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Abstract—This paper analyzes the performance of an energy
detector over wireless channels with composite multipath fading
and shadowing effects. These effects are modeled by using
the 𝐾 and 𝐾𝐺 channel models. Closed-form average detection
probabilities are derived for both 𝐾 and 𝐾𝐺 channel models
for the no-diversity reception case. A simple approximation is
also derived for large values of energy threshold in the energy
detector. The analysis is then extended to cases with diversity
receptions including maximal ratio combining (MRC) and se-
lection combining (SC). Analytical results are verified by Monte
Carlo simulation and by numerical methods. Receiver operating
characteristic (ROC) curves are presented for different degrees of
multipath fading and shadowing. Finally, the Rayleigh-lognormal
distribution and the 𝐾 distribution are numerically compared,
and the validity of the 𝐾 channel model for representing the
impact of shadowing on the performance of energy detection is
affirmed.

Index Terms—Energy detector, detection probability, fading,
shadowing.

I. INTRODUCTION

S IGNAL detection is essential for wireless communica-
tions. Typical applications include radar detection, carrier-

sense multiple access (CSMA) based networks, and cognitive
radio (to detect the presence of licensed users). Traditional
signal detection techniques involve the energy detector, the
matched filter, or the feature detector. Among them, the
energy detector has the lowest hardware complexity. As a
non-coherent device, an energy detector samples the received
signal energy over a time window, compares with a pre-
specified threshold, and determines the presence or absence
of an unknown signal [1]. Energy detector does not require
any prior knowledge of the transmitted signal and fading
channel. Therefore, it can be found in practical communication
systems such as radar detection and orthogonal frequency
division multiplexing (OFDM) applications. Low-complexity
and non-coherent energy detection has thus been applied in
ultra-wideband (UWB) wireless communication networks [2].

In the open literature, many research efforts have been
expended to analyze the performance of energy detectors.
In [3], the statistics of the presence and absence of an
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unknown deterministic signal are formulated as non-central
and central chi-square distributions, respectively, assuming
a flat, band-limited, Gaussian noise channel. The detection
probability (𝑃𝑑) and false alarm probability (𝑃𝑓 ) are also
derived. Based on the detection and false alarm probabilities,
analytical results are given in [4] for Rayleigh, Rice and
Nakagami fading channels. A different analytical approach is
given in [5] [6] for the performance of an energy detector with
no diversity for Rayleigh, Rice and Nakagami fading channels
and with different diversity receptions such as maximal ratio
combining (MRC), selection combining (SC) and switch-and-
stay combining (SSC). Recently, the performance with equal
gain combining (EGC) under a Nakagami fading channel
is analyzed in [7]. In our work [8], an energy detector is
investigated in relay-based cognitive radio networks. Further,
we have investigated the performance of an energy detector
over 𝜂-𝜇 fading channel in [9]. All the above research efforts
have focused on multipath fading only.

Apart from the multipath fading, wireless signals also un-
dergo shadowing. While the multipath fading can be modeled
as a Rayleigh, Rice or Nakagami distribution, shadowing
process is typically modeled as a lognormal distribution [10].
Therefore, some practical communication channels can be
modeled as multipath fading superimposed on lognormal
shadowing. Due to the difficulty of analyzing digital wireless
communication systems over composite fading models, the
shadowing effect is sometimes neglected in the literature.

Recently, to model channels with composite multipath fad-
ing and shadowing, the 𝐾 distribution and generalized 𝐾
(termed 𝐾𝐺) distribution have been introduced, by using a
gamma distribution to approximate the lognormal distribution
of the shadowing. In [11], the 𝐾 distribution, a mixture
of Rayleigh distribution and gamma distribution, is used to
approximate the Rayleigh-lognormal distribution in a real
channel, referred to as the 𝐾 channel model. The accuracy of
the approximation is verified by comparison of their moment
generating functions (MGFs). In [12], the 𝐾𝐺 distribution,
a mixture of the Nakagami distribution and gamma distri-
bution, is presented to approximate the Nakagami-lognormal
distribution in a real channel, referred to as the 𝐾𝐺 channel
model. The𝐾 and𝐾𝐺 channel models have been well adopted
for analysis of wireless communication systems with both
multipath fading and shadowing. The 𝐾𝐺 model includes
special cases, such as the 𝐾 model, and can also approxi-
mate the Nakagami-𝑚 model, the Rayleigh-lognormal (RL)
distribution and the Suzuki model [11]. This model may also
be used for tropospheric propagation of radio, radar clutter and
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optical scintillation. The bit error rate (BER) performance is
derived in [13] for differential phase-shift keying (DPSK) and
minimum shift keying (MSK), using the 𝐾 channel model.
In [14], the outage probability with and without co-channel
interference is presented, based on the𝐾𝐺 channel model, and
the results match well with the Nakagami-lognormal model.
In [15], signal-to-noise ratio (SNR) statistics, the average
Shannon’s channel capacity and the BER performance are
studied, based on the 𝐾𝐺 channel model. Average BER with
different diversity receptions can be found in [16], with the
𝐾𝐺 channel model. Recently, performance of generalized
selection combining receivers over the 𝐾 channel model is
presented in [17], based on marginal MGF of the end-to-end
SNRs. However, the performance of an energy detector in 𝐾𝐺
channels is not available in the literature.

In this research, we analyze the performance of an energy
detector for channels with both multipath fading and shadow-
ing, by adoption of the𝐾 and𝐾𝐺 channel models. The critical
part of the analysis is the derivation of the average detection
probability. This derivation requires the generalized Marcum-
Q function be averaged over the 𝐾𝐺 distribution. Since the
𝐾 and 𝐾𝐺 channel models contain modified Bessel functions,
direct integration appears intractable or does not seem to lead
to simple closed-form solutions. In order to circumvent these
difficulties, we use the following ‘trick.’ The𝐾 or𝐾𝐺 channel
model actually is a result of averaging a conditional Rayleigh
or Nakagami probability density function (PDF) by a gamma
PDF. Therefore, we use existing results on the energy detector
for Nakagami-𝑚 fading case and average them over the
gamma PDF (which models the shadowing part). This simple
trick allows us to avoid the averaging over the modified Bessel
function of the third kind. Similar approaches can be applied
for the diversity combining techniques with each diversity
branch having identical instantaneous shadowing effect.

The rest of the paper is organized as follows. The system
model is described in Section II. Average detection probability
of an energy detector is analyzed in Sections III and IV
for cases with no-diversity reception and diversity reception,
respectively. Numerical and simulation results are presented in
Section V. The concluding remarks are made in Section VI.

II. SYSTEM MODEL

The received signal at an energy detector at time 𝑡 can be
represented as:

𝑟(𝑡) =

{
𝑤(𝑡); 𝐻0,
ℎ𝑠(𝑡) + 𝑤(𝑡); 𝐻1,

where ℎ is the channel gain, 𝑠(𝑡) is the transmitted signal and
𝑤(𝑡) is the noise signal at the receiver. The hypothesis 𝐻0

and 𝐻1 mean the absence and presence of the target signal,
respectively.

A. The 𝐾 and 𝐾𝐺 Channel Models

The fading amplitude 𝑋 undergoes multipath fading as a
Rayleigh distribution or a Nakagami distribution, and shadow-
ing as a gamma distribution. Therefore, the average power of
𝑋 , which represents the shadowing effect, follows the gamma
distribution. The PDF of 𝑋 , denoted as 𝑓𝑋(𝑥), follows a 𝐾
distribution when the multipath fading is Rayleigh distributed,

or a 𝐾𝐺 distribution when the multipath fading is Nakagami
distributed.

For the 𝐾 distribution, 𝑓𝑋(𝑥) can be written as [17]:

𝑓𝑋(𝑥) =
4

Γ(𝑘)
√
Ω

(
𝑥√
Ω

)𝑘
𝐾𝑘−1

(
2√
Ω
𝑥

)
, 𝑥 ≥ 0

where 𝐾𝑣(⋅) is the 𝑣th-order modified Bessel function of the
second kind, 𝑘 is the shaping parameter, Ω represents the scale
parameter which is also the mean signal power given as Ω =
𝔼[𝑋2]/𝑘,1 and Γ(⋅) is the standard gamma function. For the
𝐾𝐺 distribution, 𝑓𝑋(𝑥) can be written as [16]:

𝑓𝑋(𝑥) =
4𝑚

𝛽+1
2 𝑥𝛽

Γ(𝑚)Γ(𝑘)Ω
𝛽+1
2

𝐾𝛼

[
2
(𝑚
Ω

) 1
2

𝑥

]
, 𝑥 ≥ 0

where 𝑚 is Nakagami fading parameter, 𝛼 = 𝑘 − 𝑚, and
𝛽 = 𝑘+𝑚−1. The𝐾𝐺 distribution reduces to a𝐾 distribution
when 𝑚 = 1. Moreover, as 𝑚 → ∞ and 𝑘 → ∞, the
𝐾𝐺 model tends to a non-fading case, i.e., the additive white
Gaussian noise (AWGN) channel.

B. Energy Detector Basics

The energy detector measures the energy of the received
signal 𝑟(𝑡) within a pre-defined bandwidth𝑊 over time period
𝑇 . It is important to note that the time-bandwidth product is
given by 𝑢 = 𝑇𝑊 , which is an integer. After sampling and
frequency domain operations, the collected energy Λ (which
is the test statistic of the energy detector) follows a central
chi-square distribution with 2𝑢 degrees of freedom under
hypothesis 𝐻0, or a non-central chi-square distribution with
2𝑢 degrees of freedom under hypothesis 𝐻1. The detector
compares the test statistic Λ with a pre-defined threshold 𝜆.
The false alarm probability (𝑃𝑓 ) and detection probability
(𝑃𝑑) can be evaluated by Pr(Λ > 𝜆∣𝐻0) and Pr(Λ > 𝜆∣𝐻1),
respectively, as follows [5]:

𝑃𝑓 =
Γ(𝑢, 𝜆2 )

Γ(𝑢)
, (1)

𝑃𝑑 = 𝑄𝑢(
√

2𝛾,
√
𝜆) (2)

where 𝑄𝑢(⋅, ⋅) is the generalized Marcum-Q function, Γ(⋅, ⋅)
is the upper incomplete gamma function defined as Γ(𝑎, 𝑥) =∫∞
𝑥 𝛼𝑎−1𝑒−𝛼𝑑𝛼 and Γ(𝑎, 0) = Γ(𝑎), and 𝛾 is the received

SNR of the target signal.
To demonstrate the detection performance, the receiver op-

erating characteristic (ROC) curves are typically used, which
are plots of the detection probability versus the false alarm
probability. When the threshold 𝜆 varies from 0 to ∞, the
ROC curve moves from the upper right point (1, 1) to the
origin (0, 0). In other words, to draw the entire ROC curve, the
range of 𝜆 should vary from 0 to ∞. In a real communication
system, the value of 𝜆 should be determined by the system
requirement. In the wireless literature (such as in references
[18]–[21]), most research efforts select the threshold 𝜆 such
that the false alarm probability is bounded by a target value.
As shown in (1), the false alarm probability depends on two
parameters: time-bandwidth product 𝑢 and the threshold 𝜆.
Therefore, the selection of 𝜆 is not related to SNR 𝛾. If

1
𝔼[⋅] denotes the expectation.
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we examine the typical parameter values considered in the
literature, the false alarm probability is set as a value between
10−1 to 10−2 [19]–[21], and also IEEE 802.22 standard
recommends 𝑃𝑓 < 0.1 in the spectrum sensing [22]. The time-
bandwidth product (𝑢 = 𝑇𝑊 ) is chosen within the range from
1 to 25 [3], [5], [6]. As an example, we can achieve 𝑃𝑓 ≤ 10−2

with 𝑢 = 25 at 𝜆 ≥ 78.
When 𝜆 varies from 0 to ∞, the false alarm probability

𝑃𝑓 can be easily calculated by using (1) for given 𝑢. On
the other hand, the detection probability is determined by
the value of 𝜆 and the channel fading/shadowing. Therefore,
in a fading/shadowing channel, it is essential to evaluate the
average of 𝑃𝑑 over the distribution of 𝛾. The subsequent two
sections are devoted to the calculation of this probability for
the no-diversity case and diversity cases, respectively.

III. AVERAGE DETECTION PROBABILITY WITH

NO-DIVERSITY RECEPTION

The SNR per received symbol is 𝛾 = 𝑋2𝐸𝑠/𝑁0 , where 𝐸𝑠
and 𝑁0 are the transmission energy per symbol and the single-
sided power spectral density of the AWGN, respectively. The
average detection probability of the energy detector, 𝑃𝑑, can
be evaluated by averaging 𝑃𝑑 in (2) over the SNR range. This
can be expressed mathematically as follows:

𝑃𝑑 =

∫ ∞

0

𝑄𝑢(
√
2𝛾,

√
𝜆)𝑓𝛾(𝛾)𝑑𝛾

=

∫ ∞

0

∫ ∞

0

𝑄𝑢(
√

2𝛾,
√
𝜆)𝑓𝛾∣𝑌=𝑦(𝛾)𝑑𝛾𝑓𝑌 (𝑦)𝑑𝑦

=

∫ ∞

0

𝑃𝐹𝑎𝑑𝑑 (𝑦)𝑓𝑌 (𝑦)𝑑𝑦,

(3)

where 𝑌 is the SNR with only shadowing effect (i.e., multipath
fading is excluded), which follows a gamma distribution [10]

𝑓𝑌 (𝑦) =
𝑦𝑘−1𝑒−

𝑦
Ω

Γ(𝑘)Ω𝑘
, 𝑦 ≥ 0 (4)

and 𝑃𝐹𝑎𝑑𝑑 (𝑦) =
∫∞
0 𝑄𝑢(

√
2𝛾,

√
𝜆)𝑓𝛾∣𝑌=𝑦(𝛾)𝑑𝛾 is the aver-

age2 detection probability with a specific 𝑌 value. 𝑃𝐹𝑎𝑑𝑑 (𝑦)
for different applications under different multipath fading can
be expressed using previous results in the literature [4] [5] [6],
by replacing the 𝛾’s in previous results with 𝑦.

Average detection probability 𝑃𝑑 can be derived after av-
eraging 𝑃𝐹𝑎𝑑𝑑 (𝑦) by 𝑓𝑌 (𝑦) in (4). This approach appears
mathematically more tractable than the direct integration of
𝑃𝑑 over 𝑓𝛾(𝛾) to find the overall average detection probability
under the 𝐾 and 𝐾𝐺 channel models. Readers may refer to
the Appendix for all derivations of the following results.

A. Closed-form Average Detection Probability

1) 𝐾 Channel Model: The average detection probability
over the 𝐾 channel model, 𝑃𝐾𝑑 , can be evaluated by replacing
each 𝛾 of the average detection probability over Rayleigh
distribution [6, eq. (9)] by 𝑦, and averaging over 𝑓𝑌 (𝑦) (see
Appendix). Therefore, 𝑃𝐾𝑑 can be expressed as in (6) which is

2Here the “average” means the average with respect to multipath fading.

on the next page where 𝑈( ; ; ) is the confluent hypergeometric
function of the second kind defined as [23, eq. (3.383.5)]:∫ ∞

0

𝑒−𝑝𝑥𝑥𝑞−1(1 + 𝑎𝑥)−𝑣𝑑𝑥 =
Γ(𝑞)

𝑎𝑞
𝑈
(
𝑞; 𝑞 + 1− 𝑣; 𝑝

𝑎

)
(5)

with Re{𝑞} > 0, Re{𝑝} > 0, Re{𝑎} > 0 and 𝑣 a complex
value. The result in expression (6) is valid for 𝑢 < 𝑘 + 1.

2) 𝐾𝐺 Channel Model: The average detection probability
over 𝐾𝐺 channel model, 𝑃𝐾𝐺

𝑑 , can be evaluated by replacing
each 𝛾 of the average detection probability over Nakagami-𝑚
distribution [6, eq. (7)] by 𝑦, and averaging over 𝑓𝑌 (𝑦) (see
Appendix). Therefore, 𝑃𝐾𝐺

𝑑 can be expressed as (7) on the
next page, where

(
𝑛
𝑘

)
is a binomial coefficient defined as

(
𝑛
𝑘

)
=

𝑛!
𝑘!(𝑛−𝑘)! , (𝑥)𝑠 is the Pochhammer symbol defined as (𝑥)𝑠 =

Γ(𝑥+ 𝑠)/Γ(𝑥), and 𝑈( ; ; ) is given in (5). Expression (7) is
valid for integer 𝑚. When 𝑚 = 1, this result is numerically
equivalent to the one obtained in (6).

B. Average Detection Probability Approximation

One challenge in calculating the expressions (6) and (7) is
the infinite sums. In the following, we use the expression (6)
as an example. The expression (7) can be treated similarly.

The expression (6) can be rewritten as

𝑃𝐾𝑑 = 𝑒−
𝜆
2

𝑢−2∑
𝑛=0

1

𝑛!

(
𝜆

2

)𝑛
+

∞∑
𝑛=0

(−1)𝑛𝑎𝑛 −
𝑢−2∑
𝑙=0

𝑏𝑙 (8)

where

𝑎𝑛 =
(𝜆2 )

𝑛Γ(𝑝)𝑈
(
𝑝; 𝑘 − 𝑛+ 1; 1

Ω

)
𝑛!Γ(𝑘)Ω𝑘

is the 𝑛th term of the auxiliary series
∑∞
𝑛=0(−1)𝑛𝑎𝑛, and

𝑏𝑙 =
𝑒−

𝜆
2

(
𝜆
2

)𝑙
Γ(𝑙 + 𝑝)𝑈

(
𝑙 + 𝑝; 𝑘 + 1; 1

Ω

)
𝑙!Γ(𝑘)(Ω)𝑘

is the 𝑙th term of the finite series
∑𝑢−2
𝑙=0 𝑏𝑙, and 𝑝 = 𝑘−𝑢+1.

Theoretically, the auxiliary series converges as 𝑛 → ∞.
When 𝜆 is small, it is observed that the series converges
for relatively small values of 𝑛, and thus, (6) can be accu-
rately computed by using any mathematical software (e.g.,
MATHEMATICA [24]). When 𝜆 is large, the sum requires
the evaluation of 𝑎𝑛 for large 𝑛, and therefore, accurate
computation of (6) is difficult (e.g., numerical underflow and
overflow errors degrade the accuracy). For higher 𝜆 values, the
corresponding values of the average detection probability as
well as the false alarm probability are very small (for instance,
it can be less than 10−3). Thus, an approximation is needed
for large 𝜆.

Consequently, we define

𝐼𝐾 ≜
∫ ∞

0

(
1 + 𝑦

𝑦

)𝑢−1

𝑒−
𝜆

2(1+𝑦) 𝑓𝑌 (𝑦)𝑑𝑦. (9)

Using 𝑒−
𝑎

𝑏+𝑥 =
∑∞
𝑛=0

(−1)𝑛𝑎𝑛

𝑛!(𝑏+𝑥)𝑛 , we have

𝐼𝐾 =

∞∑
𝑛=0

(−𝜆
2 )
𝑛

𝑛!Γ(𝑘)Ω𝑘

∫ ∞

0

𝑦𝑘−𝑢(1 + 𝑦)−(𝑛−𝑢+1)𝑒−
𝑦
Ω 𝑑𝑦

=

∞∑
𝑛=0

(−1)𝑛𝑎𝑛

(10)
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𝑃𝐾𝑑 = 𝑒−
𝜆
2

𝑢−2∑
𝑛=0

1

𝑛!

(
𝜆

2

)𝑛
+

1

Γ(𝑘)Ω𝑘

[ ∞∑
𝑛=0

(−1)𝑛
(
𝜆
2

)𝑛
Γ(𝑘 − 𝑢+ 1)

𝑛!
𝑈

(
𝑘 − 𝑢+ 1; 𝑘 − 𝑛+ 1;

1

Ω

)

− 𝑒−𝜆
2

𝑢−2∑
𝑛=0

(
𝜆
2

)𝑛
Γ(𝑛+ 𝑘 − 𝑢+ 1)

𝑛!
𝑈

(
𝑛+ 𝑘 − 𝑢+ 1; 𝑘 + 1;

1

Ω

)]
.

(6)

𝑃𝐾𝐺

𝑑 =
1

Γ(𝑘)

(𝑚
Ω

)𝑘 [
𝑒−

𝜆
2

∞∑
𝑠=0

𝑢−1∑
𝑛=1

(
𝜆
2

)𝑛+𝑠
𝑛!𝑠!

(𝑚)𝑠
(𝑛+ 1)𝑠

Γ(𝑠+ 𝑘)𝑈
(
𝑠+ 𝑘; 𝑘 −𝑚+ 1;

𝑚

Ω

)

+

∞∑
𝑡=0

𝑚−1∑
𝑣=0

(−1)𝑡(𝜆2 )
𝑡+𝑣Γ(𝑣 + 𝑘)

𝑡!𝑣!

(
𝑚− 1

𝑚− 𝑣 − 1

)
𝑈
(
𝑣 + 𝑘; 𝑘 − 𝑡−𝑚+ 2;

𝑚

Ω

)

+

∞∑
𝑠=0

𝑚−2∑
𝑛=0

𝑛∑
𝑎=0

(−1)𝑠(𝜆2 )
𝑎+𝑠

𝑎!𝑠!

(
𝑛

𝑛− 𝑎
)
Γ(𝑎+ 𝑘 + 1)𝑈

(
𝑎+ 𝑘 + 1; 𝑘 − 𝑠− 𝑛+ 1;

𝑚

Ω

)]
.

(7)

where the second equality comes from (5). It can be seen
that 𝐼𝐾 is the second term in (8). Note that the first and
the third terms in (8) are finite sums and therefore, can be
calculated exactly. Therefore, for accuracy of (8), it is essential
to calculate 𝐼𝐾 accurately. In the following, convergence
acceleration of (10) and an approximation method are given
for 𝐼𝐾 .

1) Convergence Acceleration: As 𝜆→ ∞, a large number
of terms in (10) need to be evaluated. This drawback can be
avoided by using a convergence acceleration technique. The
idea is to generate a new sequence by using 𝑎𝑘∣𝑁𝑘=0. Consider
the partial sums 𝑠𝑛 =

∑𝑛
𝑘=0(−1)𝑘𝑎𝑘 for 𝑛 = 0, 1, . . . , 𝑁−1.

The objective is to estimate the limit 𝑠∞ by using as few
as possible partial sums. The 𝜖-algorithm [25] is a powerful
convergence acceleration technique suitable for this purpose.
The algorithm generates an array 𝜖 with 𝜖−1(𝑠𝑛) = 0,
𝜖0(𝑠𝑛) = 𝑠𝑛, and

𝜖𝑟+1(𝑠𝑛) = 𝜖𝑟−1(𝑠𝑛+1) +
1

𝜖𝑟(𝑠𝑛+1)− 𝜖𝑟(𝑠𝑛) (11)

where 𝑟(≥ 0) is an integer. The acceleration method starts
with a partial sum of (10). It then estimates the converging
point of 𝑛 through (11) while keeping adding adequate terms
in (10) to reach the required accuracy.

2) Approximation: For large 𝜆, we can approximate 𝐼𝐾 in
(9) as

𝐼𝐾 ≈
∫ ∞

0

(
1 + 𝑦

𝑦

)𝑢−1

𝑒−
𝜆
2𝑦 𝑓𝑌 (𝑦)𝑑𝑦. (12)

After applying binomial expansion with some algebraic ma-
nipulations, (12) can be shown to be

𝐼𝐾 ≈ 1

Γ(𝑘)Ω𝑘

𝑢−1∑
𝑠=0

(
𝑢− 1

𝑠

)∫ ∞

0

𝑦𝑘−𝑢+𝑠𝑒−(
𝜆
2𝑦+ 𝑦

Ω )𝑑𝑦.

With the aid of [23, eq. (3.478.4)], 𝐼𝐾 can be evaluated as

𝐼𝐾 ≈ 2

Γ(𝑘)Ω𝑘

𝑢−1∑
𝑠=0

(
𝑢− 1

𝑠

)(
𝜆Ω

2

) 𝑝
2

𝐾𝑝

(√
2𝜆

Ω

)
(13)

where 𝑝 = 𝑘−𝑢+ 𝑠+1. As comparing with (10), expression
(13) consists of a finite summation with 𝐾𝑝(⋅), which is
available in most mathematical software.

The approximation is given to the second term of (8). The
first and the third terms of (8) are finite sums and therefore, can
be calculated exactly. So, the accuracy of the average detection
probability depends on the accuracy of the approximation.
For instance, a four decimal points accuracy is achieved in
the average detection probability when a four decimal points
accuracy is achieved in 𝐼𝐾 .

3) Error Analysis: The error term on 𝐼𝐾 due to the
approximation given in (13) can be written as

ℰ =
1

Γ(𝑘)Ω𝑘

∫ ∞

0

(
1 + 𝑦

𝑦

)𝑢−1

𝑦𝑘−1𝑒−
𝑦
Ω

(
𝑒−

𝜆
2(1+𝑦) − 𝑒− 𝜆

2𝑦

)
𝑑𝑦.

(14)

It should be noted that the approximation is applied to evaluate
the average detection probabilities at higher 𝜆 values. When
𝜆 goes to larger values, the behavior of ℰ in (14) can be
represented as

ℰ→
(
2
𝜆

)𝑑
Γ(𝑘)Ω𝑘

∫ ∞

0

(
1 + 𝑦

𝑦

)𝑢−1

𝑦𝑘−1𝑒−
𝑦
Ω

(
(1 + 𝑦)𝑑− 𝑦𝑑) 𝑑𝑦

=
2𝑑

Γ(𝑘)Ω𝑘

[
Γ(𝑝)𝑈(𝑝; 𝑘 + 𝑑+ 1;

1

Ω
)

− Γ(𝑝+ 𝑑)𝑈(𝑝+ 𝑑; 𝑘 + 𝑑+ 1;
1

Ω
)

]
𝜆−𝑑

(15)

where 𝑑 = 2 and 𝑝 = 𝑘−𝑢+1. It can be seen that, for any 𝑘, 𝑢
and Ω, the error exponentially decreases with high 𝜆. Further,
it is important to check the effect of error for higher average
SNR values (i.e., Ω → ∞). When 𝑥 → 0+, the confluent
hypergeometric function of the second kind has asymptotic
formula: 𝑈(𝑎; 𝑐;𝑥) ≈ Γ(𝑐−1)

Γ(𝑎) 𝑥
1−𝑐, 𝑐 > 1 [26]. For higher

average SNR, it can be shown that ℰ → 0, because the term
in the square bracket of (15) goes to zero as Ω → ∞. Since the
approximation (13) consists of finite sums, numerical values
can be readily evaluated with mathematical software.

IV. AVERAGE DETECTION PROBABILITY WITH DIVERSITY

RECEPTION

In this section, we discuss the performance of an energy
detector with diversity combining methods. We consider 𝐿
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diversity branches, which are independent and modeled with
the 𝐾 distribution. First, we consider independent and iden-
tically distributed (i.i.d.) diversity branches, which have the
same instantaneous shadowing in each branch. In this case, we
can reapply the averaging technique (3). Next, we derive an
accurate expression for the average detection probability under
non-identical instantaneous shadowing. We mainly focus on
two diversity techniques such as maximal-ratio combining
(MRC) and selection combining (SC).

A. Diversity branches with identical instantaneous shadowing

1) Maximal Ratio Combining (MRC): The MRC receiver
combines all the diversity branches weighted with their cor-
responding complex fading gains. The instantaneous SNR of
the combiner output is thus 𝛾𝑀𝑅𝐶 = 𝛾1+𝛾2+ ...+𝛾𝐿. Since
energy detector compares the received energy after the 𝐿 i.i.d.
branches are combined, the expressions of the instantaneous
false alarm and detection probabilities at the output of MRC
for AWGN channels are the same as (1) and (2), respectively.
To get the overall average detection probability,𝑃𝑑 should then
be averaged over the Rayleigh fading first, and then averaged
over the shadowing. The PDF of 𝛾𝑀𝑅𝐶 for i.i.d. Rayleigh
fading channels is given by [10]

𝑓𝛾𝑀𝑅𝐶(𝑥) =
𝑥𝐿−1 𝑒−

𝑥
𝛾

Γ(𝐿)𝛾𝐿
(16)

where 𝛾 is the average SNR in any branch (note that the
“averaging” is on fading only, excluding shadowing). The
𝑓𝛾𝑀𝑅𝐶 (𝑥) in (16) is similar to the PDF of 𝛾 under Nakagami
fading in no-diversity. Therefore, after averaging on Rayleigh
fading, the 𝑃𝑑 under MRC (𝑃𝑀𝑅𝐶𝑑 ) can be obtained from the
average detection probability for a Nakagami channel with no
diversity (i.e., by replacing 𝑚 by 𝐿 and 𝑦 by 𝐿𝑦 in (18)
in the Appendix). Therefore, the overall average detection
probability for the 𝐾 channel model with MRC, 𝑃𝑀𝑅𝐶𝑑 , can
be obtained by averaging the “average detection probability
for a Nakagami channel with no diversity” over a gamma
distribution, which is exactly the expression 𝑃𝐾𝐺

𝑑 in (7), but
with 𝑚 replaced by 𝐿 and Ω replaced by 𝐿Ω.

2) Selection Combining (SC): The combiner selects the
branch having the strongest SNR among all diversity branches.
The instantaneous SNR at the output of the combiner is
𝛾𝑆𝐶 = max{𝛾1, 𝛾2, ..., 𝛾𝐿}, where 𝛾𝑘 is the SNR in the
𝑘th branch. The PDF of 𝛾𝑆𝐶 , without shadowing, is given
in [5, eq. (29)]. Replacing each 𝛾 in [5, eq. (30)] by 𝑦 and
averaging it over 𝑓𝑌 (𝑦), the average detection probability for
SC diversity scheme under the 𝐾 channel model, 𝑃𝑆𝐶𝑑 , can
be evaluated as:

𝑃𝑆𝐶𝑑 = 𝐿
𝐿−1∑
𝑝=0

(−1)𝑝

𝑝+ 1

(
𝐿− 1

𝑝

)
𝑃𝐾𝑑

(
Ω

𝑝+ 1

)

where 𝑃𝐾𝑑

(
Ω
𝑝+1

)
is the 𝑃𝐾𝑑 in (6) with the replacement of

each Ω by
(

Ω
𝑝+1

)
.

Similarly, square-law combining (SLC) and square-law se-
lection diversity techniques, which are frequently used in the
cooperative spectrum sensing in cognitive radio networks, can
be analyzed using the results in [6].
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Fig. 1. Comparison of analytical expressions (6) and (7) with numerical ap-
proximations by the Gaussian-Legendre method, and Monte Carlo simulations
(𝑢 = 2, 𝑘 = 5.5 and 𝛾 = 10 dB).

B. Diversity branches with non-identical instantaneous shad-
owing

When the diversity branches have non-identical instanta-
neous shadowing, PDFs of several diversity schemes have
complicated mathematical expressions (e.g., MRC), or exact
PDFs of some cases (e.g., EGC) are difficult to derive in
closed-form [16]. The previous averaging technique (based on
the assumption of identical instantaneous shadowing among
all branches) cannot be applied in this case. In the following,
we introduce an alternative method which can be applied with
MRC.

The PDF of 𝛾𝑀𝑅𝐶 under 𝐾𝐺 channel model is given in
[16, eq. (11)]. Therefore, the PDF of 𝛾𝑀𝑅𝐶 under 𝐾 channel
model can be derived as (note that 𝑚 = 1)

𝑓𝛾𝑀𝑅𝐶(𝑥) = ℱ(𝑚 = 1, 𝑘, 𝐿)Ξ
1+𝜏
2 𝐿

1−𝜏
2 𝑥

𝜏−1
2 𝐼𝜏−1

(
2
√
Ξ𝐿𝑥

)

where ℱ(𝑚 = 1, 𝑘, 𝐿) and 𝜏 are defined in [16, eq. (10)], and
Ξ = 𝑘

𝛾 . The average detection probability can be written as

𝑃𝑀𝑅𝐶𝑑 =2ℱ(1, 𝑘, 𝐿)Ξ
1+𝜏
2 𝐿

1−𝜏
2∫ ∞

0

𝑥𝜏 𝐼𝜏−1

(
2
√
Ξ𝐿𝑥

)
𝑄𝑢

(√
2𝑥,

√
𝜆
)
𝑑𝑥.

(17)

To the best of our knowledge, the integral in (17) cannot be
solved in closed form in general. In some particular scenarios,
such as 𝑢 = 1, 𝐿 = 2, and 𝑘 = 1 (i.e., one sample per
real or quadrature component, dual-branch MRC, and severe
fading and shadowing), 𝑃𝑀𝑅𝐶𝑑 may be solved in closed-form
with the aid of [27, eq. (5)], [28, eq. (2.15.20.7)] and [27, eq.
(54)]. In Appendix C, an approximation is given for (17) by
applying Gaussian integration methods as a generalized result.
Similarly, the average detection probability over SLC can also
be derived. This formulation is valid for 𝐾𝐺 channel model
as well.
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TABLE I
NUMBER OF TERMS REQUIRED TO GET THE ACCURACY UP TO FOUR

DECIMAL POINTS.

Converging Point of (𝑛)
𝜆 = 25 𝜆 = 50 𝜆 = 75 𝜆 = 100

Equation (6) 20 50 84 114
𝜖−Algorithm 11 15 19 23

Gaussian-Legendre 38 38 38 38

V. NUMERICAL AND SIMULATION RESULTS

A. Validation of the Analysis

Analytical results in (6) and (7) are verified by numerical
approximation3 through the Gaussian-Legendre method and
Monte Carlo simulations, as shown in Fig. 1.

The expressions (6) and (7) are calculated by MATH-
EMATICA software package [24], as shown in Fig. 1 by
legend “Equation (6)” and “Equation (7)”. Since the number
of terms to sum up to achieve the required accuracy (e.g., up
to four decimal points) increases with the increase of 𝜆, we
use an acceleration method, in which an 𝜖-algorithm [25] is
applied to calculate the alternative series in (6) and (7). As
an example, the converging points of 𝑛 (which reaches the
required accuracy) for different 𝜆 values are given in Table
I, for the equation (6), the 𝜖-algorithm, and the Gaussian-
Legendre method used in the numerical approximations.

Numerical integration is performed with the Gaussian-
Legendre (Gaussian quadrature) method, which is explained
here briefly. If an integral is in the form

∫ 1

−1 𝑓(𝑥)𝑑𝑥, the
Gaussian quadrature rule can be applied as∫ 1

−1

𝑓(𝑥)𝑑𝑥 ≈
𝑛∑
𝑖=1

𝑤𝑖𝑓(𝑥𝑖)

by a suitable choice of the nodes (Legendre points) 𝑥𝑖’s and
weights 𝑤𝑖’s (𝑖 = 1, ..., 𝑛), where 𝑛 is the number of nodes.
The integral (9) in the form of

∫∞
0
ℎ(𝑦)𝑑𝑦 can be transformed

to the form
∫ 𝜋

2

0 𝜙(𝜃)𝑑𝜃 by using the substitution 𝑦 = tan 𝜃.
Further, it can be transformed to the form

∫ 1

−1 𝑓(𝑥)𝑑𝑥 using
the substitution 𝜃 = 𝜋

4𝑥+
𝜋
4 . With the help of the three-term

recurrence relation, nodes 𝑥𝑖 and weights 𝑤𝑖 can be computed
from the associated eigenvalues and eigenvectors [29, Table
25.4]. Therefore, the Gaussian-Legendre method is suitable
for 𝐼𝐾 to evaluate (6) numerically. A similar method can be
applied to evaluate (7).

Fig. 1 shows that the analytical results in (6) and (7) match
well with the simulations, and the Gaussian-Legendre method
provides an accurate approximation.

B. Accuracy of the Approximation for 𝐼𝐾
In Fig. 2, we plot 𝐼𝐾 vs 𝜆 for the 𝐼𝐾 definition (9)

and the approximation in (13). The approximation acts as a
lower bound for all 𝜆’s and the bound gets tighter when 𝜆
increases from 0 to ∞ (i.e., for large 𝜆’s). As an example,
we can get accuracy of four decimal points when 𝜆 > 150
with 𝑢 = 3, 𝑘 = 5.5 and Ω = 1. However, it should be
noted that for small 𝜆’s (practical threshold range), (6) and

3Note that the numerical approximation is only for numerical calculation
of the expression (6) and (7). On the other hand, the expression (13) shows
closed-form approximation for (6).
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Fig. 2. Comparison of exact 𝐼𝐾 in (9) with Approximation in (13).

(7) can be used directly to evaluate the accurate detection
probabilities without approximation. The approximation helps
for asymptotic analysis.

C. Impact of the Shadowing and Fading

Fig. 3 shows the ROC curves (which are illustrated by
𝑃𝑑 vs 𝑃𝑓 ) for the 𝐾 channel model with different 𝑘 and
average SNR 𝛾 with 𝑢 = 1. With the increase of 𝑘, an
improvement in the detection probability is observed. This is
because increasing 𝑘 diminishes the shadowing effect. When
𝑘 → ∞, the channel is a Rayleigh fading model.

For 𝐾𝐺 channel, Fig. 4 shows effect of multipath fading
with fixed shadowing (𝑘 = 5.5). Different 𝑚 values are taken,
with 𝛾 = 5, 10 dB and 𝑢 = 1. For larger 𝑚, the receiver
has a higher detection probability with a lower false alarm
probability, i.e., the channel fading conditions improve with
the reduced fluctuations of the signal strength.

D. Performance in Diversity Receptions

The performance of MRC and SC diversity schemes with
different number 𝐿 of diversity branches, which have the
same instantaneous shadowing, is illustrated in Fig. 5. There
is an obvious diversity gain in the case of diversity systems
compared to no-diversity system (the case with 𝐿 = 1).
Further, MRC always outperforms SC.

E. Shadowing Effect

Further, it is important to notice the differences between
Rayleigh-lognormal distribution and 𝐾 distribution. In gen-
eral, the performance of shadowing effect is compared with
respect to shadowing standard deviation 𝜎Ω and mean 𝜇Ω
in lognormal distribution [10, eq. (2.200)]. The relationships
between the parameters in Rayleigh-lognormal distribution
(𝜎Ω and 𝜇Ω) and parameters in 𝐾 distribution (𝑘 and Ω) can
be obtained in [11].

Fig. 6 shows the ROC curves of the energy detector for
𝜎Ω ≈ 4.5 dB, 8 dB and 13 dB to represent urban area,
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Fig. 3. ROC curves for the 𝐾 channel model with different 𝑘 (𝑢 = 1,
𝛾 = 0, 5, 15 dB).
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Fig. 4. ROC curves for 𝐾𝐺 channel model with different fading parameters,
𝑚 (𝑘 = 5.5, 𝑢 = 1, 𝛾 = 5, 10 dB).

typical microcell and worst case of macrocell, respectively.
The respective 𝑘 and 𝜇Ω values for 𝜎Ω ≈ 4.5, 8.0, 13 dB are
𝑘 ≈ 1.35, 0.63, 0.35 and 𝜇Ω ≈ 2.5155, -3.2254, -9.893 dBm
with Ω =2, respectively. Fig. 6 shows that the 𝐾 distribution
is a well-approximated model for the the Rayleigh-lognormal
distribution. Similar observations can also be made for the𝐾𝐺
distribution and the Nakagami-lognormal distribution. These
results are omitted here due to the space limit.

VI. CONCLUSION

We study the performance of an energy detector under both
multipath fading and shadowing effects, effects that are well
modeled by the𝐾 and𝐾𝐺 distributions. Exact representations
of the average detection probabilities are derived, along with
the approximations for large 𝜆 values. As well, convergence
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Fig. 5. ROC curves for 𝐿-branch MRC and SC diversity receptions with 𝐾
channel model (𝑢 = 3, 𝑘 = 6, 𝛾 = 5 dB).
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Fig. 6. Comparison of 𝐾 channel model with Rayleigh-lognormal channel.

acceleration based on the 𝜖-algorithm is suggested to effi-
ciently compute the infinite series representation. We also find
that the numerically efficient Gaussian-Legendre quadrature is
useful for numerical approximations. Our results show that the
detection probability increases with the fading parameter 𝑚
and shadowing parameter 𝑘. The reason is that as 𝑚 → ∞
and 𝑘 → ∞, the channel approaches the AWGN channel.
Furthermore, when diversity receptions such as MRC and SC
are used to boost the performance of the energy detector, we
derive their performance under identically and non-identically
shadowed diversity branches. The ROC reveals the effect of
diversity advantage, and, as expected, MRC improves the
performance of the energy detector more than SC. Finally, nu-
merical results for the Rayleigh-lognormal distribution and the
𝐾 distribution are compared to confirm that the latter models
the shadowing effect well. Our results provide comprehensive
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performance evaluation of the energy detector with or without
diversity reception in wireless channels subject to fading and
shadowing.

APPENDIX

A. Derivation of 𝑃𝐾𝑑
𝑃𝐾𝑑 can be evaluated as

∫∞
0
𝑃𝐹𝑎𝑑𝑑 (𝑦)𝑓𝑌 (𝑦)𝑑𝑦 where 𝑓𝑌 (𝑦)

is in (4). 𝑃𝐹𝑎𝑑𝑑 (𝑦) can be evaluated by setting 𝜎2 = 1, 𝑎 = 2,
𝑁 = 2𝑢, and by replacing each 𝛾 by 𝑦 in the average detection
probability over Rayleigh distribution in [6, eq. (9)] , which
yields

𝑃𝐹𝑎𝑑𝑑 (𝑦) =𝑒−
𝜆
2

𝑢−2∑
𝑛=0

1

𝑛!

(
𝜆

2

)𝑛
+

(
1 + 𝑦

𝑦

)𝑢−1

⋅
[
𝑒−

𝜆
2(1+𝑦) − 𝑒−𝜆

2

𝑢−2∑
𝑛=0

1

𝑛!

(
𝜆𝑦

2(1 + 𝑦)

)𝑛]
.

After applying series summation for exponential function, and
with some algebraic manipulations, 𝑃𝐾𝑑 can be written as

𝑃𝐾𝑑 = 𝑒−
𝜆
2

𝑢−2∑
𝑛=0

1

𝑛!

(
𝜆

2

)𝑛

+
1

Γ(𝑘)Ω𝑘

∞∑
𝑛=0

(−𝜆
2 )
𝑛

𝑛!

∫ ∞

0

𝑦𝑘−𝑢(1 + 𝑦)𝑢−𝑛−1𝑒−
𝑦
Ω 𝑑𝑦

− 𝑒−
𝜆
2

Γ(𝑘)Ω𝑘

𝑢−2∑
𝑛=0

(𝜆2 )
𝑛

𝑛!

∫ ∞

0

𝑦𝑛+𝑘−𝑢(1 + 𝑦)𝑢−𝑛−1𝑒−
𝑦
Ω 𝑑𝑦.

𝑃𝐾𝑑 can be derived as (6) with the aid of (5).

B. Derivation of 𝑃𝐾𝐺

𝑑

𝑃𝐾𝐺

𝑑 can be evaluated as
∫∞
0 𝑃𝐹𝑎𝑑𝑑 (𝑦)𝑓𝑌 (𝑦)𝑑𝑦 where

𝑃𝐹𝑎𝑑𝑑 (𝑦) can be written using [6, eq. (7)]. We use series
summation of 1𝐹1(𝑎; 𝑐;𝑥) =

∑∞
𝑛=0

(𝑎)𝑛𝑥
𝑛

(𝑐)𝑛𝑛!
[26, eq. (10.1)]

and 𝐿𝑛(𝑥) =
∑𝑛
𝑘=0(−1)𝑘

(
𝑛
𝑛−𝑘
)
𝑥𝑘

𝑘! [23, eq. (8.970.1)], where
1𝐹1(⋅; ⋅; ⋅) and 𝐿𝑛(⋅) are the confluent hypergeometric function
and the Laguerre polynomial of degree 𝑛, respectively. After
some algebraic manipulations, equivalent 𝑃𝐹𝑎𝑑𝑑 (𝑦) can be
expressed as 4

𝑃𝐹𝑎𝑑𝑑 (𝑦) =

𝑚−1∑
𝑣=0

(
𝑚−1
𝑚−𝑣−1

) (
𝜆
2

)𝑣
𝑣!𝑚1−𝑚 𝑒−

𝜆
2

𝑚
𝑚+𝑦 𝑦𝑣(𝑚+ 𝑦)1−𝑚−𝑣

+

𝑚−2∑
𝑛=0

𝑛∑
𝑎=0

(
𝑛
𝑛−𝑎
) (

𝜆
2

)𝑎
𝑎!𝑚−𝑛 𝑒−

𝜆
2

𝑚
𝑚+𝑦 𝑦𝑎+1(𝑚+ 𝑦)−𝑛−𝑎−1

+

∞∑
𝑠=0

𝑢−1∑
𝑛=1

𝑒−
𝜆
2

(
𝜆
2

)𝑛+𝑠
𝑚𝑚

𝑛!𝑠!

(𝑚)𝑠
(𝑛+ 1)𝑠

𝑦𝑠(𝑚+ 𝑦)−𝑠−𝑚.

(18)

Applying series summation for exponential function and av-
eraging it over 𝑓𝑌 (𝑦), (18) can be re-written as (19) on the
top of the next page. 𝑃𝐾𝐺

𝑑 can be evaluated as (7) with the
aid of (5).

4The expression in [6, eq. (8)] has a typo. The power of the exponential
term should be − 𝜆𝛽

2𝜎2 .

C. Derivation of 𝑃𝑀𝑅𝐶𝑑 with Different Instantaneous Shad-
owing

With the definition of the generalized Marcum-𝑄 function
[30, eq. (1)] and substituting 𝑦 = (𝛾−√

𝜆), 𝑄𝑢(
√
2𝛾,

√
𝜆) in

(17) can be written as

𝑄𝑢(
√
2𝛾,

√
𝜆) =

1

(2𝛾)
𝑢−1
2

∫ ∞

0

(𝑦 +
√
𝜆)𝑢𝑒−

(𝑦+
√

𝜆)2+2𝛾
2

⋅ 𝐼𝑢−1

(√
2𝛾(𝑦 +

√
𝜆)
)
𝑑𝑦.

(20)

After applying the Gaussian-Laguerre integration, (20) can be
accurately approximated as

𝑄𝑢(
√
2𝛾,

√
𝜆) ≈ 𝑒−𝛾

𝛾
𝑢−1
2

𝑁∑
𝑖=1

Δ𝑖𝐼𝑢−1

(√
2𝛾(𝑡𝑖 +

√
𝜆)
)

where Δ𝑖 = 𝑤𝑖𝑒
𝑡𝑖 (𝑡𝑖+

√
𝜆)𝑢𝑒−

(𝑡𝑖+
√

𝜆)2

2

2
𝑢−1
2

, and 𝑤𝑖 and 𝑡𝑖 are

weight factors and abscissas (𝑖 = 1, ..., 𝑁 ) of the Gaussian
Laguerre integration, respectively [29, Table 25.9]. Therefore,
the average detection probability under MRC given in (17)
can be written as

𝑃𝑀𝑅𝐶𝑑 ≈2ℱ(1, 𝑘, 𝐿)Ξ
1+𝜏
2 𝐿

1−𝜏
2

𝑁∑
𝑖=1

Δ𝑖

∫ ∞

0

𝑦𝜏−𝑢+1

⋅ 𝑒−𝑦2𝐼𝑢−1

(√
2(𝑡𝑖 +

√
𝜆)𝑦
)
𝐼𝜏−1

(
2
√
Ξ𝐿𝑦

)
𝑑𝑦.

With the aid of [28, eq. (2.15.20.7)], 𝑃𝑀𝑅𝐶𝑑 can be derived
as

𝑃𝑀𝑅𝐶𝑑 ≈2ℱ(1, 𝑘, 𝐿)Ξ
1+𝜏
2 𝐿

1−𝜏
2

⋅
𝑁∑
𝑖=1

Δ𝑖(𝑡𝑖 +
√
𝜆)𝑢−1(Ξ𝐿)

𝜏−1
2

2
𝑢+1
2 Γ(𝜏)

⋅
∞∑
𝑗=0

Γ(𝜏 + 𝑗)

𝑗!Γ(𝑢+ 𝑗)

(
𝑡𝑖 +

√
𝜆√

2

)2𝑗

⋅ 2𝐹1

(
−𝑗, 1− 𝑢− 𝑗; 𝜏 ; 2Ξ𝐿

(𝑡𝑖 +
√
𝜆)2

)
.

Further, when 𝑢 = 𝜏 , 𝑃𝑀𝑅𝐶𝑑 can be derived in simple form
as [28, eq. (2.15.20.8)]

𝑃𝑀𝑅𝐶𝑑 ≈ ℱ(1, 𝑘, 𝐿)Ξ
1+𝜏
2 𝐿

1−𝜏
2

𝑁∑
𝑖=1

Δ𝑖𝑒
(𝑡𝑖+

√
𝜆)2+2Ξ𝐿

2

⋅ 𝐼𝑢−1

(√
2Ξ𝐿(𝑡𝑖 +

√
𝜆)
)
.
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