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A PAPR Reduction Method Based on
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Abstract—One of the major drawbacks of orthogonal fre-
quency division multiplexing (OFDM) signals is the high peak
to average power ratio (PAPR) of the transmitted signal. Many
PAPR reduction techniques have been proposed in the literature,
among which, partial transmit sequence (PTS) technique has
been taken considerable investigation. However, PTS technique
requires an exhaustive search over all combinations of allowed
phase factors, whose complexity increases exponentially with the
number of sub-blocks. In this paper, a newly suboptimal method
based on modified artificial bee colony (ABC-PTS) algorithm is
proposed to search the better combination of phase factors. The
ABC-PTS algorithm can significantly reduce the computational
complexity for larger PTS subblocks and offers lower PAPR
at the same time. Simulation results show that the ABC-PTS
algorithm is an efficient method to achieve significant PAPR
reduction.

Index Terms—PTS, PAPR, OFDM, ABC.

I. INTRODUCTION

IN various high-speed wireless communication systems,
the orthogonal frequency division multiplexing (OFDM)

has been used widely due to its inherent robustness against
multipath fading and resistance to narrowband interference.
Well-known examples include wireless local area network
(WLAN) IEEE 802.11a [1] and wireless metropolitan area
network (WMAN) IEEE 802.16a [2], digital audio broadcast-
ing (DAB), digital video broadcasting (DVB-T) [3].

However, one of the major drawbacks of OFDM signals is
the high peak to average power ratio (PAPR) of the transmitted
signal. The high peaks of an OFDM signal occur when the
subsymbols for each subcarrier are added up coherently. So
OFDM signals can cause serious problems including a severe
power penalty at the transmitter which is particularly not
affordable in portable wireless systems. Several solutions have
been proposed in recent years. It is known that clipping [4] is
the simplest method, but it degrades the bit-error-rate (BER)
of the system, and results in out-of-band noise and in-band
distortion. Although coding [5], [6] can offer the best PAPR
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reductions, the associated complexity and data rate reduction
limit the application of such a technique. On the other hand,
selected mapping (SLM) technique [7] modifies the phases of
the original information symbols in each OFDM block and
selects the phase-modified OFDM block with the best PAPR
performance for transmission. However, the requirement of
multiple IFFT operations increases the implementation com-
plexity.

In [8], [9], a tone reservation algorithm has been proposed
where several subcarriers are put apart for PAPR reduction.
In [9], a tone injection algorithm has been developed where
the constellation points of part subcarriers are modified to
obtain PAPR reduction at the cost of an increase in transmit
power. An active set extension (ASE) algorithm has been
proposed in [10], [11]. By modifying the exterior modulation
constellation over active subcarriers and not degrading the
BER performance, PAPR reduction is achieved. In [12], a
symmetric constellation extension (SCE) algorithm has been
developed for PAPR reduction, where the subsymbols for
each subcarrier are represented by two symmetric constellation
points and an optimal representation has been derived by
using a derandomization algorithm. In [13], a constellation
extension method has been developed, where the data for
each subcarrier can be represented by a point in the original
constellation or by an extension point. By selecting an optimal
representation of the data points, PAPR reduction is obtained.
By modifying the modulation constellation or constellation
extension, these algorithms require an increase in the transmit
power and computation complexity at the transmitter.

The partial transmit sequence (PTS) [14] is a distortionless
technique based on combining signal subblocks which are
phase-shifted by constant phase factors. The technique can
get sufficient PAPR reduction and side information need to be
sent at the same time. But the exhaustive search complexity
of the optimal phase combination increases exponentially
with the number of sub-blocks. So many suboptimal PTS
methods have been developed. The iterative flipping algorithm
for PTS in [15] has the computational complexity linearly
proportional to the number of subblocks. A neighborhood
search is proposed in [16] using gradient descent search. A
suboptimal method in [17] is developed by modifying the
problem into an equivalent problem of minimizing the sum
of phase-rotated vectors. A simulated annealing method is
proposed in [19]. A suboptimal PTS algorithm based on
particle swarm optimization is proposed in [20], [21]. An
intelligent genetic algorithm for PAPR reduction is developed
in [22], [23].

In this paper, we propose a newly suboptimal phase op-
timization scheme based on modified artificial bee colony
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(ABC-PTS) algorithm, which can efficiently reduce the PAPR
of OFDM signals. The proposed scheme can search the
better combination of the initial phase factors. Simulation
results show that the ABC-PTS phase optimization scheme
can achieve superior PAPR reduction performance and at the
same time requires far less computational complexity than the
previous PTS techniques. Like the original PTS, our scheme
also requires to send side information.

This paper is organized as follows. In Section II, definition
of PAPR of OFDM signals and the complementary cumulative
distribution function (CCDF) are introduced. The principles
of PTS techniques are described in Section III. The modified
ABC (ABC-PTS) algorithm to search the better combination
of the phase factors is proposed in Section IV. In Section V,
the performance of ABC-PTS algorithm and other algorithms
for PAPR reduction is evaluated by computer simulation.
Conclusions are made in Section VI.

II. OFDM SYSTEM AND PAPR

In an OFDM system, a high-rate data stream is split into
𝑁 low-rate streams that are transmitted simultaneously by
subcarriers, where 𝑁 is the number of subcarriers. Each of
the subcarriers is independently modulated using phase-shift
keying (PSK) or quadrature amplitude modulation (QAM).
The inverse discrete Fourier transform (IDFT) generates the
ready-to-transmit OFDM signal. For an input OFDM block
X = [𝑋0, . . . , 𝑋𝑁−1]

𝑇 , each symbol in X modulates one sub-
carrier of {𝑓0, . . . , 𝑓𝑁−1}. The 𝑁 subcarriers are orthogonal,
i.e, 𝑓𝑛 = 𝑛Δ𝑓 , where Δ𝑓 = 1/𝑁𝑇 and 𝑇 is the symbol
period. The complex envelope of the transmitted OFDM signal
in one symbol period is given by

𝑥(𝑡) =
1√
𝑁

𝑁−1∑
𝑛=0

𝑋𝑛𝑒
𝑗2𝜋𝑓𝑛𝑡, 0 ≤ 𝑡 < 𝑁𝑇 . (1)

The PAPR of 𝑥(𝑡) is defined as the ratio of the maximum
instantaneous power to the average power, that is

𝑃𝐴𝑃𝑅 =

max
0≤𝑡<𝑁𝑇

∣𝑥(𝑡)∣2

𝐸[∣𝑥(𝑡)∣2] , (2)

where

𝐸[∣𝑥(𝑡)∣2] = 1/𝑁𝑇

∫ 𝑁𝑇

0

∣𝑥(𝑡)∣2𝑑𝑡. (3)

However, most systems use discrete-time signals in which the
OFDM signal is expressed as

𝑥(𝑘) =
1√
𝑁

𝑁−1∑
𝑛=0

𝑋𝑛 ⋅ 𝑒 𝑗2𝜋𝑛𝑘
𝐿𝑁 , 𝑘 = 0, 1, ⋅ ⋅ ⋅ , 𝐿𝑁 − 1, (4)

where 𝐿 is the oversampled factor. It has been shown in [18]
that the oversampled factor 𝐿 = 4 is enough to provide a
sufficiently accurate estimate of the PAPR of OFDM signals.

The complementary cumulative distribution function
(CCDF) is one of the most frequently used performance
measures for PAPR reduction, representing the probability
that the PAPR of an OFDM symbol exceeds the given
threshold 𝑃𝐴𝑃𝑅0, which is denoted as

𝐶𝐶𝐷𝐹 = 𝑃𝑟(𝑃𝐴𝑃𝑅 > 𝑃𝐴𝑃𝑅0). (5)
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Fig. 1. Block diagram of the PTS technique.

III. PTS TECHNIQUES

The principle structure of PTS method is shown in Fig. 1.
The input data block X is partitioned into 𝑀 disjoint sub-

blocks X𝑚,𝑚 = 1, 2, . . .𝑀 such that X =
𝑀∑

𝑚=1
X𝑚. Sub-

blocks are combined to minimize the PAPR in the time
domain. 𝐿-times oversampled time domain signal of X𝑚 is
denoted as x𝑚,𝑚 = 1, 2, . . .𝑀 , which are obtained by taking
an IDFT of length 𝑁𝐿 on X𝑚 concatenated with (𝐿 − 1)𝑁
zeros. Each x𝑚 is multiplied by a phase weighting factor
𝑏𝑚 = 𝑒𝑗𝜙𝑚 , where 𝜙𝑚 ∈ [0, 2𝜋) for 𝑚 = 1, 2, . . .𝑀 . The
goal of the PTS approach is to find an optimal phase weighted
combination to minimize the PAPR value. The transmitted
signal in the time domain after combination can be expressed
as

x
′
(b) =

𝑀∑
𝑖=1

𝑏𝑖x𝑖, (6)

where x
′
(b) = [𝑥

′
1(b), 𝑥

′
2(b), ⋅ ⋅ ⋅ , 𝑥

′
𝑁𝐿(b)].

In general, the selection of the phase factor is limited to
a set with finite number of elements to reduce the search
complexity. The set of allowed phase factors is

P = {𝑒𝑗2𝜋ℓ/𝑊 ∣ℓ = 0, 1, . . . ,𝑊 − 1}. (7)

where 𝑊 is the number of allowed phase factors. We can
fix a phase factor without any performance loss. There are
only 𝑀 − 1 free variables to be optimized and hence 𝑊𝑀−1

different phase vectors are searched to find the global optimal
phase factor. The search complexity increases exponentially
with 𝑀 , the number of sub-blocks.

IV. MINIMIZE PAPR USING MODIFIED ABC ALGORITHM

In order to get the OFDM signals with the minimum PAPR,
a suboptimal combination method based on the modified
artificial bee colony (ABC) algorithm is proposed to solve the
optimization problem of PTS. The modified ABC algorithm
with lower complexity can get better PAPR performance.

The minimum PAPR for PTS method is relative to the
problem:
Minimize

𝑓(b) =
max ∣𝑥′

(b)∣2]∣
𝐸[∣𝑥′(b)∣2] , (8)

subject to
b ∈ {𝑒𝑗𝜙𝑚}𝑀 , (9)

where 𝜙𝑚 ∈ { 2𝜋𝑘
𝑊 ∣𝑘 = 0, 1, . . . ,𝑊 − 1}.



2996 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 10, OCTOBER 2010

A. Artificial Bee Colony Algorithm

In recent years, Karaboga 𝑒𝑡 𝑎𝑙 [24]–[26] introduced a bee
swarm algorithm called artificial bee colony (ABC) algorithm
for numerical optimization problems. In the ABC algorithm,
the colony of artificial bees contains three groups of bees:
employed bees, onlookers and scouts. Each cycle of the search
consists of three steps: (1) placing the employed bees onto
the food sources and then calculating their nectar amounts;
(2) selecting the food sources by the onlookers after sharing
the information of employed bees and determining the nectar
amount of the foods; (3) determining the scout bees and
placing them onto the randomly determined food sources. In
the ABC, a food source position represents a possible solution
to the problem to be optimized and the nectar amount of a food
source corresponds to the quality (fitness) of the associated
solution.

At the initialization step, a set of food source positions
are randomly produced and corresponding nectar amounts
are calculated. Each employed bee is moved onto her food
source area for determining a new food source within the
neighbourhood of the present one, and then its nectar amount
is evaluated. If the nectar amount of the new one is higher
than that of the previous one, she memorizes the new position
and forgets the old one. Otherwise she keeps the position
of the previous one. After all employed bees complete the
search process, they come back into the hive and share the
nectar information of the food sources (solutions) and their
position information with the onlooker bees waiting on the
dance area. All onlookers determine a food source area with
a probability based on their nectar amounts. If the nectar
amount of a food source is much higher when compared
with other food sources, this means that this source will be
chosen by most of the onlookers. Each onlooker determines a
neighbourhood food source within the neighbourhood of the
one to which she has been assigned and then its nectar amount
is evaluated. The selection of the scout bee is controlled by a
control parameter called “limit”. If a solution representing a
food source cannot be improved by a predetermined number
of trials, i.e., “limit”, it means that the associated food source
has been exhausted by the bees and then the employed bee
of this food source becomes a scout. The position of the
abandoned food source is replaced with a randomly produced
food position. So “limit” controls the selection of the scout
bee and the qualities of solutions. These three steps are
repeated until the termination criteria are satisfied. For a
complete understanding of the ABC method, the reader is
referred to [24]–[26].

B. Modified Artificial Bee Colony Algorithm to Reduce PAPR

Due to the facts that the original ABC algorithm is only
suitable for continuously numerical optimization problems,
we have to do some modifications for the original ABC
algorithm in order to apply ABC algorithm to search the better
combination of phase factors for PTS. We refer to the modified
ABC algorithm as ABC-PTS. In the paper, we select the phase
factor b = {−1, 1}𝑀 or b = {−1, 1, 𝑗,−𝑗}𝑀 .

In the ABC-PTS algorithm, a food source position rep-
resents a phase vector b𝑖 = [𝑏𝑖1, 𝑏𝑖2, ⋅ ⋅ ⋅ , 𝑏𝑖𝑀 ]𝑇 , 𝑖 =

1, 2, ⋅ ⋅ ⋅ , 𝑆, where 𝑆 denotes the size of a randomly dis-
tributed initial population. The nectar amount of a food source
or fitness value of a solution b𝑖 in the population is determined
by the following formula:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(b𝑖) =
1

1 + 𝑓(b𝑖)
. (10)

For each employed bee, a candidate food source position
from the previous one is produced by the following formula:

𝑏
′
𝑖𝑙 = 𝑏𝑖𝑙 + 𝜙𝑖𝑙(𝑏𝑖𝑙 − 𝑏𝑘𝑙), (11)

where 𝑙 ∈ {1, 2, ⋅ ⋅ ⋅ ,𝑀} and 𝑘 ∈ {1, 2, ⋅ ⋅ ⋅ , 𝐽}, 𝑖 ∕= 𝑘, 𝐽 is
the number of employed bees (the number of food sources),
and 𝜙𝑖𝑙 is a random number between [-1,1]. Due to 𝑏

′
𝑖𝑙 is

the discrete coordinate, thus (11) is modified to the following
formulas:

For 𝑊 = 2

𝑏
′
𝑖𝑙 =

{
1, 𝑖𝑓 𝜋/4 ≤ 𝑏′𝑖𝑙 < 5𝜋/4,
−1, 𝑒𝑙𝑠𝑒,

(12)

For 𝑊 = 4

𝑏
′
𝑖𝑙 =

⎧⎨
⎩

𝑗, 𝑖𝑓 𝜋/4 ≤ 𝑏′𝑖𝑙 < 3𝜋/4,

−1, 𝑖𝑓 3𝜋/4 ≤ 𝑏′𝑖𝑙 < 5𝜋/4,

−𝑗, 𝑖𝑓 5𝜋/4 ≤ 𝑏′𝑖𝑙 < 7𝜋/4,
1, 𝑒𝑙𝑠𝑒,

(13)

For each onlooker bee, a food source is chosen depending
on the probability value associated with that food source, 𝑝𝑖,
calculated by the following formula:

𝑝𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(b𝑖)
𝑆∑

𝑖=1

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(b𝑖)

. (14)

After all onlookers are distributed onto the food sources and
their nectars are tested, sources are checked whether they are
to be abandoned. If the number of cycles that a source can not
be improved is greater than a predetermined limit, the source is
considered to be exhausted. The employed bee associated with
the exhausted source becomes a scout and makes a random
search in problem domain by the following formula:

𝑏𝑖𝑙 = 𝑏
𝑚𝑖𝑛
𝑙 + (𝑏𝑚𝑎𝑥

𝑙 − 𝑏𝑚𝑖𝑛
𝑙 ) ∗ 𝑟𝑎𝑛𝑑, (15)

Our proposed modified ABC algorithm for PAPR reduction
(ABC-PTS) can thus be summarized as follows.

1) Initialize food source positions, set the value of limit and
the maximum iteration number.

2) Determine neighbour food source positions for the
employed bees using (11). Then modify food source
positions using (12) or (13).

3) Calculate the nectar amounts or fitness using (10).
4) If all onlookers are assigned food sources, go to Step 7.

Otherwise, continue.
5) Select a food source for an onlooker using (14).
6) Determine a neighbour food source position for the

onlooker using (11). Then modify food source positions
using (12) or (13). Go to Step 4.

7) Find the abandoned food source and allocate its em-
ployed bee as scout for searching new food sources
using (15)
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8) Memorize the position of the best food source.
9) If the maximum iteration number is reached, output final

food source positions and stop. Otherwise go to Step 2.

C. Complexity Analysis for ABC-PTS and the Existing PAPR
Reduction Methods

In [15], the iterative flipping algorithm for PTS (IPTS)
was proposed for PAPR reduction. The method has the
computational complexity linearly proportional to the number
of subblocks, i.e. the search complexity is proportional to
(𝑀 − 1)𝑊 . A neighborhood search using gradient descent
search (GD) is proposed in [16]. The technique first sets
the initial phase factor b = [1, 1, ⋅ ⋅ ⋅ , 1] and the number
of maximum iteration 𝐼 , then searches the phase factor that
achieves the smallest PAPR in the neighbour of b with radius
𝑟. The search complexity of this method is proportional
to 𝐶𝑟

𝑀−1𝑊
𝑟𝐼 , where 𝐶𝑚

𝑛 is the binomial coefficient. A
suboptimal method (TS) in [17] is developed by modifying
the problem into an equivalent problem of minimizing the
sum of phase-rotated vectors. The phase factor of the method
is continuously changed in [0, 2𝜋]. The search complexity of
this method is proportional to 𝐿𝑁 , where 𝑁 is the number
of subcarrier and 𝐿 is the oversampled factor. In [20], [21], a
particle swarm optimization algorithm (PSO-PTS) is proposed
to reduce PAPR. The search complexity of this method is
proportional to 𝑆𝐺, where 𝑆 is the size of particle swarm,
𝐺 is the maximal generations of PSO-PTS. An intelligent
genetic algorithm (GA) called minimum distance guided GA
(MDGA) is developed in [22], [23]. The MDGA generates
initial population by using the output of the IPTS, perturbing
the output of the IPTS with minimum Hamming Distance
and mutating the output of the IPTS randomly. Then MDGA
search the phase factor by an intelligent replacement strategy,
crossover and mutation. The search complexity of this method
is proportional to 𝑃𝐺 + (𝑀 − 1)𝑊 , where 𝑃 is the size
of the population, 𝐺 is the maximal generations of MDGA.
In the ABC-PTS algorithm, the randomly initial phase factor
population with the size 𝑆 are produced, then all employed
bees and onlookers carry out search according to the algo-
rithm, when the maximum iteration number 𝐾 is reached,
the phase factor with the minimum PAPR is thought as the
approximately optimal one. So the search complexity of this
method is proportional to 𝑆𝐾 . The complexity of the PTS
technique with an exhaustive search (OPTS) [14] is 𝑊𝑀−1

by fixing a phase factor without any performance loss.

V. SIMULATION RESULTS

To evaluate and compare the performance of the ABC-PTS
algorithm for OFDM PAPR reduction, numerous simulations
have been conducted. In order to get CCDF, 100000 random
OFDM symbols are generated. The transmitted signal is
oversampled by a factor of 𝐿 = 4 for accurate PAPR. In our
simulation, 16-QAM modulation with 𝑁 = 256 sub-carriers is
used and the phase factor𝑊 = 2 is chosen. When larger phase
factor, for example, 𝑊 = 4 is chosen, the similar simulation
results can be obtained, while the performance will be better.

In the ABC-PTS algorithm, there are three control param-
eters: the number of the food sources, the value of limit and
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Fig. 2. Comparison of PAPR reduction among ABC-PTS with different
iterations and the other methods, W=2.

the maximum iteration number. Employed bees or onlooker
bees carry out the exploiting process in the search space, the
scouts control the exploration process in the ABC-PTS algo-
rithm. The two processes are implemented together. Different
maximum iteration number, different size of population and
different limit value are chosen to evaluate the performance of
the ABC-PTS algorithm for PAPR reduction. In simulation,
𝑆 denotes the number of the food sources or the size of
population, 𝐾 denotes the maximum iteration number, 𝐿𝑖𝑚𝑖𝑡
denotes the value of limit.

In Fig. 2, the CCDF for 𝑀 = 16 sub-blocks using
random partition is shown. Here 𝑆 = 30, 𝐿𝑖𝑚𝑖𝑡 = 5 and
different iteration 𝐾 = 20, 𝐾 = 40 for the ABC-PTS.
When 𝑃𝑟(𝑃𝐴𝑃𝑅 > 𝑃𝐴𝑃𝑅0) = 10−3, the PAPR of the
original OFDM is 11.3 dB. The PAPR by IPTS is 7.95 dB.
The PAPR by the ABC-PTSs with iteration number 20 and 40
are approximately 6.75 dB and 6.65 dB respectively. Using the
random search (RS) in [15], when the numbers of randomly
selected phase factors are 600 and 1200, the PAPRs are
reduced to 7.15 dB and 6.8 dB respectively. The PAPR by
the gradient descent search (GD) with the search complexity
𝐶𝑟

𝑀−1𝑊
𝑟𝐼 = 𝐶2

152
23 = 1260 in [16] is 7.1 dB. The PAPR

by the OPTS with exhaustive search number 215 = 32768
is 6.4 dB. There is a 0.25 dB gap between the PAPR by
OPTS and by ABC-PTS with iteration number 𝐾 = 40.
But from the analysis in Section IV-C, we can know that
the search complexity of the ABC-PTS with 𝐾 = 40 is
only 𝑆𝐾/𝑊 (𝑀−1) = 1200/32768 = 3.66% of that by the
OPTS. For the same or almost same search complexity, the
performance of the ABC-PTS with 𝐾 = 40 is also better than
that of RS and GD.

Table I shows comparison of computational complexity
among different methods for 𝑀 = 16 subblocks, where the
size of population for PSO-PTS [20], [21], MDGA [22], [23]
and ABC-PTS are 𝑆 = 𝑃 = 30, the number of maximal
generations or iterations are 𝐺 = 𝐾 = 30. It can be seen that
the performance of swarm intelligence algorithms, i.e. PSO-
PTS, MDGA and ABC-PTS excel that of other methods. For
the same search complexity, the PAPR of the ABC-PTS is
smaller 0.3 dB than that of PSO-PTS. For the almost same
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TABLE I
WHEN 𝐶𝐶𝐷𝐹 = 10−3 , COMPARISON OF COMPUTATIONAL

COMPLEXITY AMONG DIFFERENT METHODS FOR PHASE FACTOR

𝑊 = 2, 𝑀 = 16 SUB-BLOCKS, SIZE OF POPULATION/PARTICLE

𝑃 = 𝑆 = 30 AND MAXIMAL GENERATIONS/ITERATIONS𝐺 = 𝐾 = 30

methods computational complexity PAPR

IPTS (𝑀 − 1)𝑊 = 15 ∗ 2 = 30 7.95 dB

GD 𝐶𝑟
𝑀−1𝑊

𝑟𝐼 = 𝐶2
152

23 = 1260 7.15 dB

TS 𝐿𝑁 = 4 ∗ 256 = 1024 7.25 dB

PSO-PTS 𝑆𝐺 = 30 ∗ 30 = 900 7.1 dB

MDGA 𝑃𝐺+ (𝑀 − 1)𝑊 = 30 ∗ 30 + 15 ∗ 2 = 930 7.0 dB

ABC-PTS 𝑆𝐾 = 30 ∗ 30 = 900 6.8 dB

OPTS 𝑊𝑀−1 = 215 = 32768 6.45 dB
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Fig. 3. Comparison of PAPR reduction among ABC-PTS with different size
of population and the other methods, W=2.

search complexity, the PAPR of the ABC-PTS is smaller
0.2 dB than that of MDGA.

In Fig. 3, we compare the PAPR reduction performance of
the ABC-PTS with the other methods in [15]–[17], [20]–[23]
for the same or almost same search complexity. Fig. 3 shows
the simulation results of the ABC-PTS with different size of
population, the same maximum iteration number 𝐾 = 30
and 𝐿𝑖𝑚𝑖𝑡 = 5, where subblocks 𝑀 = 16 are generated
by random partition. When 𝑃𝑟(𝑃𝐴𝑃𝑅 > 𝑃𝐴𝑃𝑅0) = 10−3,
the PAPR by OPTS is approximately 6.45 dB. By using the
ABC-PTS with 𝑆 = 30 and 𝑆 = 40, the PAPRs are reduced
to 6.8 dB and 6.7 dB, respectively. Compared to the PAPR by
OPTS, the PAPR by the ABC-PTS with 𝑆 = 30 and 𝑆 = 40
has a gap approximately 0.35 dB and 0.25 dB, respectively.
But the search complexity of the ABC-PTS is only 2.75% and
3.66% of that by the OPTS, respectively. Using RS in [15],
when the numbers of randomly selected phase factors are
900 and 1200, the PAPRs are reduced to 7 dB and 6.9 dB,
respectively. The PAPR by GD with the search complexity
𝐶𝑟

𝑀−1𝑊
𝑟𝐼 = 𝐶2

152
23 = 1260 in [16] is 7.15 dB. The PAPR

by TS with the search complexity 𝐿𝑁 = 4 ∗ 256 = 1024
in [17] is 7.3 dB. Using the MDGA with the search complexity
𝑃𝐺+ (𝑀 − 1)𝑊 = 30 ∗ 30+ 15 ∗ 2 = 930 in [22], [23], the
PAPR is reduced to 6.95 dB. The PAPR by the PSO-PTS with
the search complexity 𝑆𝐺 = 30 ∗ 30 = 900 in [20], [21] is
7.1 dB. From Fig. 3, it can be seen that apart from the PAPR
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Fig. 4. Comparison of PAPR reduction among ABC-PTS with different
Limit and the other methods, W=2.

by OPTS , the PAPR reduction performance of the ABC-PTS
is the best among that of all methods for the same or almost
same search complexity.

In Fig. 4, we compare the PAPR reduction performance of
the ABC-PTS with different Limit, the same size of population
𝑆 = 30 and the same maximum iteration number 𝐾 = 30 for
𝑀 = 16 sub-blocks . When 𝑃𝑟(𝑃𝐴𝑃𝑅 > 𝑃𝐴𝑃𝑅0) = 10−3,
the PAPR of the original OFDM is 11.3 dB, the PAPRs by
the ABC-PTS with 𝐿𝑖𝑚𝑖𝑡 = 3 and 𝐿𝑖𝑚𝑖𝑡 = 8 are 6.8 dB
and 6.8 dB respectively. The PAPR by the OPTS is 6.5 dB.
The PAPR by IPTS is 7.95 dB. The PAPR by RS [15] with
900 randomly selected phase factors is 6.95 dB. The PAPR by
GD [16] is 7.1 dB. From Fig. 4, it can be discovered that the
difference of the PAPR between 𝐿𝑖𝑚𝑖𝑡 = 3 and 𝐿𝑖𝑚𝑖𝑡 = 8
is negligible. Little performance improvement can be obtained
by increasing Limit.

For three swarm intelligence algorithms, i.e. the PSO-
PTS [20], [21], the MDGA [22], [23] and the ABC-PTS,
100 experiments are performed to compare PAPR convergence
performance for an OFDM symbol, where subblocks𝑀 = 16
are generated by random partition, the same size of population
is 𝑆 = 𝑃 = 30 and the same maximum iteration number
𝐺 = 𝐾 = 60. Fig. 5 shows the simulation results of three
different methods on the mean of the best cost function
values. In initial phase (approximately 1 − 3 iterations), the
performance of the ABC-PTS is inferior to that of PSO-PTS
and MDGA. As the increase of iterations, the performance
of the ABC-PTS is better than that of PSO-PTS and MDGA.
Although the PAPR performance is improved with the increase
of iteration number, the mean of PAPR getting by the iteration
number 𝐾 = 30 is only less 0.1 dB than that of PAPR getting
by the iteration number 𝐾 = 60, so iteration number 𝐾 = 30
can be a suitable choice for our proposed ABC-PTS algorithm.

VI. CONCLUSION

In this paper, we propose a modified ABC based PTS
algorithm (ABC-PTS) to search better combination of phase
factors for OFDM signals. Compared to the existing PAPR
reduction methods, the ABC-PTS algorithm can get better
PAPR reduction and significantly reduce the computational
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Fig. 5. Comparison of mean of best cost function values for different swarm
intelligence methods.

complexity for larger PTS subblocks at the same time. More-
over, because the ABC-PTS algorithm only has three control
parameters, so it is easy to be adjusted. Simulation results
show that the ABC-PTS algorithm is an efficient method
which can provide a better PAPR performance.
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