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Abstract—A new class of upper bounds on the end-to-end
signal-to-noise ratio (SNR) of channel-assisted amplify-and-
forward (AF) multi-hop (𝑁 ≥ 2) relay networks is presented.
It is the half-harmonic mean of the minimum of the first 𝑃 ≥ 0
hop SNRs and the minimum of the remaining 𝑁 −𝑃 hop SNRs.
The parameter 𝑃 varies between 0 to 𝑁 and may be chosen to
provide the tightest bound. The closed-form cumulative distri-
bution function and moment generating function are derived for
independent and non-identically distributed Rayleigh fading and
for independent and identically distributed Nakagami-𝑚 fading,
where 𝑚 is an integer. The resulting outage probability and the
average symbol error rate bounds are asymptotically-exact. The
asymptotic-exactness holds for any 0 ≤ 𝑃 ≤ 𝑁 . As applications,
two cases of multi-hop multi-branch relay networks (i) the best
branch selection and (ii) maximal ratio combining reception are
treated. Numerical results are provided to verify the comparative
performance against the existing bounds.

Index Terms—Multi-hop relay networks, amplify-and-forward,
Nakagami-𝑚 fading, average symbol error rate, outage proba-
bility.

I. INTRODUCTION

MULTI-HOP relay networks achieve broader coverage
and enhanced throughput due to shorter hops and

can also provide network connectivity to locations where
traditional single-hop networks may not reach [1]. As well,
the battery life of the terminals may be prolonged due to lower
power requirements [1]. Moreover, such networks also achieve
spatial diversity gains to enhance the system performance. Due
to these reasons, their performance has been widely researched
[2]–[7].

Prior related research: For a multi-hop network with non-
regenerative relays, exact closed-form analytical performance
results for a number of hops 𝑁 ≥ 3 appear to be intractable;
even for 𝑁 = 2 case, the exact analytical results are rather
complicated. Thus, previous performance analyses provide
bounds on the end-to-end1 signal-to-noise ratio (SNR) [2], [5],
[8], [9] or asymptotic approximations and numerical methods
[3], [4], [6], [10], [11]. For example, in [2], the multi-hop
SNR is upper bounded by the geometric mean of hop SNRs.
The moment generating function (MGF), the probability den-
sity function (PDF), and the cumulative distribution function
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(CDF) of the upper bound are then derived. Closed-form lower
bounds on the outage probability and the average bit error rate
(BER) of the coherent binary modulation are also derived. In
[8], the results of [2] is used to study the performance of multi-
hop semi-blind relays over generalized fading channels. In [5],
the bound of [8] is further employed for performance analysis
of certain multi-hop relay networks. Reference [9] proposes an
SNR upper bound for a multi-hop channel-assisted amplify-
and-forward (CA-AF) relay network by using the minimum
SNR of all hops [9, Eq. (11)]. The average BER of several
modulation schemes over fading channels is also computed.
Reference [12, Ch. 3, pp. 31-38 ] analyzes the performance
of a multi-hop CA-AF relay network over Weibull fading by
using the upper bound of [9].

Examples for approximations and/or numerical methods are
[3], [4], [6], [10], and [11]. In [3], the outage probability of
a multi-hop CA-AF relay network over Nakagami-𝑚 fading
is evaluated. The MGF of the reciprocal of the SNR is
derived in closed-form, and the outage probability is computed
via numerical Laplace-transform inversion. A comprehensive
performance analysis of a multiple-hop and multiple-branch
cooperative network is proposed in [6]. The main idea is to
relate the MGF of 𝑋 to the MGF of 1/𝑋 , which requires
numerical integration in some cases. Reference [10] provides
an asymptotic analysis of the error rates of multi-hop multi-
branch relay networks. Moreover, the performance of multi-
hop AF relays over independent and non identically distributed
(i.n.i.d.) Rayleigh fading channels is studied in [4]. In [11], the
asymptotic BER of multi-hop AF relaying over Nakagami-𝑚
fading is analyzed.

Motivation and our contribution: Although the perfor-
mance bounds of [2], [5] and [8] are tight in low SNRs, they
weaken for high SNRs and for severe fading environments
such as Rayleigh fading. These bounds may thus not provide
an accurate assessment of system performance. Moreover,
while the performance analyses of multi-hop CA-AF relay
networks [3] and that of multi-hop multi-branch relay network
[6] are available, the performance metrics are not in closed-
forms. Thus, these gaps in the performance analysis of multi-
hop relay networks, arising mainly due to the intractability of
the problem, motivated us to develop new asymptotically-exact
performance bounds.

In this work, a class of new upper bounds is derived for
the SNR of a 𝑁 -hop {𝑁 ≥ 2} CA-AF relay network. The
key idea is to bound the SNR by the half-harmonic mean of
the minimum of the first 𝑃 hop SNRs and the minimum of
the next 𝑁 − 𝑃 hop SNRs, where 0 ≤ 𝑃 ≤ 𝑁 , and 𝑁 is the
number of hops in the system. Here, 𝑃 is a free parameter used
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to provide flexibility and generality. For example, the special
cases 𝑃 = 0 or 𝑃 = 𝑁 result in the bounds of Hasna [9]. It
may also be viewed as a tunable parameter to get the tightest
bound. The CDF and the MGF are derived in closed-form. For
the sake of brevity, only the cases of i.n.i.d. Rayleigh fading
channels, and independent and identically distributed (i.i.d.)
Nakagami-𝑚 fading, where𝑚 is a positive integer, are treated.
Closed-form lower bounds for the outage probability and
the average symbol error rate (SER) are also derived. These
bounds are asymptotically-exact (Corollary 3). Numerical
results are presented to compare the proposed bounds with
the existing bounds [2], [9]. Monte-Carlo simulation results
are provided to verify the accuracy of our analytical results.
Two applications of our results are demonstrated for the multi-
hop multi-branch relay networks.

The rest of this latter is organized as follows. In Section
II, the system model and the channel model are presented.
Sections III and V present the performance analysis and
numerical results. Section VI concludes this letter.

Notations: 𝒦𝜈 (𝑧) is the Modified Bessel function of the
second kind of order 𝜈 [13, Eq. (8.407.1)]. 2ℱ1(𝛼, 𝛽; 𝛾; 𝑧)
is the Gauss Hypergeometric function [13, Eq. (9.14.1)].
ℰΛ{.} denotes the expected value over the random variable
Λ. 𝒬 (𝑧) denotes the Gaussian Q-function[14, Eq. (26.2.3)].
𝑋 ∼ 𝒢(𝛼, 𝛽) means 𝑋 is distributed with Gamma(𝛼, 𝛽) PDF.
ℤ
+ is the set of positive integers. ⌈𝑧⌉ denotes the smallest

integer not less than 𝑧.

II. SYSTEM AND CHANNEL MODELS

We consider a multi-hop relay network with 𝑁 hops, source
(𝑆), destination (𝐷) and 𝑁−1 AF relays. Only single-antenna
terminals are used. The relays are CA-AF type [3], [15], [16].
The gain of a CA-AF relay 𝑛 is 𝐺𝑛 =

√
𝒫𝑛

𝒫𝑛∣ℎ𝑛∣2+𝑁0,𝑛
[3],

[15], where 𝒫𝑛 is the average energy per symbol used at
the 𝑛-th relay, ∣ℎ𝑛∣ is the fading amplitude of the preceding
hop, and 𝑁0,𝑛 is the variance of the zero-mean additive white
Gaussian noise at the input of the 𝑛-th receiver. The SNR
𝛾eq of a multi-hop CA-AF relay network is given by [3]

𝛾eq =
[∏𝑁

𝑛=1

(
1 + 1

𝛾𝑛

)
− 1
]−1

, where 𝛾𝑛 = 𝒫𝑛∣ℎ𝑛∣2/𝑁0,𝑛

is the SNR of the 𝑛-th hop. Since the exact distribution
function of 𝛾eq is mathematically intractable, reference [3]
shows that 𝛾eq can be tightly upper bounded by a more
tractable form as follows:

𝛾eq,ideal =

[
𝑁∑

𝑛=1

1

𝛾𝑛

]−1

. (1)

Then the gain of the 𝑛-th relay is given by 𝐺𝑛 = 1/∣ℎ𝑛∣ and
this gain corresponds to an ideal CA-AF relay, which is capa-
ble of inverting the channel of the previous hop (regardless of
the fading state of that hop) [3]. The performance measures
of multi-hop relay networks with ideal CA-AF relays serve as
benchmarks for systems with various practical relays.

In order to analyze the system performance, statistics for the
SNR (1) are required. However, the probability distribution
of (1) is not mathematically tractable, particularly for 𝑁 ≥
3. Thus, in order to develop a more accurate performance
analysis framework, we propose a new upper bound for (1).

The key idea is to partition the set of 𝛾𝑛∣𝑁𝑛=1 into two groups.
The minimum of 𝛾𝑛 of each group is then used to bound (1)
as follows:

𝛾eq,ideal ≤ 𝛾ub
eq =

⎡
⎣ 1

min
1≤𝑛≤𝑁−𝑃

(𝛾𝑛)
+

1

min
𝑁−𝑃+1≤𝑛≤𝑁

(𝛾𝑛)

⎤
⎦
−1

,

(2)
where 0 ≤ 𝑃 ≤ 𝑁 . The SNR bound 𝛾ub

eq in (2) is related to
the harmonic mean of the minimum of SNR of the first 𝑃
hops and the minimum of the next 𝑁 − 𝑃 hops. Intuitively,
we expect the tightness of the bound to increase as 𝑃 gets
closer to 𝑁 − 𝑃 . Thus, 𝑃 =

⌈
𝑁
2

⌉
is a good choice.

Interestingly, when 𝑃 = 0 or 𝑃 = 𝑁 , (2) reduces to the
bound given by Hasna [9, Eq. (11)]. Note that (2) with 𝑁 = 2
and 𝑃 = 1 reduces to the exact SNR for the case of dual-hop
systems with ideal CA-AF relays.

III. PERFORMANCE ANALYSIS

This section presents the performance analysis of multi-hop
relay networks by using (2). By first finding the distribution of
𝛾ub

eq for i.n.i.d. Rayleigh fading and i.i.d. Nakagami-𝑚 fading,
𝑚 ∈ ℤ

+, we derive the outage probability and the average
SER.

A. Statistical characterization of the SNR

The CDF and the MGF of 𝛾ub
eq in i.i.d. Nakagami-𝑚 fading

are given by Theorem 1.
Theorem 1: Let 𝛾𝑛 ∼ 𝒢(𝑚, 𝛾

𝑚), 𝑛 = 1, . . . , 𝑁 , be
independent hop SNRs. The CDF of 𝛾ub

eq is then given by

𝐹𝛾ub
eq
(𝑥) = 1−

𝑃 (𝑚−1)∑
𝑗=0

(𝑁−𝑃−1)(𝑚−1)∑
𝑘=0

𝑚+𝑗+𝑘−1∑
𝑙=0

2

Γ(𝑚)

× 𝛽𝑗,𝑃𝛽𝑘,𝑁−𝑃−1

(
𝑚+ 𝑗 + 𝑘 − 1

𝑙

)
𝑃

𝑙−𝑗+1
2

(𝑁 − 𝑃 )
𝑙−𝑗−1

2

×
(
𝑚𝑥

𝛾

)𝑚+𝑗+𝑘

exp

(
−𝑚𝑁𝑥

𝛾

)

× 𝒦𝑙−𝑗+1

(
2𝑚

𝛾

√
𝑃 (𝑁 − 𝑃 ) 𝑥

)
, (3)

where

𝛽𝑘,𝑁 =

𝑘∑
𝑖=𝑘−𝑚+1

𝛽𝑖,𝑁−1

(𝑘 − 𝑖)!𝐼[0,(𝑁−1)(𝑚−1)](𝑖). (4)

Here, 𝐼[𝑎,𝑐](𝑏) =

{
1, 𝑎 ≤ 𝑏 ≤ 𝑐
0, otherwise

, 𝛽0,0 = 𝛽0,𝑁 = 1, 𝛽𝑘,1 =

1/ 𝑘!, and 𝛽1,𝑁 = 𝑁 .
The MGF of 𝛾ub

eq is given by

𝑀𝛾ub
eq
(𝑠) = 1−

𝑃 (𝑚−1)∑
𝑗=0

(𝑁−𝑃−1)(𝑚−1)∑
𝑘=0

𝑚+𝑗+𝑘−1∑
𝑙=0

2

Γ(𝑚)

× 𝛽𝑗,𝑃 𝛽𝑘,𝑁−𝑃−1

(
𝑚+ 𝑗 + 𝑘 − 1

𝑙

)
𝑃

𝑙−𝑗+1
2

(𝑁 − 𝑃 )
𝑙−𝑗−1

2

×
(
𝑚

𝛾

)𝑚+𝑗+𝑘

𝑠 𝕀(𝜇, 𝜈, 𝛼, 𝛽), (5)
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where

𝕀(𝜇, 𝜈, 𝛼, 𝛽) =

√
𝜋(2𝛽)𝜈Γ(𝜇+ 𝜈)Γ(𝜇 − 𝜈)
Γ(𝜇+ 1

2 )(𝛼 + 𝛽)𝜇+𝜈

× 2ℱ1

(
𝜇+ 𝜈, 𝜈 +

1

2
;𝜇+

1

2
;
𝛼− 𝛽
𝛼+ 𝛽

)
.(6)

Here, 𝜇 = 𝑚 + 𝑗 + 𝑘 + 1, 𝜈 = 𝑙 − 𝑗 + 1, 𝛼 = 𝑠 + 𝑚𝑁
𝛾 and

𝛽 = 2𝑚
𝛾

√
𝑃 (𝑁 − 𝑃 ).

Proof: See Appendix.

Remark: III.1: The CDF (3) and the MGF (5) for i.i.d.
Nakagami-𝑚 fading do not hold for 𝑃 = 0 or 𝑃 = 𝑁 . Thus,
the CDF of 𝛾ub

eq for 𝑃 = 0 or 𝑃 = 𝑁 is derived explicitly as

𝐹𝛾ub
eq
(𝑥) = 1− exp

(
−𝑚𝑁𝑥
𝛾

)𝑁(𝑚−1)∑
𝑘=0

𝛽𝑘,𝑁

(
𝑚𝑥

𝛾

)𝑘

. (7)

The corresponding MGF of 𝛾ub
eq for 𝑃 = 0 or 𝑃 = 𝑁 is

derived as

𝑀𝛾ub
eq
(𝑠) = 1−

𝑁(𝑚−1)∑
𝑘=0

𝛽𝑘,𝑁Γ(𝑘+1) 𝛾𝑠

𝑚

(
𝑚

𝑚𝑁 + 𝛾𝑠

)𝑘+1

. (8)

Further, for the sake of completeness, the CDF and the MGF
of 𝛾ub

eq in i.n.i.d. Rayleigh fading are also given as follows: The
CDF of 𝛾ub

eq is given by

𝐹𝛾ub
eq
(𝑥) = 1− 2

√
𝜆1𝜆2 𝑥 exp (−𝜆0𝑥)𝒦1

(
2𝑥
√
𝜆1𝜆2

)
, (9)

where 𝜆1 =

𝑁−𝑃∑
𝑛=1

1

𝛾𝑛
, 𝜆2 =

𝑁∑
𝑛=𝑁−𝑃+1

1

𝛾𝑛
and 𝜆0 = 𝜆1 + 𝜆2.

The MGF of 𝛾ub
eq is given by

𝑀𝛾ub
eq
(𝑠) = 1− 64

3
𝜆1𝜆2𝑠

2ℱ1

(
3, 32 ;

5
2 ;
𝑠+ 𝜆0 − 2

√
𝜆1𝜆2

𝑠+ 𝜆0 + 2
√
𝜆1𝜆2

)
(
𝑠+ 𝜆0 + 2

√
𝜆1𝜆2

)3 .

(10)

The PDF of 𝛾ub
eq can easily be derived by differentiating the

CDF with the help of [13, Eq. 8.486.12]. However, for the
sake of brevity, the PDF results are omitted.

For direct insight, we derive the asymptotic outage proba-
bility from (3) as follows:

Corollary 1: Let 𝛾𝑛 ∼ 𝒢(𝑚, 𝛾
𝑚 ), 𝑛 = 1, . . . , 𝑁 , be

independent hop SNRs. The asymptotic outage probability
obtained by using 𝛾ub

eq as 𝛾 → ∞ is then given by

𝑃∞
out =

𝑁𝑚𝑚

Γ(𝑚+ 1)

(
𝛾𝑡ℎ
𝛾

)𝑚

+ 𝑜
(
𝛾−(𝑚+1)

)
. (11)

Proof: The behavior of the CDF for large 𝛾 is equivalent
to the behavior of 𝐹𝛾ub

eq
(𝑦) around 𝑦 = 0 [17]. By substituting

𝑥 = 𝛾𝑦 into (3), and by using the Taylor series expansions
of the Exponential and Bessel functions [13, Eq. (1.211) and
Eq. (8.446)], the CDF can be approximated near the origin.
Then the asymptotic outage probability can be obtained by
evaluating the asymptotic CDF at 𝛾𝑡ℎ.

The asymptotic outage probability of i.n.i.d. Rayleigh fad-

ing can be given as a special case of the Corollary 1 as

𝑃∞
out =

(
𝑁∑

𝑛=1

1

𝐶𝑛

)
𝛾𝑡ℎ
𝛾

+ 𝑜
(
𝛾−2

)
, (12)

where 𝐶𝑛∣𝑁𝑛=1 = 𝛾𝑛

𝛾 .
Because our bounds are asymptotically-exact (Section V),

𝑃∞
out in (11) provides the exact asymptotic outage probability

for multi-hop AF relay networks. Our asymptotic outage
analysis also reveals that the diversity orders of multi-hop
relay networks over i.i.d. Nakagami-𝑚 fading and i.n.i.d.
Rayleigh fading are 𝑚 and 1, respectively.

B. Outage probability

The outage is the probability that the instantaneous SNR 𝛾eq
falls below a certain target value 𝛾𝑡ℎ. Thus, the lower bounds
for the outage probability 𝑃𝑜𝑢𝑡 for i.n.i.d. Rayleigh and i.i.d.
Nakagami-𝑚 fading can immediately be obtained by using
the results given in (9) and (3): 𝑃𝑜𝑢𝑡 = Pr(𝛾ub

eq ≤ 𝛾𝑡ℎ) =
𝐹𝛾ub

eq
(𝛾𝑡ℎ).

C. Average error rate

The average SER is one of the most widely used per-
formance metrics of digital communication systems. The
conditional error probability (CEP) 𝑃𝑒∣𝛾 in this case is
averaged over the PDF of 𝛾ub

eq . For example, the CEP of
coherent binary frequency shift keying (C-BFSK) and 𝑀 -
ary pulse amplitude modulation (PAM) can be expressed as
𝑃𝑒∣𝛾 = 𝑎𝒬(

√
𝑏𝛾), where 𝑎 and 𝑏 are modulation-dependent

constants. The SER can be simplified by integrating by parts

as 𝑃𝑒 = 𝑎
2 − 𝑎

2

√
𝑏
2𝜋

∫∞
0
𝑥−

1
2 exp

(− 𝑏𝑥
2

)
𝐹𝛾ub

eq
(𝑥)d𝑥, where

𝐹𝛾ub
eq
(𝑥) is the complementary cumulative distribution function

(CCDF) of 𝛾ub
eq defined by 1−𝐹𝛾ub

eq
(𝑥). The average SER bound

for i.i.d. Nakagami-𝑚 fading is given by Corollary 2.
Corollary 2: Let 𝛾𝑛 ∼ 𝒢(𝑚, 𝛾

𝑚 ), 𝑛 = 1, . . . , 𝑁 , be
independent hop SNRs. The average SER bound obtained by
using 𝛾ub

eq is then lower bounded by

𝑃𝑒 =
𝑎

2
− 𝑎
√
𝑏

2𝜋

𝑃 (𝑚−1)∑
𝑗=0

(𝑁−𝑃−1)(𝑚−1)∑
𝑘=0

𝑚+𝑗+𝑘−1∑
𝑙=0

1

Γ(𝑚)

× 𝛽𝑗,𝑃𝛽𝑘,𝑁−𝑃−1

(
𝑚+𝑗+𝑘−1

𝑙

)
𝑃

𝑙−𝑗+1
2

(𝑁 − 𝑃 ) 𝑙−𝑗−1
2

×
(
𝑚

𝛾

)𝑚+𝑗+𝑘

𝕀(𝜇, 𝜈, 𝛼, 𝛽), (13)

where 𝜇 = 𝑚 + 𝑗 + 𝑘 + 1
2 , 𝜈 = 𝑙 − 𝑗 + 1, 𝛼 = 𝑏

2 + 𝑚𝑁
𝛾 ,

𝛽 = 2𝑚
𝛾

√
𝑃 (𝑁 − 𝑃 ) and 𝕀(𝜇, 𝜈, 𝛼, 𝛽) is defined in (5).

Proof: The average SER (13) can be derived by substitut-
ing (3) into the integral representation of 𝑃𝑒 in Section III-C
and solving the resulting integral by using [13, Eq. (6.621.3)].

Remark: III.2: The average SER bound in i.i.d. Nakagami-
𝑚 fading (13) does not hold for 𝑃 = 0 or 𝑃 = 𝑁 . Thus, it
is derived explicitly as

𝑃𝑒 =
𝑎

2
− 𝑎

2

√
𝑏

2𝜋
𝛽𝑘,𝑁Γ

(
𝑘+

1

2

)(
𝑚

𝛾

)𝑘(
2𝛾

𝑏𝛾 + 2𝑚𝑁

)𝑘+ 1
2

. (14)
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For the sake of completeness, the average SER for i.n.i.d.
Rayleigh fading is given as follows:

𝑃𝑒 =
𝑎

2
− 3𝑎𝜋

√
𝑏

2
𝜆1𝜆2

2ℱ1

(
5
2 ,

3
2 ; 2;

𝑏
2+𝜆0−2

√
𝜆1𝜆2

𝑏
2+𝜆0+2

√
𝜆1𝜆2

)
(
𝑏
2 + 𝜆0 + 2

√
𝜆1𝜆2

) 5
2

. (15)

The lower bound for the average SER obtained by using
our proposed upper bound for the SNR is asymptotically exact
(see Section V). To prove this claim, we provide the following
Corollary.

Corollary 3: Let 𝛾𝑛 ∼ 𝒢(1, 𝛾𝑛), 𝑛 = 1, . . . , 𝑁 , be
independent hop SNRs. The asymptotic average SER obtained
by using 𝛾ub

eq as 𝛾𝑛 → ∞ is then given by

𝑃∞
𝑒 =

𝑎

2𝑏

𝑁∑
𝑛=1

1

𝐶𝑛𝛾
+ 𝑜

(
𝛾−2

)
. (16)

Proof: The value at zero of the PDF of the random vari-
able Γ = 1

Γ1
+ 1

Γ2
can be express as in [10, Eq. (16)]: 𝑓Γ(0) =

𝑓Γ1(0) + 𝑓Γ2(0). The PDF of Γ1 and Γ2 in i.n.i.d. Rayleigh

fading are given by 𝑓Γ1(𝑥) =
(∑𝑁−𝑃

𝑛=1
1
𝛾𝑛

)
exp
(
−∑𝑁−𝑃

𝑛=1
𝑥
𝛾𝑛

)
and 𝑓Γ2(𝑥) =

(∑𝑁
𝑛=𝑁−𝑃+1

1
𝛾𝑛

)
exp
(
−∑𝑁

𝑛=𝑁−𝑃+1
𝑥
𝛾𝑛

)
, re-

spectively. Thus, 𝑓Γ(0) can easily be obtained as 𝑓Γ(0) =∑𝑁
𝑛=1

1
𝛾𝑛

. The asymptotic average SER (16) can then be
derived by using [10, Eq. (10)].

Note that Eq. (16) exactly agrees with the asymptotic exact
average SER for multi-hop relay networks [10, Eq. (39)].
Numerical results in Section V too confirm this asymptotic-
exactness. The corresponding asymptotic average SER for
i.i.d. Nakagami-𝑚 fading can be derived by using (11) as

𝑃∞
𝑒 =

𝑎𝑁𝑚𝑚2𝑚−1Γ(𝑚+ 1
2 )√

𝜋(𝑏𝛾)𝑚
+ 𝑜(𝛾−(𝑚+1)). (17)

IV. APPLICATIONS

In this section, two applications are presented to depict the
usefulness of our proposed bounds.

A. Outage probability of multi-hop multi-branch relay net-
works with the best branch selection

Consider a multi-hop multi-branch relay network with 𝐿
branches and 𝑁𝑙∣𝐿𝑙=1 hops per branch. In this system, the
source-to-destination communication is facilitated by 𝑁𝑅 =∑𝐿

𝑙=1𝑁𝑙 ideal CA-AF relays. We consider the best branch se-
lection, where the destination selects the best branch with mul-
tiple hops having the largest instantaneous SNR. Now, we use
our proposed upper bound of the SNR given in (2) to obtain
an upper bound as 𝛾sc ≤ 𝛾ub

sc = max{𝛾ub
eq,1, 𝛾

ub
eq,2, ..., 𝛾

ub
eq,𝐿},

where 𝛾ub
eq,l

∣∣∣𝐿
𝑙=1

is the SNR of 𝑙-th multi-hop branch given in
(2) with𝑁 replaced by𝑁𝑙. For independent multiple branches,
the CDF of 𝛾ub

sc can be derived as

𝐹𝛾ub
sc
(𝑥) =

𝐿∏
𝑙=1

𝐹𝛾ub
eq,𝑙

(𝑥), (18)

where 𝐹𝛾ub
eq,𝑙

(𝑥)
∣∣∣𝐿
𝑙=1

is the CDF of 𝛾ub
eq,𝑙 and can readily be

obtained by using (3) and (9) for i.i.d. Nakagami-𝑚 and i.n.i.d.
Rayleigh fading, respectively.
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Fig. 1. A comparison of the effect of severity of fading on average BER
bounds for a multi-hop relay network in i.i.d. Nakagami-𝑚 fading. 𝑁 = 3
and 𝑃 = 2.

B. Average SER of multi-hop multi-branch relay networks with
MRC Reception

We consider the same network set-up in Section IV-A,
however, in this case, the destination combines the signals
received via all branches by using maximal ratio combining
(MRC). We obtain an upper bound for the output SNR 𝛾MRC

as follows: 𝛾MRC =
∑𝐿

𝑙=1 𝛾eq,𝑙 ≤ 𝛾ub
MRC =

∑𝐿
𝑙=1 𝛾

ub
eq,𝑙. For

independent signals received via multiple branches at the
destination, the MGF of 𝛾ub

MRC can be expressed as𝑀𝛾ub
MRC

(𝑠) =∏𝐿
𝑙=1𝑀𝛾ub

eq,𝑙
(𝑠), where 𝑀𝛾ub

eq,𝑙
(𝑠)
∣∣∣𝐿
𝑙=1

is the MGF of the upper

bounded SNR of the 𝑙-th branch and can readily be obtained
by using (5) and (10). By using [18], a compact closed-form
approximation for the average SER can be derived as

𝑃𝑒 =
𝑎

2𝑁𝑝

𝑁𝑝∑
𝑗=1

𝑀𝛾ub
MRC

(
𝑏

2
sec2 (𝜃𝑗)

)
+𝑅𝑁𝑝 , (19)

where 𝑁𝑝 is a small positive integer, 𝜃𝑗 =
(2𝑗−1)𝜋

4𝑁𝑝
and 𝑅𝑁𝑝 is

the remainder term. 𝑅𝑁𝑝 becomes negligible as 𝑁𝑝 increases,
even for small values such as 10 (see Section V).

V. NUMERICAL RESULTS

Numerical and simulation results are provided to inves-
tigate the tightness of the proposed performance bounds.
Accordingly, they are compared with the existing multi-hop
performance bounds [2], [9], [12] and exact simulations.

In Fig. 1, the proposed lower bounds of the binary phase
shift keying (BPSK) average BER (by letting 𝑎 = 1 and
𝑏 = 2 in (13)) of a three-hop relay network operating over
i.i.d. Nakagami-𝑚 fading are plotted. The BPSK average BER
bound of [2, Eq. (24)] is plotted for comparison purposes. This
bound is named the “KTM”. Moreover, the proposed average
BER bound with 𝑃 = 0, which simplifies to the bound in
[9, Eq. (11)] and [12, Ch. 3] (“Minimum bound”) is also
plotted. As expected, the proposed bound is tight, particularly
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Fig. 2. A comparison of outage probability bounds of multi-hop relay
network over i.i.d. Nakagami-𝑚 fading channels. 𝑃 =

⌈
𝑁
2

⌉
.

in medium-to-high SNR regime compared to KTM and Min-
imum bound. Specifically, our bound converges to the exact
average BER curve for high SNRs. The KTM bound is quite
loose for most SNRs (𝛾 > 0 dB) and weakens progressively
as the average per hop SNR increases. Although the proposed
bound outperforms the KTM bound for moderate-to-high
SNRs, the latter is tighter for low-to-moderate SNRs for less
severe fading environments (approximately𝑚 > 5). However,
the KTM bound significantly deviates from the exact BER for
high SNRs. This fact is not surprising because our proposed
bounds are asymptotically exact.

In Fig. 2, the multi-hop outage probability over Nakagami-
𝑚 fading is plotted. Although the proposed bound loosens as
𝑁 and 𝑚 increase, it is tighter at moderate-to-high SNR than
the KTM bound. Similar to the case of the BER bounds, the
KTM bound is tighter than our bound for less severe fading
conditions (e.g., 𝑚 > 5) for low-to-moderate SNRs. The
curve for 𝑁 = 2 is plotted to verify that our proposed bound
reduces to the exact outage probability of dual-hop system
with ideal CA-AF relays. The proposed outage bound always
outperforms the bound with 𝑃 = 0 (“Minimum bound”).
Similar to BER bound, our outage bound is asymptotically-
exact.

In Fig. 3, as a function of 𝑃 , we compare the tightness
of different bounds for average BER of BPSK (13). For a
six-hop relay network in Nakagami-𝑚 fading, four different
BER bounds are obtained by assigning 𝑃 = 0, 𝑃 = 1, 𝑃 =
2 and 𝑃 = 3. As expected, the bound with 𝑃 = 0, which
is equivalent to the bound in [9, Eq. (11)] and [12, Ch. 3]
is significantly weaker than the others. The tightness of the
bounds is increased as 𝑃 is closer to 𝑁 − 𝑃 . This happens
because the criteria 𝑃 ≈ 𝑁 − 𝑃 ensures the symmetry of
(2). Moreover, the gaps between bounds with 𝑃 = 1, 𝑃 = 2
and 𝑃 = 3 are insignificant for severe fading. The asymptotic
average BER curves are also plotted to verify our high SNR
analysis and to demonstrate the asymptotically-exactness of
the proposed bounds.
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Fig. 3. The effect of 𝑃 , number of hops and severity of fading on proposed
BER bounds of a multi-hop relay network in i.i.d. Nakagami-𝑚 fading.
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Fig. 4. The BPSK average BER bounds of multi-hop multi-branch relay
network with MRC at the destination. System operates over i.n.i.d. Rayleigh
fading channels. 𝑃𝑙 =

⌈
𝑁𝑙
2

⌉
.

In Fig. 4, we plot the average BER bounds for a multi-
hop multi-branch system with MRC reception over i.i.d.
Nakagami-𝑚 fading. The proposed bounds for the average
BER are tighter at moderate-to-high SNR. As expected, all
BER bounds deteriorate as the number of hops per branch
increases. In evaluating (19), we use only ten points (𝑁𝑝 =
10). Thus, this result illustrates the accuracy and efficiency of
(19) for the average BER of multi-hop multi-branch systems.
The proposed bound outperforms both KTM and Minimum
bounds. The outage probability bound comparison of multi-
hop multi-branch networks with the best branch selection
demonstrate a similar behavior to that of BER bounds of multi-
hop multi-branch system with MRC reception and numerical
results are omitted for the sake of brevity.
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VI. CONCLUSION

This letter proposed a new class of SNR upper bounds of
multi-hop CA-AF relay networks. The parameter 0 ≤ 𝑃 ≤ 𝑁
specifies this class, and 𝑃 =

⌈
𝑁
2

⌉
is a reasonably optimal

choice. The closed-form CDF and MGF expressions for i.n.i.d.
Rayleigh fading and for i.i.d. Nakagami-𝑚 fading, 𝑚 ∈ ℤ

+

were derived, leading to the average SER and the outage
lower bounds. It is important to mention that these bounds
are asymptotically-exact. These bounds were used to study
the multi-hop multi-branch relay networks. Their asymptotic-
exactness may render them useful for other applications;
e.g., multiple-antenna beamforming relay networks [19] and
optimal power allocation.

VII. APPENDIX

The sketches of the proof of the theorem I are pre-
sented here. Let the random variable Γ be Γ = Γ1Γ2

Γ1+Γ2
,

where Γ = 𝛾ub
eq , Γ1 = min (𝛾1, 𝛾2..., 𝛾𝑁−𝑃 ) and Γ2 =

min (𝛾𝑁−𝑃+1, 𝛾𝑁−𝑃+2..., 𝛾𝑁 ). The CCDF of Γ can be ex-
pressed as [16]

𝐹Γ(𝑥) =

∫ ∞

0

𝐹Γ1

(
(𝑧 + 𝑥)𝑥

𝑧

)
𝑓Γ2(𝑧 + 𝑥)d𝑧. (20)

(Proof of Theorem 1): The CCDF of Γ1 for i.i.d.
Nakagami-𝑚 fading with integer 𝑚 can be obtained by

expanding

(
Γ(𝑚,𝑚𝑥

𝛾̄ )
Γ(𝑚)

)𝑃

by using [13, Eq. (8.352.2)] and [20,

Eq. (44)] as follows:

𝐹Γ1(𝑥) = exp

(
−𝑚𝑃𝑥
𝛾

) 𝑃 (𝑚−1)∑
𝑘=0

𝛽𝑘,𝑃

(
𝑚𝑥

𝛾

)𝑘

, (21)

where 𝛽𝑘,𝑃 is defined in (4). The PDF of Γ2 for i.i.d.
Nakagami-𝑚 fading is given by

𝑓Γ2(𝑥) =
(𝑁 − 𝑃 )
Γ(𝑚)

(𝑚−1)(𝑁−𝑃−1)∑
𝑘=0

𝛽𝑘,𝑁−𝑃−1

(
𝑚

𝛾

)𝑚+𝑘

× 𝑥𝑚+𝑘−1exp

(
−𝑚(𝑁 − 𝑃 )𝑥

𝛾

)
. (22)

By substituting (21) and (22) into (20), and by evaluating
the resulting integral by using [13, Eq. (3.471.9)], the desired
result given in (3) can be derived.

The MGF of Γ can be derived by substituting (3) into
𝑀Γ(𝑠) = ℰΓ{exp(−𝑠𝑥)} = 1 − ∫∞

0
𝑠𝐹Γ(𝑥)exp(−𝑠𝑥)d𝑥,

and by evaluating the resulting integral by using [13, Eq.
(6.621.3)].
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