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Performance Analysis of Wireless Systems from the
MGF of the Reciprocal of the Signal-to-Noise Ratio

C. Tellambura, Senior Member, IEEE, M. Soysa, and D. Senaratne

Abstract—A class of wireless problems is characterized by the
availability of the moment generating function (MGF) of the
reciprocal of the signal-to-noise ratio. We show how to compute
the average error rates and outage probability in this case.
The result allows a simple, accurate numerical calculation of
the average error rate by using the Gauss-Legendre numerical
quadratures. We also derive the exact bit error rate of multihop
relays for the special case where the fading index of each hop is
an odd multiple of one-half.

Index Terms—Average probability of error.

I. INTRODUCTION

HOW does one compute the average bit error rate
𝔼
[𝒬 (√𝛾

)]
, where 𝒬 (𝑥) is the Gaussian-Q function,

𝔼 (⋅) is the expected value and 𝛾 is the signal-to-noise ra-
tio (SNR), from the moment generating function (MGF) of
1/𝛾?1 This problem arises in several applications. Consider a
multihop communication network with channel-assisted (CA)
relaying. where the end-to-end SNR 𝛾 can be represented [2]
as

1

𝛾
=

𝑁∑
𝑖=1

1

𝛾𝑖
, (1)

where 𝛾𝑖 is the SNR of the 𝑖th hop and 𝑁 ≥ 2 is the number
of hops. Exact closed-form bit error rate (BER) results are
typically found only for the case 𝑁 = 2; others require
numerical evaluation. Alternatively, approximations have been
devised by bounding 𝛾, for instance, by the smallest of [3], [4],
the largest of [5] or the geometric mean of [6] 𝛾𝑖’s. However,
recently in [7], simple single integral exact error expressions
were presented.

Assuming the 𝛾𝑖’s to be statistically independent, the MGF
of the reciprocal of 𝛾 given by (1) can be obtained as
ℳ 1

𝛾
(𝑠) =

∏𝑁
𝑖=1 ℳ 1

𝛾𝑖

(𝑠), where ℳ𝑋(⋅) denotes the MGF

of 𝑋 . The MGF ℳ 1
𝛾 𝑖

(𝑠) is known for various fading distri-
butions including Nakgami-𝑚, Nakagami-𝑞 and Nakagami-𝑛
[5]. The key steps in the past attempts based on have been: (i)
computing ℳ1/𝛾(𝑠), (ii) computing ℳ𝛾(𝑠) from ℳ1/𝛾(𝑠),
and (iii) computing the BER using the MGF approach [1].
The step (ii) above may require evaluating a double integral.
Reference [5] seeks to reduce step (ii) to a single integration.
Step (iii) requires evaluating yet another integral, for example,
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1Evaluation of this average directly from the MGF of 𝛾 is a well-known

and ubiquitous problem in wireless research [1].

to compute the average of form 𝔼
[𝒬 (√𝛾

)]
in the case of

binary phase shift keying (BPSK).
Other instances of this problem include the analysis of mul-

tiple access interference in spread spectrum multiple access
systems [8], ultrawide band radio, multiple antenna relay-
ing with transmit antenna selection [9], and multiple-input
multiple-output channels under the channel-inversion power
allocation technique [10]. Another variant of the problem is
evaluating the outage probability given the reciprocal MGF.

This letter contributes the following. First, the average
𝔼
[𝒬 (√𝛾

)]
is expressed in terms of the MGF of 1/𝛾. This

expression allows simple numerical calculation of the average
by using the Gauss-Legendre Quadrature (GLQ) techniques
[11, 25.4.29]. Second, the closed-form exact BER and outage
of multihop relays are derived for the special case where the
fading index of each hop is an odd multiple of one-half.

The focus of our work overlaps with [7], where expressions
similar to (2) for the BER were derived for several modulation
schemes. But our work differs in two ways: (1) our method of
derivation is based on the Gil-Pelaez approach [12] and (2) we
derive closed-form expressions for the special case (Section
III). Due to limited space, only the BPSK case is treated here,
but following [7], other modulation formats can be analyzed
readily.

Mathematical Notations: 𝐾𝑛(⋅) is the modified Bessel
function of the second kind of order 𝑛 [11, 9.6.1], and
𝒟𝑘(⋅) [11, 19.3.1] denotes the parabolic cylinder function.
𝒞(⋅) [11, 7.3.3] and 𝒮(⋅) [11, 7.3.4] are the Fresnel cosine
and sine integrals. j2 = −1; ℜ (𝑧) and ℑ (𝑧) are the real and
imaginary parts of 𝑧. The probability density function (pdf)
and cumulative distribution function (cdf) of 𝑋 are 𝑓𝑋(⋅) and

𝐹𝑋(⋅). If 𝑋 ∼ 𝒢(𝛼, 𝛽), the Gamma pdf is 𝑓𝑋(𝑥) = 𝑥𝛼−1e
− 𝑥

𝛽

𝛽𝛼Γ(𝛼) ,
𝑥 ≥ 0, where Γ(⋅) is the Gamma function.

II. THEORY

Proposition 1. The average of 𝒬 (√𝛾
)

relates to the MGF
of 1/𝛾 as follows:

𝑃𝑒
.
=𝔼 [𝒬 (

√
𝛾)]

=
1

2
− 1

𝜋

∫ ∞

0

ℜ (ℳ1/𝛾(j𝜔)
)

𝜔
e−

√
𝜔 sin

(√
𝜔
)
d𝜔. (2)

where ℳ1/𝛾(𝑠) = 𝔼
[
e𝑠/𝛾

]
=
∫∞
0 e𝑠/𝑥𝑓𝛾(𝑥) d𝑥. Moreover,

𝑃𝑒 =
1

2
− 4

𝜋

∫ 1

−1

ℜ
(
ℳ1/𝛾

(
j
(

1+𝑡
1−𝑡

)2))
1− 𝑡2

e−
1+𝑡
1−𝑡 sin

(
1 + 𝑡

1− 𝑡

)
d𝑡.

(3)
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Proof: We need to compute

𝑃𝑒 =

∫ ∞

0

𝒬
(

1√
𝑥

)
𝑓1/𝛾(𝑥) d𝑥. (4)

By using integration by parts on (4), we can readily show that

𝑃𝑒 =
1

2
− 1√

8𝜋

∫ ∞

0

𝑥−3/2e−1/2𝑥𝐹1/𝛾(𝑥) d𝑥 (5)

where 𝐹1/𝛾(𝑥) is the cdf of 1/𝛾. Substituting the modified
version of the Gil-Pelaez lemma for positive random variables
[12, Eq. 5] for 𝐹1/𝛾(𝑥) in (5), and integrating over 𝑥, one can
prove Proposition 1.

Our extensive numerical experiments indicate that, it is
better to convert the integration range to [−1, 1]; using 𝜔 =
(1 + 𝑡)2/(1 − 𝑡)2 in (2) yields (3). The integral (3) can be
readily evaluated using the GLQ technique. In our numerical
experiments, we found that 50- to 75-point GLQ sums are
sufficient to achieve about 15-digit accuracy for all the cases
that were tested. This level of accuracy is more than sufficient
for practical applications.

III. EXACT PERFORMANCE OF MULTI-HOP AF RELAYS

In general, the integrals (3) or (4) must be evaluated numer-
ically. However, in the following, a closed-form evaluation
is feasible. The multi-hop amplify and forward (AF) case
has been investigated earlier, but exact closed-form solutions
are not available. Let the 𝑖th hop SNR be distributed as
𝛾𝑖 ∼ 𝒢(𝑚𝑖, 𝛾𝑖/𝑚𝑖) for 𝑖 = 1, . . . , 𝑁 . The MGF of the
reciprocal of received SNR 𝛾 for this case is given by [2]

ℳ1/𝛾(𝑠) =

𝑁∏
𝑖=1

2

Γ(𝑚𝑖)

(−𝑚𝑖𝑠

𝛾𝑖

)𝑚𝑖/2

𝐾𝑚𝑖

(
2

√−𝑚𝑖𝑠

𝛾𝑖

)
.

The Bessel function 𝐾𝑚(𝑥) can be expressed as a finite
expression if 𝑚 is an odd multiple of one-half [13, 8.468].
For the sake of brevity, in the following, we only consider the
case of independent, identical fading statistics.

A. BER of BPSK

Suppose that all 𝑚𝑖=𝑚+1
2 , where 𝑚≥0 is an integer, and

𝛾𝑖 = 𝛾, for 𝑖 = 1, . . . , 𝑁 . We can show using [13, 8.468] that

ℳ1/𝛾(𝑠) =

( √
𝜋

2𝑚Γ(𝑚+ 1/2)
e−𝑧

𝑚∑
𝑘=0

(𝑚+ 𝑘)!𝑧𝑚−𝑘

𝑘! (𝑚− 𝑘)!2𝑘

)𝑁

= e−𝑁𝑧
𝑚𝑁∑
𝑘=0

𝑏𝑘𝑧
𝑘, (6)

where 𝑧 =

(
2
√

−(𝑚+ 1
2 )𝑠

𝛾

)
and 𝑏𝑘 are readily given by [13,

0.314]. From Proposition 1, and using [14, 2.5.31 (4)] and
[14, 2.5.31 (11)], we get

𝑃𝑒 =
1

2
− 2

𝜋
ℜ
(

𝑚𝑁∑
𝑘=0

𝑏𝑘𝛼
𝑘𝐴(𝑘)

)
, (7)

where 𝛼 =

(
2
√

−j(𝑚+ 1
2 )

𝛾

)
and

𝐴(𝑘) =

⎧⎨
⎩

Γ(𝑘)

((𝑁𝛼+1)2+1)
𝑘
2
sin
(
𝑘 tan−1

(
1

𝑁𝛼+1

))
, 𝑘 ∕= 0

cot−1 (𝑁𝛼+ 1) , 𝑘 = 0
.

(8)
Eq. (7) is a new closed-form BER expression, which holds for
any 𝑁 ≥ 2.

B. Outage analysis

The MGF of the reciprocal of received SNR 𝛾 is given by
(6). The outage, Pr(𝛾 ≤ 𝑥), can be expressed by using [12,
Eq. (5)] as

𝐹𝛾(𝑥) = 1− 2

𝜋

∫ ∞

0

ℜ (ℳ1/𝛾(j𝜔)
)

𝜔
sin
(𝜔
𝑥

)
d𝜔

= 1− 2

𝜋

𝑚𝑁∑
𝑘=0

𝑏𝑘 ℜ
(∫ ∞

0

e−𝑁𝛼
√
𝜔𝛼𝑘𝜔𝑘/2 sin

(
𝜔
𝑥

)
𝜔

d𝜔

)
,

(9)

where 𝛼 =

(
2
√

−(𝑚+ 1
2 )j

𝛾

)
= ±(1 − j)

√
2𝑚+1

𝛾 . By substi-

tuting 𝑡 =
√
𝜔 in (10), we get

𝐹𝛾(𝑥) =1− 4

𝜋

𝑚𝑁∑
𝑘=0

𝑏𝑘

(
2𝑚+1

𝛾

)𝑘/2

ℜ
(
(±(1− j))

𝑘
𝕀(𝑘)
)
, (10)

where 𝕀(𝑘) =
∫∞
0 e−𝑝𝑡𝑡𝑘−1 sin

(
𝑡2

𝑥

)
d𝑡. To ensure

convergence, we pick 𝑝 = 𝑁(1− j)
√

2𝑚+1
𝛾 .

Case 𝑘 = 0, (using [14, 2.5.41(8)], with 𝑏
.
= 1

𝑥 , 𝛿
.
= 1)

𝕀(𝑘) =
𝜋

2

(
1

2
− 𝒞

(√
𝑥

2𝜋
𝑝

))2

+
𝜋

2

(
1

2
− 𝒮

(√
𝑥

2𝜋
𝑝

))2

(11)

Case 𝑘 ∕= 0,(using [14, 2.5.41(5)], with 𝑏
.
= 1

𝑥 , 𝛼
.
= 𝑘, 𝛿

.
= 1)

𝕀(𝑘) =
jΓ(𝑘)

2

(𝑥
2

)𝑘/2 (
e
−j

(
𝑘𝜋
4 +𝑝2𝑥

8

)
𝒟−𝑘

(
𝑝
√
𝑥√
2
e−𝜋j/4

)

− e
j
(

𝑘𝜋
4 + 𝑝2𝑥

8

)
𝒟−𝑘

(
𝑝
√
𝑥√
2
e𝜋j/4

))
(12)

These special functions are readily available in common
mathematical software such as Mathematica and Maple.

IV. NUMERICAL RESULTS

Fig. 1 compares (i) numerical (computed with 75 point GLQ
rule on (3) ), (ii) simulation (computed semi-analytically using
∼ 106 samples), and (iii) analytical BER results for 2-Hop
CA relaying over Nakagami-𝑚 faded links. BPSK modulation
is assumed. The exact closed-form expression (7) holds true
only when Nakagami parameter 𝑚 = 𝑛 + 0.5, 𝑛 ∈ 𝒵+.
Asymptotic result of [15] is used for other 𝑚 values. Accuracy
of numerical evaluation can be appreciated given its close
agreement with (i) exact closed-form results (where available,
e.g. case 𝑚 = 4.5), (ii) simulation results (at low avg. SNR),
and (iii) asymptotic results (at high avg. SNR, e.g. case
𝑚 = 3). Fig. 2 shows a similar comparison for 5-Hop CA
relaying. Asymptotic slope of the curves agrees with the fact
that diversity order is equal to Nakagami parameter 𝑚.
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Fig. 1. BER for 2-Hop CA relaying over Nakagami-𝑚 faded links, for
BPSK modulation. (i) solid (—): analytical results; exact for 𝑚 ∈ {2.5, 4, 5};
asymptotic for 𝑚 ∈ {1, 3}, (ii) dashed (−− ): numerical results from (3),
(iii) marker (□ ): simulation results.

Fig. 3 depicts the cdf of received SNR (10) for 𝑁 -hop CA
relaying over Nakagami-𝑚 faded links. As expected, the out-
age probability (given by 𝐹 (𝑥0) for a threshold 𝑥0) increases
with 𝑁 . Semi-analytic Monte-Carlo simulation verifies the
accuracy of (10).

V. CONCLUSION

Performance analysis of digital modulations when the MGF
of the reciprocal of the SNR is available has been considered.
The error rate was derived as a single integral expression that
can be efficiently evaluated by the Gauss-Legendre formulas.
For brevity, only the BPSK case was treated. The exact BER
and outage of multihop CA relaying were also derived for
the special case where the fading index of each hop is an
odd multiple of one-half. Single-integral error rate expressions
derived in [7] and in this letter will find applications including
relay networks, multiple access systems and ultra wide band
systems.
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