
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 4, APRIL 2011 1801

Joint Bandwidth and Power Allocation With
Admission Control in Wireless Multi-User

Networks With and Without Relaying
Xiaowen Gong, Student Member, IEEE, Sergiy A. Vorobyov, Senior Member, IEEE, and

Chintha Tellambura, Fellow, IEEE

Abstract—Equal allocation of bandwidth and/or power may
not be efficient for wireless multi-user networks with limited
bandwidth and power resources. Optimal joint bandwidth and
power allocation strategies for wireless multi-user networks with
and without relaying are proposed in this paper for 1) the max-
imization of the sum capacity of all users; 2) the maximization
of the worst user capacity; and 3) the minimization of the total
power consumption of all users. It is shown that the proposed
allocation problems are convex and, therefore, can be solved
efficiently. Moreover, joint bandwidth and power allocation for
admission control is considered. A suboptimal greedy search
algorithm is developed to solve the admission control problem
efficiently. Instructive analysis of the greedy search shows that it
can achieve good performance, and the condition under which
the greedy search is optimal is derived. The formal and in-depth
analysis of the greedy search algorithm presented in this paper
can serve as a benchmark for analyzing similar algorithms in
other applications. The performance improvements offered by
the proposed optimal joint bandwidth and power allocation are
demonstrated by simulations. The advantages of the suboptimal
greedy search algorithm for admission control are also shown in
numerical results.

Index Terms—Admission control, greedy search algorithm, joint
bandwidth and power allocation, wireless multi-user networks.

I. INTRODUCTION

O NE of the critical issues in wireless multi-user networks
is the efficient allocation of the available radio resources

in order to improve the network performance. Therefore, re-
source allocation, e.g., power allocation, in wireless multi-user
networks has been extensively researched. However, the joint
allocation of bandwidth and power resources has not attracted
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much attention. Indeed, in practical wireless networks, the avail-
able transmission power of the nodes and the total available
bandwidth of the network are limited and, therefore, joint band-
width and power allocation must be considered.

It has been shown earlier that communication efficiency can
be improved by using relays [1]–[3]. Indeed, in the case of se-
vere channel conditions in direct links, relays can be deployed to
forward the data from a source to a destination. There exist nu-
merous papers on the resource allocation in wireless relay net-
works. For example, power allocation with the decode-and-for-
ward (DF) relaying has been studied in [4] under the assump-
tion that transmitters only know mean channel gains. In [5], a
power allocation scheme that aims at maximizing the smallest of
two transceiver signal-to-noise ratios (SNRs) has been studied
for two-way relay networks. In [6], time/bandwidth allocation
strategies with constant transmit power have been developed
based on the time division multiple access/frequency division
multiple access (TDMA/FDMA) to optimize effective capacity
in relay networks. However, [4]–[6] as well as most of the works
on the resource allocation in wireless relay networks consider
the case of a single user, i.e., a single source-destination pair.

Resource allocation for wireless multi-user relay networks
has been investigated only in a few works. Power allocation
aiming at optimizing the sum capacity of multiple users for four
different relay transmission strategies has been studied in [7],
while an amplify-and-forward-based strategy in which multiple
sources share multiple relays using power control has been de-
veloped in [8].

It is worth noting that the works mentioned above (except
[6]) have assumed equal and fixed bandwidth allocation for the
source-relay and relay-destination. In fact, it is inefficient to
allocate the bandwidth equally when the total available band-
width is limited. However, the problem of joint allocation of
bandwidth and power has never been considered for wireless
multi-user relay networks.

Various performance metrics for the resource allocation in
multi-user networks have been considered. Sum capacity max-
imization is taken as an objective for power allocation in [7],
while max-min SNR, power minimization, and throughput max-
imization are used as power allocation criteria in [8]. System
throughput maximization and worst user throughput maximiza-
tion are studied using convex optimization in [9].

In some applications, certain minimum transmission
rates must be guaranteed for the users in order to satisfy
their quality-of-service (QoS) requirements. For instance, in
real-time voice and video applications, a minimum rate should
be guaranteed for each user to satisfy the delay constraints of
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the services. However, when the rate/capacity requirements
can not be supported for all the users, admission control is
adopted to decide which users to be admitted into the network.
The admission control in wireless networks typically aims at
maximizing the number of admitted users and has been recently
considered in several works. A single-stage reformulation ap-
proach for a two-stage joint resource allocation and admission
control problem is proposed in [10], while another approach
based on user removal is developed in [11] and [12].

In this paper, joint bandwidth and power allocation for
wireless multi-user networks with and without relaying is
considered, which is especially efficient for the networks with
both limited bandwidth and limited power. The joint bandwidth
and power allocation is proposed to 1) maximize the sum ca-
pacity of all users; 2) maximize the capacity of the worst user;
3) minimize the total power consumption of all users. The cor-
responding joint bandwidth and power allocation problems can
be formulated as optimization problems that are shown to be
convex. Therefore, these problems can be solved efficiently by
using convex optimization techniques. The joint bandwidth and
power allocation for admission control is further considered,
and a greedy search algorithm is developed in order to reduce
the computational complexity of solving the admission control
problem. The proposed greedy search removes one user at each
iteration until the remaining users can be admitted. Instructive
analysis of the greedy search is provided, which shows that it
can achieve good performance, and the optimality condition of
the greedy search is derived. The formal and in-depth analysis
of the greedy search algorithm presented in this paper can
serve as a benchmark for analyzing similar algorithms in other
applications.

The rest of this paper is organized as follows. The system
model is given in Section II. In Section III, joint bandwidth
and power allocation problems for the three aforementioned ob-
jectives are formulated and studied. Admission control based
joint bandwidth and power allocation problem is proposed in
Section IV, where a greedy search algorithm is developed and
investigated. Numerical results are demonstrated in Section V,
followed by concluding remarks in Section VI. This paper is
reproducible research and the software needed to generate the
simulation results can be obtained from IEEE Xplore together
with this paper.

II. SYSTEM MODEL

A. Without Relaying

Consider a wireless network, which consists of source
nodes , , and destination nodes

, . The network serves users ,
, where each user represents a one-hop

link from a source to a destination. The set of users which are
served by is denoted by .

A spectrum of total bandwidth is available for the trans-
missions from the sources. This spectrum is assumed to be flat
fading1 and can be divided into distinct and nonoverlapping
channels of unequal bandwidths, so that the sources share the

1The results of this paper are applicable to narrowband systems where chan-
nels are flat fading. However, even if channels are not flat fading as in wideband
systems, the results of this paper still give information-theoretic limits by pro-
viding upper/lower bounds for achievable performances.

available spectrum through frequency division and, therefore,
do not interfere with each other.

Let and denote the allocated transmit power and
channel bandwidth of the source to serve . Then the received
SNR at the destination of is

(1)

where denotes the channel gain of the source-destination
link of and stands for the power of additive white
Gaussian noise (AWGN) over the bandwidth . The channel
gain results from such effects as path loss, shadowing, and
fading. Due to the fact that the power spectral density (PSD) of
AWGN is constant over all frequencies with a constant value
denoted by , the noise power in the channel is linearly in-
creasing with the channel bandwidth. It can be seen from (1)
that a channel with a larger bandwidth introduces higher noise
power and, thus, reduces the SNR.

Channel capacity gives the maximum achievable rate of a
link. Given , the source-destination link capacity of is

(2)

It can be seen that characterizes the channel’s dimension,
while characterizes the data success rate per dimen-
sion and, thus, characterizes the amount of data transmitted
without error over the source-destination link per unit time.

It can be seen from (2) that, for a fixed , is a concave
increasing function of . Moreover, it can be shown that
is a concave increasing function of for a fixed , although

is a decreasing function of . Indeed, it can be proved that
is a concave function of and jointly.

B. With Relaying

Consider relay nodes , deployed
on basis of the network described in the previous subsection, to
forward the data from the sources to the destinations. Then each
user represents a two-hop link from a source to a destination
via relaying. To reduce the implementation complexity at the
destinations, single relay assignment is adopted so that each user
has one designated relay. Then the set of users served by
is denoted by . We assume that the relays are preassigned
to the users and are fixed, and it is also assumed that perfect
channel state information (CSI) is available at the sources and
relays such that a resource allocation scheme for the network
can be carried out through a central coordination node.2

The relays work in a half-duplex manner due to the prac-
tical limitation that they can not transmit and receive at the
same time. A two-phase decode-and-forward (DF) protocol is
assumed, i.e., the relays receive and decode the transmitted data
from the sources in the first phase, and re-encode and forward
the data to the destinations in the second phase. The sources and
relays share the total available spectrum in the first and second
phase, respectively. It is assumed that the direct links between

2The assumptions of perfect CSI, central coordination, and fixed relay assign-
ments are typical in the context of resource allocation such as [7] and [8]. Note
that joint bandwidth and power allocation with admission control is studied in
this work based on a relatively simplified system model, but this work is instru-
mental for generalizing the study to more complicated systems, which is out of
the scope of this paper.
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the sources and the destinations are blocked and, thus, are not
available. Note that although the two-hop relay model is con-
sidered in the paper, the results are applicable for the multi-hop
relay model.

Let and denote the allocated transmit power and
channel bandwidth of the relay to serve . Similar to (2), the
one-hop source-relay link capacity of is given by

(3)

where denotes the channel gain of the link, and the one-hop
relay-destination link capacity of is given by

(4)

where denotes the channel gain of the link. Therefore, the
two-hop source-destination link capacity of is given by

(5)

It can be seen from (3), (4), and (5) that if equal bandwidth
is allocated to and , and can be unequal due
to the power limits on and . Then the source-destina-
tion link capacity is constrained by the minimum of
and . Note that since all the users share the total bandwidth
of the spectrum, equal bandwidth allocation for all the one-hop
links can be inefficient. Therefore, the joint allocation of band-
width and power is necessary.

III. JOINT BANDWIDTH AND POWER ALLOCATION

Different objectives can be considered while jointly allo-
cating bandwidth and power in wireless multi-user networks.
The widely used objectives for network optimization are 1) sum
capacity maximization; 2) the worst user capacity maximiza-
tion; and 3) total network power minimization. In this section,
the problems of joint bandwidth and power allocation are
formulated and solved for the aforementioned objectives.

A. Sum Capacity Maximization

In the applications without delay constraints, a high data rate
from any user in the network is favorable. Thus, it is desirable
to allocate the resources to maximize the overall network per-
formance, e.g., the sum capacity of all users.

1) Without Relaying: The joint bandwidth and power allo-
cation problem aiming at maximizing the sum capacity for the
network without relaying can be mathematically formulated as

(6a)

(6b)

(6c)

The nonnegativity constraints of the optimization variables are
natural and, thus, omitted throughout the paper for brevity. In

the problem (6a)–(6c), the constraint (6b) stands for that the total
power at is limited by . The constraint (6c) indicates that
the total bandwidth of the channels allocated to the sources is
also limited.

Note that since is a jointly concave function of and
, the objective function (6a) is convex. The constraints (6b)

and (6c) are linear and, thus, are convex. Therefore, the problem
(6a)–(6c) is convex. Using its convexity, the closed-form solu-
tion of the problem (6a)–(6c) is given below.

Proposition 1: The optimal solution of the problem
(6a)–(6c), denoted by , is ,

, , and
, , where for and

.
Proof: See Appendix A.

Proposition 1 shows that for a set of users served by one
source, the sum capacity maximization based allocation allo-
cates all the power of the source only to the user with the highest
channel gain and, therefore, results in highly unbalanced re-
source allocation among the users.

2) With Relaying: The sum capacity maximization based
joint bandwidth and power allocation problem for the network
with relaying is given by

(7a)

(7b)

(7c)

(7d)

(7e)

Introducing new variables , the problem (7a)–(7e)
can be equivalently written as

(8a)

(8b)

(8c)

the constraints (7b)–(7e) (8d)

Note that the constraints (8b) and (8c) are convex since
and are jointly concave functions of , and ,

, respectively. The constraints (8d) are linear and, thus,
convex. Therefore, the problem (8a)–(8d) is convex. It can be
seen that the closed-form solution of the problem (8a)–(8d) is
intractable due to the coupling of the constraints (8b) and (8c).
However, the convexity of the problem (8a)–(8d) allows for
standard numerical algorithms for convex optimization to solve
the problem efficiently.

Intuitively, the sum capacity maximization based allocation
for the network with relaying does not result in as unbalanced re-
source allocation as that for the network without relaying, since
the channel gains in both transmission phases affect the capacity
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of a user. The proposition below gives a case where the sum ca-
pacity maximization based allocation for the network with re-
laying also starves some users.

Proposition 2: If and where
and , then

.
Proof: See Appendix A.

In particular, if two users are served by the same source and
relay, and one user has lower channel gains than the other user
in both transmission phases, then no resource is allocated to the
former user.

B. Minimum Capacity Maximization

Fairness among users is also an important issue for resource
allocation. If the fairness issue is considered, the achievable rate
of the worst user is commonly used as the network performance
measure. In this case, the joint bandwidth and power allocation
problem can be mathematically formulated as

(9a)

the constraints (6b)–(6c) (9b)

for the network without relaying and

(10a)

the constraints (7b)–(7e) (10b)

for the network with relaying. Introducing a variable , the
problem (10a)–(10b) can be equivalently written as

(11a)

(11b)

(11c)

the constraints (7b)–(7e) (11d)

Similar to the sum capacity maximization based allocation
problems, it can be shown that the problems (9a)–(9b) and
(11a)–(11d) are convex. Therefore, the optimal solutions can
be efficiently obtained.

The next proposition indicates that the minimum capacity
maximization based allocation leads to absolute fairness among
users, in contrast to the sum capacity maximization based al-
location. The proof follows directly from the fact that the total
bandwidth is shared by all the users, and is omitted for brevity.

Proposition 3: In the problem (9a)–(9b) and (10a)–(10b), the
capacities of all users are equal at optimality.

C. Power Minimization

Another widely considered design objective is the minimiza-
tion of the total power consumption of all users. This minimiza-
tion is performed under the constraint that the capacity require-
ments of all users are satisfied. The corresponding joint band-
width and power allocation problem can be written as

(12a)

(12b)

the constraints (6b)–(6c) (12c)

for the network without relaying and

(13a)

(13b)

(13c)

the constraints (7b)–(7e) (13d)

for the network with relaying, where is the minimum accept-
able capacity for and the constraints (13b) and (13c) indicate
that the one-hop link capacities of should be no less than
the given capacity threshold. Similar to the sum capacity max-
imization- and minimum capacity maximization-based alloca-
tion problems, the problems (12a)–(12c) and (13a)–(13d) are
convex and, thus, can be solved efficiently.

IV. ADMISSION CONTROL BASED JOINT BANDWIDTH AND

POWER ALLOCATION

In the multi-user networks under consideration, admission
control is required if a certain minimum capacity must be guar-
anteed for each user. The admission control aims at maximizing
the number of admitted users.

A. Without Relaying

The admission control-based joint bandwidth and power al-
location problem for the network without relaying can be math-
ematically expressed as

(14a)

(14b)

the constraints (6b)–(6c) (14c)

where stands for the cardinality of .
Note that the problem (14a)–(14c) can be solved using ex-

haustive search among all possible subsets of users. However,
the computational complexity of the exhaustive search can be
very high since the number of possible subsets of users is ex-
ponentially increasing with the number of users, which is not
acceptable for practical implementation. Therefore, we develop
a suboptimal greedy search algorithm that significantly reduces
the complexity of finding the maximum number of admissible
users.

1) Greedy Search Algorithm: Consider the following
problem:

(15a)

(15b)

the constraints (6b) (15c)

The following proposition which provides the necessary and
sufficient conditions for the admissibility of a set of users is in
order.

Proposition 4: A set of users is admissible if and only if
.

Proof: See Appendix B.
Note from Proposition 4 that the optimal value is the

minimum total bandwidth required to support the users in ,
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given that all the power constraints are satisfied. This is in-
structive for establishing our greedy search algorithm, which
removes users one by one until the remaining users are admis-
sible. The “worst” user, i.e., the user whose removal reduces the
total bandwidth requirement to the maximum extent, is removed
at each greedy search iteration. In other words, the removal of
such “worst” user results in the minimum total bandwidth re-
quirement of the remaining users. Thus, the removal criterion
can be stated as

(16)

where denotes the user removed at the th greedy search
iteration, denotes the set of remaining
users after greedy search iterations, and stands for set differ-
ence operator.

Note that, intuitively, should be the “best” set of
users that requires the minimum total bandwidth among all pos-
sible sets of users from , and is the cor-
responding minimum total bandwidth requirement. Thus, the
stopping rule for the greedy search iterations should be finding
such that and . In other
words, is expected to be the maximum number of ad-
missible users, denoted by .

2) Complexity of the Greedy Search Algorithm: It can be seen
from Proposition 4 that using the exhaustive search to find the
maximum number of admissible users is equivalent to checking

for all possible and, therefore, the number of
times of solving the problem (15a)–(15c) is upper bounded by

. On the other hand, it can be seen from (16) that
using the greedy search, the number of times of solving the
problem (15a)–(15c) is upper bounded by . There-
fore, the complexity of the proposed greedy search is signifi-
cantly reduced as compared to that of the exhaustive search, es-
pecially if is large and is small.

The complexity of the greedy search can be further reduced.
The lemma given below follows directly from the decomposable
structure of the problem (15a)–(15c) that

.
Lemma 2:

for , .
Lemma 2 shows that the reduction of the total bandwidth re-

quirement is only coupled with the users served by the same
source with the user to be removed, and is decoupled with the
users served by other sources.

Let denote the remaining users served by
after greedy search iterations. Applying Lemma 2 directly

to the removal criterion in (16), we have the following proposi-
tion with proof omitted.

Proposition 5: , where

and

.
Proposition 5 provides an equivalent algorithm of searching

for the user to be removed at each greedy search iteration with
reduced computational complexity. Specifically, we can first
find the “worst’ user in each set of users served by a source,

i.e., , and then determine the user to be removed among
these “worst” users. As a result, although the number of times
of solving the problem (15a)–(15c) remains the same as that of
(16), the number of variables involved in solving each problem
is reduced, especially if is small compared to .

3) Optimality Conditions of the Greedy Search Algorithm:
In this subsection, we study the conditions under which the
proposed greedy search algorithm is optimal. Specifically, the
greedy search is optimal if the set of remaining users after each
greedy search iteration is the “best” set of users, i.e.,

(17)

where .
Consider applying the greedy search on a set of users served

by one source . Let

denote the user removed at the th greedy

search iteration and denote the set of re-

maining users after greedy search iterations. Also let
denote the “best” set of users in

. The next theorem provides the necessary and sufficient
conditions for the optimality of the greedy search.

Theorem 1: , , if and only if the
following two conditions hold:

C1) , , ;

C2) ,
, .

Proof: See Appendix B.
Theorem 1 decouples the optimality conditions of the greedy

search into equivalent conditions in the context of applying the
greedy search on each set of users served by one source. Specifi-
cally, in this context, C1 indicates that the set of remaining users
after each greedy search iteration is the “best” set of users; C2
indicates that the reduction of the total bandwidth requirement
is decreasing with the greedy search iterations. It will be shown
that Theorem 1 is significant in that it allows us to focus on
equivalent problems where users are subject to the same power
constraint and, therefore, the problems become tractable.

Let denote the channel gain normalized by the
noise PSD. Recall that is the minimum acceptable capacity
for . Define as the unique solution of in the equation

(18)

given and for any , which represents the minimum
bandwidth required by a user for its allocated transmit power.
Then the problem (15a)–(15c) for can be rewritten as

(19a)

(19b)

The following lemma gives a condition under which C1 holds
for a specific .

Lemma 3: If there exists , , such
that , , and

, then .
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Proof: See Appendix B.
It can be seen from Lemma 3 that since any user in has

a smaller bandwidth requirement than any user in
for the same allocated power over the available power range, the
former is more favorable than the latter for reducing the total
bandwidth requirement. Therefore, is the ‘best’ set of
users and the greedy search removes the users in
before the users in .

It is worth noting that C1 does not hold in general. Indeed,
since the reduction of the total bandwidth requirement is
maximized only at each single greedy search iteration, the
greedy search does not guarantee that the reduction of the total
bandwidth requirement is also maximized over multiple greedy
search iterations. In other words, it does not guarantee that the
set of remaining users is the “best” set of users. In order to
demonstrate this point, we present a counterexample as follows.

Example 1: Let . Also let , ,
, , , , and .

Then, we have , ,
, , ,

and, therefore, , ,

. This shows that .
Example 1 shows that the “worst” user, which is removed first

in the greedy search, may be among the users in the ‘best’ set of
users after more users are removed. An intuitive interpretation
of this result is that the bandwidth requirement of the “worst”
user changes from being larger to smaller than those of the other
users for the same allocated power, when the average available
power to each user increases after some users are removed in
the greedy search.

Applying Lemma 3, the next proposition gives a sufficient
condition of C1 and further decouples it into conditions ex-
pressed in terms of the bandwidth requirement comparison of
two users.

Proposition 6: C1 holds if the following condition holds:
C3) for any , , there exists no more than

one , , such that the following condition
holds:

C4) , .
Proof: See Appendix B.

It can be seen that C3 increases as C4 decreases
and C3 as C4 , where “Pr” stands for the
probability of an event. Moreover, C3 increases as
decreases, , or decreases.

The next lemma characterizes the bandwidth requirement
comparison of two users in terms of the comparison of their
capacity requirement ratio and channel gain ratio.

Lemma 4: If and , then
1) there exists such that , , and

, , if and only if ;
furthermore, as or ;

2) , , or , , if and
only if ;

3) , , if and only if .
Proof: See Appendix B.

Lemma 4 gives the conditions under which capacity require-
ment ratio dominates or is dominated by channel gain ratio in af-
fecting the bandwidth requirement comparison of two users, and

the corresponding dominant ranges. Specifically, claim 1 indi-
cates the case where channel gain ratio dominates and is domi-
nated by capacity requirement ratio in the low power range and
high power range, respectively. Moreover, the dominant range is
increasing and decreasing with channel gain ratio and capacity
requirement ratio, respectively. Claims 2 and 3 indicate the
cases where capacity requirement ratio dominates and is domi-
nated by channel gain ratio in any power range, respectively.

It can be seen that C4 holds if and only if claim 1 in Lemma
4 holds with . Then it follows from Lemma 4
that C3 increases as increases, decreases, or

decreases, and C3 as , ,
or . This shows that C3 is a mild condition to hold
if the diversity of user capacity requirements differs consider-
ably from that of user channel gains, or the available power at
a source is small, or the number of users served by a source is
small, or the number of sources is small.

The following proposition shows that C2 is true in general,
which is a nice property held by the greedy search.

Proposition 7: C2 always holds.
Proof: The proof is based on two lemmas using the mono-

tonicity and convexity of . See Appendix B for details.
Applying Lemma 4 and Propositions 6 and 7 successively,

the following corollary follows directly from Theorem 1 and the
proof is omitted.

Corollary 1: , , if ,
, .

Note that the optimality condition given in (17) is a sufficient
condition under which . Indeed, the
greedy search is optimal if and only if . Therefore,
even if , the greedy search still gives the maximum
number of admissible users if .

B. With Relaying

The admission control-based joint bandwidth and power al-
location problem for the network with relaying is given by

(20a)

(20b)

(20c)

the constraints (7b)–(7e) (20d)

The proposed greedy search algorithm can also be used to re-
duce the complexity of solving the problem (20a)–(20d). Specif-
ically, the problem (20a)–(20d) can be decomposed into

(21a)

(21b)

the constraints (7b), (7d (21c)

and
(22a)

(22b)

the constraints (7c), (7e) (22c)
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each of which has the same form as that of the problem
(14a)–(14c). Therefore, the greedy search can be applied on
each of these two problems separately, and it gives and ,
respectively, as the number of users removed when the stopping
rule is satisfied. Let , , and denote the optimal values
of the problems (20a)–(20d), (21a)–(21c), and (22a)–(22c), re-
spectively. Since the feasible set of the problem (20a)–(20d) is
a subset of those of the problems (21a)–(21c) and (22a)–(22c),
we have . Therefore, should be obtained
by solving the problem

(23a)

(23b)

(23c)

the constraints (7b)–(7e) (23d)

where and the feasible set is reduced
as compared to that of the problem (20a)–(20d).

Using the exhaustive search, the number of times of solving
the problem (15a)–(15c) is upper bounded by .
Using the greedy search, the number of times of solving the
problem (15a)–(15c) is upper bounded by

if and

if . Therefore, the greedy
search significantly reduces the computational complexity if
is large and , is small.

It can be seen from comparing the problems (20a)–(20d) and
(23a)–(23d) that the greedy search is optimal if and only if

.

V. SIMULATION RESULTS

A. Joint Bandwidth and Power Allocation

Consider a wireless network which consists of four users
, four sources, and two relays. The source and

relay assignments to the users are the following: ,
, , , , and

. The sources and destinations are randomly dis-
tributed inside a square area bounded by (0,0) and (10,10), and
the relays are fixed at (5,3) and (5,7). The path loss and the
Rayleigh fading effects are present in all links. The path loss
gain is given by , where is the distance between
two transmission ends, and the variance of the Rayleigh fading
gain is denoted as . We set , ,

, , , and ,
as default values if no other values are indi-

cated otherwise. The noise PSD equals to 1. All results are
averaged over 1000 simulation runs for different instances of
random channel realizations.

The following resource allocation schemes are compared to
each other: the proposed optimal joint bandwidth and power
allocation (OBPA), equal bandwidth with optimal power
allocation (EBOPA), and equal bandwidth and power alloca-
tion (EBPA). Software package TOMLAB [15] is used to solve
the corresponding convex optimization problems.

In Figs. 1(a)–(c), the performance of the sum capacity max-
imization based allocation is shown versus , , and , re-
spectively. These figures show that the OBPA scheme achieves

about 30% to 50% performance improvement over the other two
schemes for all parameter values. The performance improve-
ment is higher when , , or is larger. The observed sig-
nificant performance improvement for the OBPA can be partly
attributed to the fact that the sum capacity maximization based
joint bandwidth and power allocation can lead to highly unbal-
anced resource allocation, while bandwidth is equally allocated
in the EBOPA and both bandwidth and power are equally allo-
cated in the EBPA.

Fig. 2(a)–(c) demonstrates the performance of the minimum
capacity maximization based allocation versus , , and ,
respectively. The performance improvement for the OBPA is
about 10% to 30% as compared to the EBOPA for all parameter
values. The improvement provided by the OBPA, in this case, is
not as significant as that in Fig. 1(a)–(c), which can be attributed
to the fact that the minimum capacity maximization based allo-
cation results in relatively balanced resource allocation, while
the EBOPA and the EBPA are balanced bandwidth and totally
balanced allocation schemes, respectively.

Fig. 3(a)–(c) shows the total power consumption of the
sources and relays versus , , and for the power mini-
mization based allocation, where is
assumed. Note that the total power of the OBPA is always about
10% to 30% less than that of the EBOPA, and the total power
difference between the two tested schemes is larger when
is larger, or when or is smaller. This shows that more
power is saved when the parameters are unfavorable due to the
flexible bandwidth allocation in the OBPA.

Fig. 4 depicts admission probability versus , where
is assumed. The admission probability is defined

as the probability that the capacity requirements can be satisfied
for all the users under random channel realizations. The figure
shows that the OBPA outperforms the other two schemes for all
values of , and the improvement is more significant when is
large. This shows that more users or users with higher capacity
requirements can be admitted into the network using the OBPA
scheme.

B. Greedy Search Algorithm

In this example, the performance of the proposed greedy
search algorithm is compared to that of the exhaustive search
algorithm. We consider eight users re-
questing for admission. The sources and the destinations are
randomly distributed inside a square area bounded by (0,0) and
(10,10). We assume that , are uniformly
distributed over the interval where is a variable
parameter. The channel model is the same as that given in the
last example. We set , as default values. The
results are averaged over 20 random channel realizations. We
also consider two network setups as follows.

Setup 1: In this setup, the optimality condition of the greedy
search is satisfied. Specifically, there are four sources and four
relays. The source and relay assignments to the users are the
following: , ,

, and . The re-
lays are fixed at (5,2), (5,4), (5,6), and (5,8), and

, . Fig. 5(a) shows the number of admitted
users obtained by the greedy search and the corresponding com-
putational complexity in terms of the running time versus .
The figure shows that the greedy search gives exactly the same
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Fig. 1. Sum capacity maximization based allocation. (a) � � ��, � � �;
(b) � � ��, � � �; and (c) � � ��,� � ��.

number of admitted users as that of the exhaustive search for
all values of . This confirms that the optimal solution can be
obtained when the optimality condition of the greedy search is
satisfied. The time consumption of the greedy search is signif-
icantly less than that of the exhaustive search, especially when

is large. This shows that the proposed algorithm is especially

Fig. 2. Minimum capacity maximization based allocation. (a)� � ��, � �

�; (b) � � ��, � � �; and (c) � � ��,� � ��.

efficient when the number of users is large and the number of
admitted users is small.

Setup 2: In this setup, the optimality condition of the greedy
search may not be satisfied. There are two sources and two
relays. The source and relay assignments to the users are the
following: , ,
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Fig. 3. Power minimization based allocation. (a)� � ��, � � �; (b) � � �,
� � �; and (c) � � �, � � ��.

, and . The relays are fixed at (5,3)
and (5,7) and , . Fig. 5(b) demon-
strates the performance of the greedy search. Similar conclu-
sions can be obtained as those for Setup 1. This indicates that
the greedy search algorithm can still perform well if the opti-
mality condition is not satisfied.

Fig. 4. Admission probability versus capacity threshold.

Fig. 5. Greedy search algorithm versus exhaustive search algorithm. (a) Setup
1 and (b) Setup 2.

VI. CONCLUSION

In this paper, optimal joint bandwidth and power allocation
strategies have been proposed for wireless multi-user networks
with and without relaying to 1) maximize the sum capacity of
all users; 2) maximize the capacity of the worst user; 3) mini-
mize the total power consumption of all users. It is shown that
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the corresponding resource allocation problems are convex and,
thus, can be solved efficiently. Moreover, the admission control-
based joint bandwidth and power allocation has been consid-
ered. Because of the high complexity of solving the admission
control problem, a suboptimal greedy search algorithm with sig-
nificantly reduced complexity has been developed. Instructive
analysis of the greedy search has been provided showing that
it can achieve good performance, and the optimality condition
of the greedy search has been derived. The formal and in-depth
analysis of the greedy search algorithm presented in this paper
can serve as a benchmark for analyzing similar algorithms in
other applications. Simulation results demonstrate the efficiency
of the proposed allocation schemes and the advantages of the
greedy search.

APPENDIX A
PROOFS OF LEMMAS, PROPOSITIONS, AND

THEOREMS IN SECTION III

Proof of Proposition 1

We first give the following lemma.
Lemma 1: The optimal solution of the problem

(24a)

(24b)

(24c)

which is denoted by , is , , and
, , where .

Proof of Lemma 1

Consider the case when . Then the problem
(24a)–(24c) is equivalent to

(25)

Assume without loss of generality that . Consider the
situation when the constraints and are
inactive at optimality. Since the problem (25) is convex, using
the Karush–Kuhn–Tucker (KKT) conditions, we have

(26a)

(26b)

where . Since is monoton-
ically increasing, it can be seen from (26a) that

(27)

Combining (26b) and (27), we obtain that , which con-
tradicts the condition . Therefore, at least one of the
constraints and is active at optimality.
Then it can be shown that and . Note that this is
also the optimal solution if is assumed. Furthermore,
this conclusion can be directly extended to the case of
by induction. This completes the proof.

Now we are ready to prove Proposition 1. It can be seen from
Lemma 1 that , , and , . Then
the problem (6a)–(6c) is equivalent to

(28a)

(28b)

Since the problem (28a)–(28b) is convex, using the KKT con-
ditions, we have

(29a)

(29b)

where denotes the optimal Lagrange multiplier and has
been introduced above. Since is monotonically increasing,
it follows from (29a) that

(30)

Solving the system of equations (29b) and (30), we obtain
, . This completes

the proof.

Proof of Proposition 2

It can be seen that

(31)

When , it follows from Lemma
1 that the maximum value of the right-hand side of (31) is
achieved and equals to and, on the other hand, the left-hand
side of (31) also equals to . Therefore, the maximum value
of is achieved when .
This completes the proof.

APPENDIX B
PROOFS OF LEMMAS, PROPOSITIONS, AND

THEOREMS IN SECTION IV

Proof of Proposition 4

It is equivalent to show that there exists a feasible point
of the problem (14a)–(14c) if and only if

. If is a feasible point of the
problem (14a)–(14c), then since it is also a feasible point of
the problem (15a)–(15c), we have .
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If we have , then the optimal solution of the
problem (15a)–(15c) for , denoted by ,
is a feasible point of the problem (14a)–(14c) since

. This completes the proof.

Proof of Theorem 1

We first show that C1 and C2 are sufficient conditions.
Define for ,

. It follows from C2 that

, . Then using Proposition 5, we have
, . Therefore, we obtain

(32)

It can be seen from C1 that

, ,

where . Then we have

and

. Therefore, we obtain

. Since it follows

from C2 that , ,
we have

, where the second equality is
from (32). This completes the proof for sufficiency of C1 and
C2.

We next show that C1 and C2 are necessary conditions by
giving two instructive counter examples.

Consider the case when C1 does not hold. Assume without
loss of generality that . Then it can be seen that C1
is equivalent to the condition (17) and, therefore, the condition
(17) does not hold, either.

Consider the case when C2 does not hold. Assume without
loss of generality that , and

. Then

we have , while it follows from Propo-

sition 5 that . Therefore,
. This completes the proof for necessity of C1 and C2.

Proof of Lemma 3

Assume . Then there exist and
such that .

Let denote the optimal solution of the problem

(19a)–(19b) for . Then there always exists
such that

(33)

which contradicts the definition of . Then it follows that
. Using similar arguments, it can be shown that

. This completes the proof.

Proof of Proposition 6

It suffices to show that C1 holds for if C3 holds
for . It can be seen that for any , only
two cases are under consideration: 1) there exists
that satisfies the condition given in Lemma 3 and, therefore,

; 2) there exist and that
satisfy the condition given in Lemma 3, respectively and, there-
fore, .

Then it follows that . This completes the
proof.

Proof of Lemma 4

Consider the case when intersects at a point
. Then we obtain

(34)

where , . It can
be shown that , , and

is monotonically decreasing with . Therefore, the range of
is . If , there exists a unique

solution such that . Hence, and
have a unique intersection point given by

, , and claim 1 follows. If ,
there is a special case that , if

. Otherwise, the solution of (34) does not exist, i.e.,
does not intersect and, therefore, claims 2 and 3

also follow. This completes the proof.

Proof of Proposition 7

The proof of this proposition is built upon the following two
lemmas. It suffices to show that C2 holds for and .

Lemma 5: If , the following inequality
holds:

(35)

Proof of Lemma 5

It can be shown that is a strictly convex and decreasing
function of . Using the first order convexity condition, we have

(36)

and

(37)

where is the first order derivative of . Consider two cases:
1) If , then due to the
convexity of . Therefore, using together with
(36) and (37), we obtain (35); 2) If , using
and a similar argument as in 1), we can show that
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, which is equivalent to
(35). This completes the proof.

can be written as if is considered
as a variable.

Lemma 6: , are increasing with , where
denotes the optimal solution of the problem

(19a)–(19b) for and .

Proof of Lemma 6

The inverse function of is
. Then we have

(38a)

(38b)

Since the problem (38b)–(38b) is convex, using the KKT condi-
tions, the optimal solution and the optimal Lagrange multiplier
of this problem, denoted by and , respectively,
satisfy the following equations:

(39)

It can be shown that is monoton-
ically decreasing with . Therefore, , , and, cor-
respondingly, , are decreasing and
increasing, respectively, with . Then it follows from (38b)
that , are increasing with . This completes the
proof.

We are now ready to prove the proposition. Let
and for some . Let
denote the optimal solution of the problem (19a)–(19b) for
and . Using Lemma 6, the optimal solution of the problem
(19a)–(19b) for can be expressed as ,

, and , respectively, where and

. Then we have

(40)

Let denote the optimal solution of the problem
(19a)–(19b) for and . Then we have

(41)

Since , it follows from Lemma 6 that
, . Using Lemma 5, we obtain

, . Therefore,

comparing (40) with (41), we have

(42)
which can be rewritten as

(43)
Let denote the optimal solution of the problem

(19a)–(19b) for and . Then we have

(44)

where the second inequality follows from (43). On the other
hand, we have

(45)

Therefore, comparing (44) with (45), we complete the proof.
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