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Ahstract-Super-imposed training can be used as an alternative 
solution to estimating the channel state information (CSI). Since 
pilots are sent together with the data symbols, superimposed 
training improves the bandwidth efficiency. In this paper, we 
study the effects of the channel estimation errors on binary 

phase shift keying (HPSK) systems using superimposed pilots. 
Specifically, we derive an approximate bit error rate (HER) 
expression in low signal-to-noise ratio (SNR) region while in high 
SNR region, we derive the lower bound of the HER. Simulation 
results are then provided to corroborate the proposed studies. 

I. INTRODUCTION 

The traditional way to obtain chaunel state information 

(CSI) is to send pilot symbols from the transmitter to the 

receiver. This process has to be carried out frequently in order 

to keep track of the channel changes, especially for time

varying channels [1], resulting in the so called pilot symbol 

assisted modulation (PSAM) [2]. An alternative method is to 

apply the super-imposed pilots, that are transmitted together 

with data symbols. By doing this, the bandwidth efficiency is 

naturally improved. 

The idea of superimposed pilots first appeared in [3] for 

analog communication systems. Recently, superimposed pilots 

are further exploited for both synchronization and channel 

estimation in digital communication systems [4]-[10]. The 

ways to apply superimposed pilots can be divided into two 

categories: one is the linear precoding that can map pilots 

and data symbols into orthogonal space; the other is the first

order statistics that utilize the zero-mean property of both data 

symbols and noise. In this paper, we will only focus on the 

second case. 

Most existing works only target at the channel estimation 

mean square error (MSE), while a more sophisticated criterion 

should be the bit error rate (BER) considering the channel 

estimation error. Such a performance analysis has not been 

addressed yet, and this motivates our present work. In this 

paper, we study the effects of the chaunel estimation error 

on BER of binary phase shift keying (BPSK) systems when 

superimposed pilots are applied for channel estimation. The 

difficulty exists in the facts that the estimated channel has 

relationship with several random variables such as channel 

information, pilot power, signal power, as well as the noise. 

For example, the amplitudes of the estimated chaunel and 
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the real channel are treated as bivariate Rayleigh distribution 

[11], which entails complicated analysis. To make the analysis 

executable, we choose the simplest form of the superimposed 

training and look into the low signal-to-noise ratio (SNR) and 

the high SNR regions, where we derive approximation of the 

BER expression. In low SNR region, we give an approximate 

BER expression while in high SNR region, we prove the 

existence of BER lower bound and derive its expression. 

Simulations are then provided to corroborate the proposed 

studies. 

II. SYSTEM MODEL 

Let p[n] denote the superimposed pilots with the period 

PT and the power Ep, and let s[n] denote the data symbols 

with the power Es. Assume that the channel is flat fading and 

remains unchanged during the transmission of N symbols. The 

received symbol is expressed as 

r[n] = h( JE:'s[n] + JE;p[n]) + w[n], (1) 

where h rv CN(O, aD represents the Rayleigh fading channel, 

and w[n] rv CN(O, (J�) is the zero-mean white complex 

Gaussian noise. The total transmitter power is E = Ep + Es. 
Let (3 = Epl E be the power allocation ratio which, in most 

cases, satisfies 0 -S (3 < 0.5. 
After collecting N symbols, the receiver estimates the 

channel from the first-order statistics. If pilots take the simplest 

form 

p[n] = L c5[n - kPT], (2) 

k 

then the estimated channel is given by 

1 Q h= ;v Lr[n+kPT] (3) 
Qy Ep k=l 
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=h+ � (hJE:'tS[n+kPT] + tW[n+kPT])' Qy .LJp k=l k=l 
�--------------�v�----------------� 

¢ 
where Q = N I PT is an integer, and ¢ represents the channel 

estimation error. According to the central limit theorem (CLT), 

¢ can be treated as a zero-mean complex Gaussian random 
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variable [12], i.e., ¢ rv CN(O, (J�). From (3), it can be readily 

verified that 

(4) 

After obtaining the CSI, the receiver will remove superim

posed pilots as 

r[n] - hJE;p[n] = h�s[n] + w[n] - ¢JE;p[n]. (5) 

Since the exact channel information is not available at the 

receiver, (5) can be rewritten as: 

r[n] - hJE;p[n] =h�s[n] + w[n] 
- ¢( JE;p[n] + �s[n]) . (6) 

III. BER AT Low SNR RE GION 

Without loss of generality, we assume PT = 1 in the 

following BER derivation. The only change made for a general 

case is the separate discussion for data symbols being and not 

being superimposed by pilots. 

The detection SNR I at the receiver can be expressed as 

Ih l2 Es lIEs I = 
(J� + 1¢12 E (J� + 12E' 

(7) 

where 11 = Ih l2 and 12 = 1¢12. Both 11 and 12 can be 

assumed as exponential variables with parameters Al and A2 
given by 

(8) 

(9) 

According to the expression of ¢, 11 and 12 are correlated. 

Nonetheless, at low SNR we can make the approximation 

that 11 and 12 are independent. Our simulation results further 

verify the validity of such approximation. 

The outage happens when the instant SNR value I falls 

below a threshold Ith. The outage probability is 

With the instant SNR I, the BER can be expressed as the 

Q-function Q( -J'Fi). Therefore, the BER on average can be 

computed as 

Pb = 100 
Q(V2x)p,(x)dx = 100 

Q(V2x)dPout 

=Q( V2x)Pout 18" - 100 
PoutdQ( V2x) 

1 roo EsAl ="2 - Jo 2Fx(EA2X + EsAl) ( (J� + EsAl ) d xexp - x x. (11) 
EsAl 

The integration in (11) can be evaluated by Eq. (3.383.l0), 

Eq. (8.338.2) and Eq. (8.359.3) in [l3], yielding 

Pi = � _ �JEsAl ex (EsAl +(J� ) r (� EsAl +(J� ) b 2 2 EA2 P EA2 2' EA2 

= � - � J EsAl exp (EsAl + (J�) erfc ( 
2 2 EA2 EA2 

(12) 

Since Ep = f3E and Es = (1 - f3)E, (l3) can be rewritten as 

1 ft� ((J� + EM ) ( Pb = - - - - exp erfc 
2 2 (J2 E(J2 

¢ ¢ 

where M = (1 - f3)((J� + (J�). 

(J� +EM ) 
E 2 ' (J¢ 

(14) 

IV. LO WER BOUND AT HI GH SNR RE GION 

From the expression of ¢, we know hand ¢ are correlated 

random variables. At high SNR region, we can ignore the 

influence of � L w[n] in ¢. We then introduce a real 
QyEp 

Gaussian random variable fJ rv N(O, (J�) with 

whose variance is computed as 

2 Es (JI" = QEp 
1-13 
Qf3 

(15) 

(16) 

Clearly, fJ is independent of h With this approximation, we 

can find the lower bound of the BER. 
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We first consider the case of n = kPT and then the case 

of n = (k - l)PT + iI, 1 ,,; k ,,; Q, 1 ,,; i ,,; PT - 1. Let T 
denote the the sufficient statistics for receiver detection. For 

BPSK system, the detection criterion is R(T) > 0 for s[n] = 1 
and R(T) < 0 for s[n] = -1. 

1 Here we assume PT 2: 2 .  I f  PT = 1 ,  then we require i = 0,  which 
means only one case to be considered. 



When transmitted signal is s[n] = 1, we have 

T =(r[n] -hJE;Yh* 
=Ih + p,hI2yfE; + wh* - p,h( JE; + yfE;)h*. 

To get the correct detection, it requires 

As VB;, increases, the second item can be neglected to give 

which can be further simplified as 

(19) 

The error rate is then 

PI = P(p, < -1) + P (p, > J 1 � 13) . (20) 

When s [n] = -1 is transmitted, the sufficient statistics is 

similarly obtained as 

T =(r[n] - hJE;)h* 
= -Ih + p,hI2yfE; + wh* - p,h( JE; -yfE;)h*. (21) 

We require �(T) :::; 0, which can be simplified to 

(p,+I) (p,+Jl�f3) > 0. (22) 

The error rate can be found 

P2=p(-Jl�f3 <P,<-I). (23) 

For the case of n = (k - I)PT + i, when s[n] 1 is 

transmitted, the sufficient statistics for correct detection is: 

From �(T) > 0, the error rate is obtained as 

P3 = P(p, < -1). (25) 

Similarly when s [n] = -1 is transmitted, the error rate can be 

found as 

P4 = P(p, < -1). (26) 

Finally, the overall BER can be expressed as 

Pb 2' P(n = kPT) [P(s[n] = I)PI + P(s[n] = -1)P2] 
+ P(n i- kPT) [P(s[n] = I)P3 + P(s[n] = -1)P4] 

PI + P2 + (Q - 1)(P3 + P4) 
2Q 

(27) 

Lower Bound Q=60 Q=80 

;3=0.10 0.0049 0.0014 
;3-0.15 5.6905 x 10 8.5863 x 10 
;3-0.20 5.3756 x 10 3.8721 x 10 

TABLE I 
BER LOWER BOUND FOR BPSK SYSTEMS 

---t-- E= 4,0=80 Simulation 

-e-- E= 4,0=80 Theory 

---+- E=10,Q=80 Simulation 

---e--- E=10,Q=80 Theory 

-A- E=10,Q=400 Simulation 

---v-- E=10,Q=400 Theory 

10
.2 L-_-'--_-'-_-'-_-:-'-_---,'_---,-':-_:-'=-_-:-' 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Pilot power allocation ratio � = Ep/E 

Fig. 1. Compare BER by changing ;3 

Combing (20), (23), (25), (26), and (27), we can obtain 

Pb 2' <I> ( -J (1
f3
_
Q 
13) ) = Pbo, (28) 

where <I> (x) = vkJ�ooexp(-�)dt. Since (28) has no 

relation with E, so Pbo means an error floor. 

The Table I shows the BER lower bound (28) at different 

configuration of Q and 13. 
V. SIMULATION RESULTS 

In this section, we provide various numerical examples 

to corroborate the proposed studies. We consider Rayleigh 

fading channels, i.e. h rv CN(O, I). Meanwhile, we set 

w rv CN(O, 1) and PT = 1. 

A. BER at Low SNR Region 
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Fig. 1 shows the simulated BER versus power allocation 

ratio 13 for E = 4 dB and E = 10 dB, respectively. The 

analytical BER curves are also included for comparison. It is 

seen that the BER firstly decreases and then increases when 

13 increases. The analytical BER resulted from (14) becomes 

close to the simulated curve at relatively large 13 value. Better 

approximation can be obtained with the increase of Q. 
We then set 13 = 0.2 and display the both the simulated 

BER and theoretical BER versus E in Fig. 2. Two different 

values of Q are taken as 100 and 400, respectively. Again, 

the analytical BER is a good approximation for the real BER 

result. 



ffi '" 

1�,---.----.---.---,,---._--._---.---.----.---, 

--+- Q=100,�=O.2 Simulation 

---e-- Q=100,�=O.2 Theory 

---- Q=400,�=O.2 Simulation 

---e- Q=400,�=O.2 Theory 

10
��':-0---_�8--'-_6�-- _�4--�_2�-- -:-0 -----:,- --�-- --:--- ---:------', 0 

E (d8) 

Fig. 2. Compare BER by changing E 

PT=1. �=0.1 
10',----.-----.----.-----.----.-----.-----.----. 

--+-Q 60h 
-e- Q=60 h+h,t 
. - . - . Q=60 l....o\\·c .. Bound 

----Q BOh 
-e-Q 80 IH-h/J 
- - - Q=80 l....owel' Bound 

------------------------ -�-�-��--� 
,0- 30�--�-----"LO----�,5:-----,2:':. 0 ----�25::----3:':.0----�3L5 ------'40 

E (d8) 

Fig. 3. BER and lower bound when f3 = 0.1, PT = 1 

B. BER Lower Bound at High SNR Region 

We first take Q = 60,80, f3 = 0. 1, and plot the BER versus 

SNR curves in the Fig.3. The high SNR region is the main 

focus in this example. We then change to f3 = 0.2 and repeat 

the above process. The resultant simulation curves are shown 

in FigA. It can be seen that the simulated BER curves are 

lower bounded by our analytical results in both Fig. 3 and Fig. 

4. And when f3 increases from 0. 1 to 0.2, the lower bound will 

be smaller while only appear at higher SNR. 

VI. CONCLUSION 

In this paper, we study the influence of channel estimation 

errors on the BER performance in a BPSK system using super

imposed pilots. We find the approximated BER expression for 

low SNR region, while at high SNR region, we prove that the 

PT=1. �=0.2 
1�r---.----.---.--_.----._--._--_.--_.----.___, 

--+-Q-60 h. 
-e-Q=60 h+h/t 
- - - - Q=GO loweI' Bound 

----Q=80h 
---e--Q=80 h+h/t 
- - -Q-=80 Lower &und 

10-6 oL---�--�,L O ---
,� 5 -- �2 0::-,-2:':.5 -- �30:--,-3L5 -- �40,---4 L5 --

-"5 0 
E (d8) 

Fig. 4. BER and lower bound when f3 = 0.2, PT = 1 

channel estimation errors result in an error floor, whose closed

form expression is also derived. Finally, simulation results are 

provided to corroborate the proposed studies. 
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