is given by G4 =
N, min(mj N s, maNy). These results are also novel.

X (26b)

a(Ml 1)

F. Feedback Delay Effect on the Performance of TAS for
Dual-Hop MIMO AF Relay Networks

In practice, the transmit antennas could be selected by using
outdated CSI due to feedback delays. Thus, in this section, the
impact of feedback delays on the system performance of TAS
strategies for dual-hop MIMO relay networks is studied.

In practical systems, the feedback channel from the receiver
to the transmitter experiences delays. We thus assume that the
transmit antennas at .S and R are selected based on the outdated
CSI received via feedback channels of S — D, S — R, and
R — D having 79, 71, and 7 time delays, respectively. These
three channels can be modeled as [30], [31]

H(t)|/_y = pHi(t — 1) + Eay 27)
where p; is the normalized correlation coefficients between
hy?(t) and hy”(t — 7). For Clarke’s fading spectrum, p; =
Jo(2m fi7), where f; is the Doppler fading bandwidth. Further,
Eg, is the error matrix, which is incurred by feedback delay,
having mean zero and variance (1 — p?) Gaussian entries.

1) Feedback Delay Effect on the Performance of TASqp
When the Direct Path Is Ignored: In the first time slot, S selects
the Ith transmit antenna based on the CSI received by the local
R — S feedback channel, which is assumed to experience a
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time delay 7;. Similarly, in the second time slot, the relay R
selects the K'th transmit antenna based on the 72-delayed CSI.

Under this channel model, the exact cdf of the e2e SNR can
be derived as (see Appendix G for the proof)

)=1- Z Z 5152,01 )

a,b,k,l p,q,u,v

E %""

2bfutltl  2(Mgtgtu)tv—I+1
2 2

X py(1—p2)? WP
% xMT““‘*'le*(q)"'@)w/Cfol (2@@) (28a)

where ¥, @, and © depend on the summation variables and are
defined as

2(~1)" P NN, (™

DD RG =TT

\I] =
L(My)T(M2)I' (M2 + u)(1)!
y Ob,a.My Pq.b 1, LD(M71 + b)) (M + q) (28b)
(CL+ 1)Af1+b+k(p+ 1)M2+q+u
a+1 p+1
b = and © = .
p1(1+a(l—p1)) B2 (1 +p(1 — p2))
(28¢)
Moreover, the two summations in (28a) are defined

Nr1 M 1) My+k—1
as Za,b,k,l :Z " Zk OZ L and

S = SN TSP S0 AL Now, e
exact outage probablllty can readily be obtained by using
evaluation (28a) at V.

The average SER for the outdated CSI case can readily be
derived by substituting (28a) into the integral representation of
P, in Section IV-C and evaluating the integral by using [20, eq.
(6.621.3)] as follows:

D o U —u
Pe:§—04\/%52 D> o= 1) FpE(1 — po)

a,b,k,l p,q,u,v

l—f\I/q>b+v+1@M2+q+u+v l+1ﬁb6ql‘\(u+ )

U(n+3)
£45—¢
D(p—v)oFy (u+v,V+ i+ 5 éiwe)
X
(24+6+¢)"

(29)

where 1, v, 9, and € depend on the summation variables and are
definedas p=Mo+u+1+1/2,v=v—-14+1,6=D+0,
and € = 21/®0O, respectively.

By following similar steps to those in Appendices A
and G, the upper bounds for the outage and average SER of
TAS, ¢, when the direct path is considered, can be derived.
Similarly, the exact outage and the average SER of TASqupopt,
and TASgupopt, can be derived as well. However, for the sake
of brevity, these results are omitted.

2) High SNR Performance Metrics When the Antenna Se-
lection Is Based on Outdated CSI: To quantify the amount
of performance degradation in terms of reduction in diversity
order and array gain, when the transmit antennas at .S, R, and D
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are selected based on the outdated CSI, the asymptotic outage
probability and the average SER of TAS,,; are derived.

Case I: When the direct path is considered, the cdf of the e2e
SNR can be approximated by a single polynomial term for

xz — 0T as
dorh do+dy+1
D, (%) +o (@lotdtl) mq N, <moNy
00 o) o2 do+da+1
o (x)=( D, (5) +o (m ot+dz ) , miN,.>moNy
dotd3
O (%) +o(pdotdstl) mi N, =moNy
(30a)
where ®;[3_, is given as

& — AoA;T(do + 1)T(d; + 1)

, forj=1,2,3. (30b
/ I'(do+d; +1) J (30b)

Further, Ag, A1, Ag, and A3 are defined as

Zlamin Ny (MY (1) by 0,00, T (M 4)
par M;k; Yrzuy)
(1—p)° ‘
— forj =0,1,2 (30c)
(1+a(l - py)t?
AS =A1 + As. 0D

In (30c), No = N1 = N4, and Ny, = N,.. Furthermore, in
(303), do = moNd, dl = mlNr, d2 = mQNd, and d3 =
moNg = myNg. Here, pj\? o = Jo(2mBy;7;), where
By, | _o 1s the Doppler fading frequency, and 7; |2 o 1s the
time delay forthe S — D, S — R,and R — D feedback
channels, respectively.

Case II: When the direct path is ignored, the cdf of the e2e
SNR can be approximated by a single polynomial term for
x — 0" as

+o(z™ ), miN, <myNg

N—
U
) o
_|_
o}

(xd2+1) ., miN, > maNy

d
A (%) ’ +o0 (:cd3+1) , miN, = moNy
(31

where ] = Ay, &), = Ay, and P} =
ds, and d3 are same as in (30a).

Al + AQ. HCI'C, dl,

The asymptotic outage probability, which is exact at high
SNRs, for both of the above cases can be obtained by evaluating
the corresponding cdfs at 7. The proofs of (30a) and (31)
follow similar steps to those in Appendix B and omitted for
the sake of brevity.

The asymptotic average SER can readily be obtained
by using P = (®a264 1D(Ga+ 1/2)/y/7(p7)%) +
o(3~(Gat1)), When the direct path is considered, the diversity
order is given by G4 = moNg+ min (myN,,maNy), and
® is defined in (30a) as ¥, $5, and P53 for the three cases
mi1Ng < maNg, miNg=moNy, and mqNg > molNy,
respectively. Similarly, when the direct path is ignored, the

3037

100 T T T T
<l e -TASOpt (Exact-Simulation)
= ——TAS,, (Upper bound-Analytical)
g ... Asymptotic Analysis

10—1 L me=2, m,=2, m,=3
Pg
3 10-2L NeNANgE3 —>
3
[<] N=N=N;=2
o
S
& 1n-3L Ng=2, N=2, Ny=1
] 10 d
(@)

D) Na=N=Ng=1
10—4 L
10°° ) L ! o A .
-20 -15 —10 -5 0 5 10 15 20
Normalized Average SNR of First Hop (dB)
Fig. 2. Outage probability of TAS,p¢ for AF MIMO relay networks. The

direct path is considered. The distances are l1 = lo/3 and lo = 2lp/3, and
the path loss exponent is @ = 2.5.

diversity order is given by G4 = min(m N,., maN,), and ® is
defined as @), ®,, and P4 in (31).

3) Amount of Performance Degradation Due to Outdated
CSI: In this section, the amount of performance degradation
of TAS,,¢ due to feedback delay is quantified. The diversity
order reduction of TAS,,; due to the feedback delay effect over
the perfect CSI can be derived by using our high SNR analysis
in Sections IV-D and F2 as follows: For case I (with the direct
path), the diversity order reduction is G = moNg(Ns — 1) +
N, min(mq Ng, maNg) — min(mlNT,mgNd). The array gain
is degraded by a factor Q"pt /®;[3_,, where Q?pt and ®; are
defined in (21a) and (30a) respectively. Similarly, for case II
(without direct path), the reduction of diversity order is given
by G(If = N, min(mj N, moNy) — min(mq N,., maNy).

V. NUMERICAL RESULTS

This section verifies our analysis through Monte Carlo sim-
ulations. To capture the effect of the network geometry, the
average SNR of the ith hop is modeled by %;|7_; = o (lo/l:)Z,
where 7 is the average SNR of the direct path, and w is the path
loss exponent. The distances between the terminals S — D,
S — R,and R — D are denoted by [y, {1, and 5, respectively.

1) Outage Probability of TAS.p:: In Fig. 2, the exact outage
probability of TAS,,, which is obtained via Monte Carlo
simulations, is compared with our outage upper bound (7a) for
several antenna configurations. Our outage upper bound is just
a fraction of a decibel off of the exact. The asymptotic outage
curves are plotted to obtain direct insights about the diversity
order and array gain. Thus, the bound provides accurate insights
about the important system parameters, such as the diversity
order, and can be used as a benchmark to design practical
MIMO TAS relay networks.

2) Average BER of TASop¢: Similarly, in Fig. 3, the closed-
form upper bound for the average BER of BPSK for TAS,; is
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Fig. 3. Average BER of BPSK of TAS,p¢ for AF MIMO relay networks. The

direct path is considered. The distances are d1 = lg/3 and l2 = 2l /3, and the
path loss exponent is w = 2.5.

10° ; ; ;
—TAS
mg=2, =2, my=2 i _TASsup—opt1
"""" TAS sup-opty

1()‘1 o Simulation |
=
£ 1072 Ng=1, N=1, Ng=1
o s” 0
o
e
o
S Ng=2, N=2, Ng=1
g0 :
3
(@]

N=1, N=2, N2
107 ENg=2, N.=2, Nj=2 .
Ng=2, N=2, N=3 —>
1075 . A . :
-15 -10 -5 0 5 10 15

Normalized Average SNR of First Hop (dB)

Fig. 4. Outage probability of TASopt, TASsubopt, » and TASgubopt,, Strate-
gies for AF MIMO relay networks. The direct path is considered. The distances
are [1 = l2 = lp, and the path loss exponent is w = 2.5.

compared for different antenna configurations when the direct
path is considered. Fig. 3 also shows the tightness of our BER
bound for different fading parameters (i.e., mg, m1, and mo).
Similar to the outage bound, the BER bound is always exact
within 1 dB and predicts the diversity order accurately. The
asymptotic BER curves are plotted to obtain valuable system-
design insights, such as diversity order and array gain.

3) Outage Probability Comparison: Fig. 4 shows the outage
probability of the three TAS strategies for several antenna
setups. Here, the three nodes are placed in the vertices of
an equilateral triangle. Further, all the channels experience
the same severity of fading (when mo = m; = mg = 2). The
exact outage probability of TAS,,; is computed by using
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10° .
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Fig. 5. Average BER of TASopt, TASsubopt, and TASsubopt, strategies for

AF MIMO relay networks. The direct path is considered. The distances are
11 = 3lp/7 and I3 = 4lp/7, and the path loss exponent is @ = 2.5.

Monte Carlo simulations, whereas those of TASgupopt, and
TASgubopt, are obtained by using (14) with Ry, = 20. The
outage probability of a relay network with single-antenna nodes
(i.e., Ny = N, = Ng = 1) is also plotted as a benchmark to
illustrate the performance gain obtained by TAS for AF MIMO
relaying. The following conclusions can be drawn from Fig. 4.

1) As expected, TAS,,; always performs better than
TASgubopt, and TASgu0pt, for the given antenna setups,
at the expense of higher implementation complexity.

2) TASgubopt, performs very close to TAS.,; in terms
of outage when D is equipped with a single antenna.
TASsubopt, 18 thus a better choice than TAS,,¢ for net-
works with Ny = 1.

3) Under this system setup, TASgupopt, always performs
better than TASg,popt,. This behavior is well explained
because the S — D channel is strong, compared with
those of S — R and R — D, and the performance of
TASsubopt, is dominated by the S — D channel.

4) Fig. 4 also shows the impact of the number of antennas
at D on the outage probability for a fixed number of
antennas at S and R. Whenever S is equipped with a
single antenna, the performance of the three TAS strate-
gies is identical. This insight thus shows that any of the
three strategies can effectively be used for S — R — D
uplink, where S is usually a mobile device equipped with
a single antenna due to power and space constraints.

5) Similarly, TASgupopt, can be used instead of TAS, for
the D — R — S downlink as both of them provide the
same diversity order whenever Ny = 1.

These observations/insights can also be verified through as-
ymptotic analysis in Section IV-D. The Monte Carlo simulation
results agree well with our closed-form outage probability
approximation.

4) Average BER Comparison: Similarly, Fig. 5 compares the
average BER of the BPSK of the three TAS strategies, taking
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Fig. 6. Asymptotic outage probability of the two suboptimal TAS strategies.
The direct path is considered. The distances are o = 1 = [2, and the path loss
exponent is w = 2.5.

into account an asymmetric relay network, where [; = 31y /7,
and ly = 4ly/7. Further, the S — D, S — R, and R — D
channels undergo dissimilar severities of fading (with mg = 1,
mq = 2, and mo = 2). The exact average BER of TAS,; is
again computed by using Monte Carlo simulation, whereas
those of TASgupopt, and TASgupopt, are computed by using
(18) with RNp = 10. As expected, TAS,; outperforms the
other TAS strategies in terms of BER. Contradictory to what we
observed in the case of the outage probability, under this system
setup, TASqupopt, always performs better than TASgupopt, -
This behavior can be explained as follows: The system setup
consists of a stronger S — R channel than the S — D, and
the performance of TASgupopt, is dominated by the S— R
channel. We thus obtain the valuable system-design insight
that the performance of suboptimal TAS strategies heavily
depends upon the strength of S — D and S — R channels.
Under a stronger S — D channel, TASqup0pt, performs better
than TASg,popt, » Whereas TASgupopt, outperforms TASqubopt L
whenever the S — R channel is stronger. Moreover, the exact
agreement between the Monte Carlo simulation points and
the analytical results verifies the accuracy of our closed-form
average BER approximations.

5) Verification of the High SNR Analysis: Fig. 6 shows the
exact and asymptotic outage probability of TASgupopt, and
TASsubopt,- The exact outage curves are from (14), and the
asymptotic outage curves are from (19a) and (20a). The exact
agreement of the exact and asymptotic outage curves verifies
the accuracy of our high SNR analysis. Further, the exact
average SER in (18) can also be compared with our asymptotic
SER derived in (22). However, for the sake of brevity, this
comparison is omitted.

6) Impact of Outdated CSI on the Outage Probability and
Average SER: In Figs. 7 and 8, the impact of outdated CSI
due to feedback delay on the outage probability of TAS; is
shown. Two system scenarios, i.e., 1) without the direct path
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Fig. 7. Impact of outdated CSI on the outage performance of TASqp¢ for

MIMO relaying. The direct path is not considered. The distances are [1 = lo =
lo/2, and the path loss exponent is @ = 2.5.
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Fig. 8. Impact of outdated CSI on the outage performance of TAS,p¢ for

MIMO relaying. The direct path is considered. The distances are I} = lp =
lo/2, and the path loss exponent is o = 2.5.

and 2) with the direct path, are treated. The exact outage curves
of the former scenario is plotted in Fig. 7 by using the closed-
form outage expression in (28a), whereas the outage curves
corresponding to the latter scenario are plotted in Fig. 8 by
using Monte Carlo simulations. The TAS at S and R is based on
the outdated CSI received via the local feedbacks D — S, R —
S, and D — R having time delays g, 71, and 75, respectively.
Several outage curves are obtained by changing pg, p1, and po,
where p; is related to 7; by following Clarke’s fading model;
pili=2 = Jo(2n By, ), where By, is the Doppler fading fre-
quency. The two extreme cases p; = 1 and p; = 0 correspond
to the perfect and fully outdated CSI cases. To obtain valuable
insights, the asymptotic outage curves are plotted as by using
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Fig. 9. Impact of outdated CSI on the average BER of BPSK of TAS,p¢ for

MIMO relaying. Direct path is not considered. The distances are {1 = lo =
lo/2, and the path loss exponent is @ = 2.5.

(30a) and (31) for both scenarios. Figs. 7 and 8 show that with
even a slight time delay in the feedback channel, the diversity
order of the system reduces to G4 = min(miN,., maNy) from
the full diversity order G4 = N, min(m1 Ny, maNy). Thus, the
outdated CSI has a significant detrimental effect on the outage
performance.

Similarly, in Fig. 9, the feedback delay effect on the average
BER of BPSK of TAS,,:, when the direct path is ignored, is
shown. The asymptotic SER curves are plotted to depict the
reduction of the diversity order and array gain due to feedback
delay. Just as in outage probability case, the feedback delay in
TAS has a severe detrimental effect on the average BER.

VI. CONCLUSION

The performance of three TAS strategies for dual-hop MIMO
ideal CA-AF relay networks has been analyzed. An upper
bound of the cdf of the e2e SNR was derived and used to obtain
the upper bounds of the outage probability and the average SER
for TAS,p¢. The exact mgfs of the e2e SNR of TASgupopt,
and TASgupopt, Were derived. Closed-form approximations and
asymptotic metrics for the outage probability and the average
SER were obtained. The diversity orders of the TAS strategies
were summarized to provide valuable insights. Both exact and
asymptotic performance metrics are derived for optimal TAS
when the direct path is ignored. Our numerical results showed
that the choice between TASgupopt, and TASgupopt, depends
upon the availability of stronger S — D or S — R channels,
and the suboptimal TAS strategies closely perform to the opti-
mal TAS strategy, while retaining significant implementation
simplicity than the optimal TAS. Further, our results proved
that the TAS based on the outdated CSI incurs significant
performance losses. Monte Carlo simulations were provided
to validate the accuracy of our analytical developments. Our
results clearly provide valuable insights and show that MIMO
TAS AF relaying achieves significant performance gains.
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APPENDIX A
PROOF OF THE cdf OF A LOWER BOUND
OF THE e2e SNR FOR TAS;

In TAS, ¢, the antenna indexes I and K are selected at S and
R, respectively, according to (6). The upper bound for the cdf
of the e2e SNR, i.e., TAS,, can be derived as

E opt () :P< max 'y(Z ) < m)

Veq 1<i<Ng

= (may, (66} <o)

1<i<N,

§P< max {74} 280 } < x) (32)

1<i<N,
i, K %
where %(SRD) = (WéRVRD /WSR +71(%L))) s
in (32), ie, P(maxij<i<n, {fys%,fng )} <), can
further be lower bounded by F () (z)F (r,x) (z), where
Vsp VsrD

F'V(SIL)) (.7}) F’Yélég) (;[;) =

P(max;<i<n, W(Sigg < z). The cdf of fyé% is given by

_LM0711 X ¢
[ > ﬂ(ﬁo)]

Ny u]\/[() 1 ( )

The probability

= P(maxlgiSNs ’X(S})D S {E), and

N

Fo(z)=

Tsp

¢ULLMO

(Bo” o

_uz
zVe” Po

22

where My = moNg, and ¢y .m0, iS given by (8). The
E oo x) () is written as

YsrD
iy 7(i) A
F um(x)= [ P| max { —SBZ_ % <z | f ) (N)dA
YsrD 1<i<N, ,-Y('L) + A TrRD
0 SR
r x(x+ A
:F(K)(x)—‘r/F(z) ( ( )>f ) (A)dA
RD SR )\ RD
0
(34
(K) . .
where the cdf of v, 5 is given by
et e o
o[- £
t=0
N, p(Mz-1) Pdon .
= 7(“” 2 0l s (35)
> 2 ()6

and the pdf of ng can be obtained by differentiation of
(35) as

foo(x) = ;i {1’<Kv( )}

YrD YrD

Z—lp(]wZQ 1) 1)p(N _1)
x M Motg-1,- 500 36)

(/82)1W2+q
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In (35) and (36), My = myNy. The cdf of v is given by

oM Nt Ns
Fn(e) = ll—‘f "> a(7) 1
N. a(Mi-1) o
£ s o
where M; = moNy. Next, by substituting (35)—(37) into (34),

a single integral expression involving [;° AMzTa=0=1(z 4

At exp(—(p + 1)A/B2) — (az2/BiA))dA for 457%) can be
obtained. The foregoing integral can readily be evaluated in
closed form by first using the binomial expansion of (z + \)°
and then using [20, eq. (3.471.9)]. Finally, the desired result
(7a) can be obtained in closed form by substituting yglgfg)
(33) into (32).

and

APPENDIX B
PROOF OF THE mgf OF THE e2e SNR FOR TASgupopt,

In TASqubopt, » the antenna indexes I and K are selected at

S and R, respectively, by following (3). The e2e SNR of the
subopt; __subopt; + buboptl’ where

=7sp VSRD
Yero ™ = (VR PG )/ SRR 4 vﬁ% )} is the SNR of the

relayed path, and 'ybuboml is the SNR at R received by the Ith
transmit antenna at S. Because in TASgyp0pt, the Ith antenna
at S is selected to maximize the SNR of S — D separately
without considering the S — R channel, the pdf of 755"
is given by f uwopr, (z) = (xMr—te=2/P /F(Ml)(ﬁl)Ml) The

cdf of 'ySUbOpt is the same as that of *y( ) and is given in
Appendix A. By substituting F x| ( ) and f wboptl( ) into the

=1- fO F,YK (Z +

)x/z)]fw(sb;boptl) (z 4+ x)dz and evaluatlng the integral by us-
ing [20, eq. (3.471.9)], the Fvés;zopm () can be obtained as
follows:

TASgubopt, i given by Yeq

integral representation F’ wboptl
YsrD

N, a(M2—1)b+M;—1

F <ubopt1 :1—2 Z Z AT Me=re)C 1 (v)
a=1 b=0 c=

(38)
where = (1/01) + (a/02), and v = 24/a/ 31 B2. Further, As
is defined in (10b).

The mgfs of v " and 75wt can be derived by substi-

tuting their cdfs into

o0

Mr(s) =Ep{e ™} = /st(v)e_”d*y

0

(39)

and solving the resulting integrals by using [20, eq. (6.621.3)],
as given in (10a) and (11). The desired result can easily be
obtained by multiplying (10a) and (11).
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APPENDIX C
SINGLE POLYNOMIAL APPROXIMATION OF
THE cdf OF THE €2e SNR FOR TASgupopt,

The behavior of the cdf of 755" for a large 7 is equivalent
to the behavior of F | gubopty (y) around y = 0 [29]. By substi-

tuting 3, = (k:l/ml)fy, 62 (k2/m2)7, and & = 7y, where 7
is the transmit SNR, into (38), an alternative expression for
F sunopty (x) can be obtained as follows:

SRD

F’Ysuboptl (y)
SRD
Nr a(M2_1) b+A[171
=1-) " > > AT VE 0 (VYY) (40a)
a=1 b=0 c=0

where A is defined as

2Mptb—c—1

2(=1)" gy, (3) (PHT) (220)

.A == s —(c«gb+1)
(My)a"5 (52
(40b)
where w = (mi/k1) + (ama/ka), and V=

2¢/amims/kiks. Next, by expressing the exponential
function and the Bessel function in terms of their Taylor

series expansions around y = 0 [20, eqs. (1.211) and (8.446)],

F’ysuboptl (x) can be approximated as a polynomial of the
SRD

lowest powers of z as follows:

F’ysuboptl (y)

SRD

o a(Ma—1)b+M;—1 oo
:1_2 Z ]V11+2b+l7571 (413)
a=1 b=0  ¢=0 1=0
where A’ is given by
o E D T (e b+ D) ()
(V)T (My)a ™5
2My+b—c—1 ctbt1
mq 2 ma
) = 41b
. ( k1 ) ( k2 ) @10

Now, by substituting y = x /7 into (41a) and finding the first
nonzero derivative order of (41a) and discarding the higher-
order terms, F L subopty (z) can be approximated by a single

YSrRD
polynomial term for z — 0T as

Foguboptl (x)

TSrD

m1 N,

A1 “+ o0 (I’mlNTJrl) s mq < maolNy

/N
21|18
~—

mQNTNd
=< Ay (%) + o (zm2NeNatl) ©my > maNy
my N,
As (%) ' +o0 (xmlNTJrl) , m1 = maNg.
(42)
Ay = (ma /ki)™ N [ (ma N ) Az = (mg/kg)m2Nalr/
((maNg))Nr, and Az = Ay + Ay, where k; = Ysr/7, and
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ks = Jrp/7. Thus, from (42), the diversity order of the

relayed path (S — R — D) of TASgpopt, is given by
GTASsuboptl
d,SRD

approximation of the cdf of 751" for 2 — 07 is given by

= N, min(my,m2Ny). The single polynomial

E\]}Dbopn (‘T )

moN ,Ng moNgNs
) (T(O /k(x' ;>de (x) T o)y
moNg)!)*

v
where kg = Jsp /7. The diversity order of the direct channel is

given by GggSDS"bom = moNgN5.

For the sake of notational simplicity, the single polynomial
cdf approximations for & — 0 of the relayed path and di-
rect path SNRs are denoted by F,, (2) = fSsrp(z /7)9sRD
o(x®sm> ) and  Fle (x) = fsp (/7)™ + o(z®0+), re-
spectively. The single polynomial approximations for the mgfs
of ysrp and ysp can be derived by substituting F,,e (z) and
F3 (x) into (39) as follows: M. (s) = Bsrpl'(dsrp +
1)/(3s)9smp 4 o(s~(dsrp+1)) and Mz (s) = BspI'(dsp +
1)/(7s)9sP + o(s~(@sp+1)) Next, a single polynomial approx-
imation of the cdf of the e2e SNR (yeq = vsp + Ysrp) for
x — 07 can be derived by using L™ (M0 (5) My (5)/s),
where £71(-) denotes the inverse Laplace transform, as
follows:

BspPsrpl (dsp + 1)I'(dsrp + 1)
I'(dsp + dsgrp + 1)

x dsp+dsrp
X (_ +o (deD"l‘dSRD"Fl) )
5

Fvgg (z) =
(44)

Now, by substituting corresponding values of (sp, Osrp,
dsp, and dsgrp given in (42) and (43) into (44), the desired
result can be obtained as in (19a).

APPENDIX D
PROOF OF THE mgf OF THE e2e SNR FOR TAS upopt,

In TAS-AFsupopt, » the antenna indexes I and K are selected
at S and R, respectively, according to (4). The corresponding

e2e SNR is given by fybUbOPb = fyg%’()pt2 + y?}ggptz
ysubgpt (fySRfyRIg /ﬂy(K) + 7}(%13)) is the SNR of the relayed
path, and 5 bOPt2 s the SNR received at D by the Ith an-
tenna at S. In TASgpopt,, the Tth antenna at S is selected to
maximize the SNR of S — R separately, without considering
the § — D channel. Thus, the pdf of 730" is given by
£ uwonts (x) = (aMo~te=2/B2 /T (M) (ﬁg)MO) and the corre-

sponding mgf is given by M’Ysuboth (s) =1/(1+ Bos)Moe The
SD

bopt
cdf of S0Pt

, where

can be derived by substituting f o (z) and
FA(,RD)( ), as given in Appendix A, into F bubuptg( )=1-—

L Foc ((z+ :v):c/z)]f o (z 4+ x)dz and evaluatlng the
Tsr
integral by using [20, eq. (6.621.3)] as

F,Y;L}:Bptz (z)=1- Z AgaMitbrae=orye L (ex).
P:q,a,b,¢

(45)
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ana’b’c and Ajs are defined in (12b) and (12a), where § =

(a+1/61)+ (p/B2), and € = 24/p(a + 1)/B152). The corre-
sponding mgf of e2e SNR can readily be obtained by following

similar steps to those used for the mgfs in Appendix B.

APPENDIX E
SINGLE POLYNOMIAL APPROXIMATION OF
THE cdf OF THE €2e SNR FOR TASgupopt,

The cdf of 3415°"2 (45) can be approximated by a single
polynomial term for  — 07 by following similar steps to those
in Appendix C as

00
s )
mlNSNT
mzNTNd
= 11, (%) —+ o0 ((EmzN"Nd—H) , miNg > moNy
mlNSNT
(46)
where H1 = (ml/kl)mleNT/((mlNT)!)NS, H2 = (mg/

ko)m2NrNa /((myNg))Nr, and T3 = I1; + II,. Thus, fro