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PAPR Reduction Method Based on
Parametric Minimum Cross Entropy for OFDM Signals
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Abstract—The partial transmit sequence (PTS) technique has
received much attention in reducing the high peak to average
power ratio (PAPR) of orthogonal frequency division multi-
plexing (OFDM) signals. However, the PTS technique requires
an exhaustive search of all combinations of the allowed phase
factors, and the search complexity increases exponentially with
the number of sub-blocks. In this paper, a novel method based
on parametric minimum cross entropy (PMCE) is proposed to
search the optimal combination of phase factors. The PMCE
algorithm not only reduces the PAPR significantly, but also
decreases the computational complexity. The simulation results
show that it achieves more or less the same PAPR reduction as
that of exhaustive search.

Index Terms—PTS, PAPR, OFDM, PMCE.

I. INTRODUCTION

IN various high-speed wireless communication systems,
orthogonal frequency division multiplexing (OFDM) has

been used widely due to its inherent robustness against mul-
tipath fading and resistance to narrowband interference [1].
However, one of the major drawbacks of OFDM signals
is the high peak to average power ratio (PAPR) of the
transmitted signal. Several solutions have been proposed in
recent years, such as clipping [2], coding [3], selected mapping
(SLM) [4], partial transmit sequence (PTS) [5] and others [6].
The PTS [5] technique is a distortionless technique based
on combining signal subblocks which are phase-shifted by
constant phase factors, which can reduce PAPR sufficiently.
But the exhaustive search complexity of the optimal phase
combination in PTS increases exponentially with the number
of sub-blocks. Thus many suboptimal PTS techniques have
been developed. the iterative flipping PTS (IPTS) in [7] has
computational complexity linearly proportional to the number
of subblocks. A neighborhood search is proposed in [8] by
using gradient descent search. A suboptimal method in [9]
is developed by modifying the problem into an equivalent
problem of minimizing the sum of the phase-rotated vectors.

In this paper, we propose a novel phase optimization
scheme, which can efficiently reduce the PAPR of the OFDM
signals, based on the parametric minimum cross entropy
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Fig. 1. Block diagram of the PTS technique.

(PMCE) method [11]. The proposed scheme can search for
the nearly optimal combination of the initial phase factors.
The simulation results show that this scheme can achieve
a superior PAPR reduction performance, while requiring far
less computational complexity than the existing techniques
including the cross entropy approach [13].

II. OFDM SYSTEM AND PAPR

In an OFDM system, a high-rate data stream is split into
𝑁 low-rate streams transmitted simultaneously by subcar-
riers. Each of the subcarriers is independently modulated
by using a typical modulation scheme such as phase-shift
keying (PSK) or quadrature amplitude modulation (QAM).
The inverse discrete Fourier transform (IDFT) generates the
ready-to-transmit OFDM signal. For an input OFDM block
X = [𝑋0, . . . , 𝑋𝑁−1]

𝑇 , where 𝑁 is the number of subcarriers,
the discrete-time baseband OFDM signal 𝑥(𝑘) can therefore
be expressed as

𝑥(𝑘) =
1√
𝑁

𝑁−1∑

𝑛=0

𝑋𝑛𝑒
𝑗2𝜋𝑛𝑘
𝐿𝑁 , 𝑘 = 0, 1, ⋅ ⋅ ⋅ , 𝐿𝑁 − 1, (1)

where 𝐿 is the oversampling factor. It was shown in [10]
that the oversampling factor 𝐿 = 4 is enough to provide a
sufficiently accurate estimate of the PAPR of OFDM signals.

The PAPR of 𝑥(𝑘) is defined as the ratio of the maximum
instantaneous power to the average power; that is

𝑃𝐴𝑃𝑅 =

max
0≤𝑛<𝐿𝑁

∣𝑥(𝑘)∣2

𝐸[∣𝑥(𝑘)∣2] . (2)

III. PTS TECHNIQUES

The structure of the PTS method is shown in Fig. 1. The
input data block X is partitioned into 𝑀 disjoint sub-blocks

X𝑚,𝑚 = 1, 2, . . .𝑀 such that X =
𝑀∑

𝑚=1
X𝑚. The sub-blocks
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are combined in the time domain to minimize the PAPR. The
𝐿-times oversampled time-domain signal of X𝑚 is denoted as
x𝑚,𝑚 = 1, 2, . . .𝑀 , which are obtained by taking an IDFT of
length 𝑁𝐿 on X𝑚 concatenated with (𝐿 − 1)𝑁 zeros. Each
x𝑚 is multiplied by a phase-weighting factor 𝑏𝑚 = 𝑒𝑗𝜙𝑚 ,
where 𝜙𝑚 ∈ [0, 2𝜋) for 𝑚 = 1, 2, . . .𝑀 . The goal of the PTS
approach is to find an optimal phase-weighted combination to
minimize the PAPR. The combined transmitted signal in the
time domain can then be expressed as

x
′
(b) =

𝑀∑

𝑖=1

𝑏𝑖x𝑖, (3)

where x
′
(b) = [𝑥

′
1(b), 𝑥

′
2(b), ⋅ ⋅ ⋅ , 𝑥

′
𝑁𝐿(b)].

In general, the selection of the phase factors is limited to
a set with a finite number of elements to reduce the search
complexity. The set of allowed phase factors is

P = {𝑒𝑗2𝜋ℓ/𝑊 ∣ℓ = 0, 1, . . . ,𝑊 − 1}, (4)

where 𝑊 is the number of allowed phase factors. Thus, 𝑊𝑀

sets of phase factors are searched for the optimal set of phase
factors. The search complexity increases exponentially with
𝑀 , the number of sub-blocks.

IV. MINIMIZE PAPR USING PARAMETRIC MINIMUM

CROSS ENTROPY (PMCE) METHOD

The Parametric Minimum Cross Entropy Method (PMCE)
was first proposed by Rubinstein [11] to solve rare event prob-
ability estimation and counting problems. It is a parametric
method to solve the well known Kullback Minimum Cross
Entropy (MinxEnt) problem [12]. The PMCE algorithm first
casts a deterministic optimization problem into an associate
rare-event probability estimation, then solves the resulting
program to obtain an optimally marginal distributions derived
from the optimal joint MinxEnt distribution. This method finds
the optimal parameters of the importance sampling distribution
to efficiently estimate the desired quantity. For an accurate
understanding of PMCE, the readers are referred to [11].

The minimum PAPR for PTS method is relative to the
following problem:

Minimize 𝐹 (b) =
max ∣𝑥′

(b)∣2
𝐸[∣𝑥′ (b)∣2] ,

𝑠.𝑡. b ∈ {𝑒𝑗𝜙𝑚}𝑀 ,

(5)

where 𝜙𝑚 ∈ { 2𝜋𝑘
𝑊 ∣𝑘 = 0, 1, . . . ,𝑊 − 1}. The phase factor

b = {−1, 1}𝑀 is chosen in this paper and generated by
using b = 1 − 2c from a binary vector c = {𝑐𝑖}𝑀−1

𝑖=0 . Thus
minimization of (5) is translated into the following problem:

Minimize 𝐹 (c) =
max ∣𝑥′

(1− 2c)∣2
𝐸[∣𝑥′ (1− 2c)∣2] ,

𝑠.𝑡. c ∈ {0, 1}𝑀 .

(6)

Each element of c can be modeled as an independent Bernoulli
random variable with the probability mass function 𝑃 (𝑐𝑖 =
1) = 𝑝𝑖, 𝑃 (𝑐𝑖 = 0) = 1 − 𝑝𝑖, for 𝑖 = 0, 1, . . . ,𝑀 − 1. Then
the probability distribution of c is

𝑓(c, p) =
𝑀−1∏

𝑖=0

𝑝𝑐𝑖𝑖 (1− 𝑝𝑖)
1−𝑐𝑖 . (7)

In order to solve (6) by using PMCE, we first randomize
the deterministic problem by 𝑓(c, p) for p ∈ [0, 1]𝑀 and
c ∈ {0, 1}𝑀 . That is to associate (6) with the problem of
estimating the probability 𝑃{𝐹 (c) ≤ 𝛾} for a given PAPR
threshold 𝛾.

The idea of the PMCE algorithm is to iteratively generate
the sequences 𝛾𝑗 and p𝑗 , which converge to the optimal
tuple 𝛾∗ and p∗ in the sense of minimal cross entropy [11].
Then the optimal c∗ can be obtained from p∗ by 𝑓(c, p).
More specifically, we initialize the PMCE algorithm by setting
p = p0, and choosing a 𝜌 ∈ (0, 1) (called rarity parameter in
PMCE [11]) such that the probability of the event {𝐹 (c) ≤ 𝛾}
is around 𝜌. Each iteration of the PMCE consists of two main
phases [11]:

1) For a given p𝑗−1, randomly generate a set of samples
c𝑗−1
1 , ⋅ ⋅ ⋅ , c𝑗−1

𝐽 from 𝑓(c, p𝑗−1), and then calculate the PA-
PRs 𝐹 (c𝑗−1

1 ), ⋅ ⋅ ⋅ , 𝐹 (c𝑗−1
𝐽 ). Sort 𝐹 (c𝑗−1

1 ), ⋅ ⋅ ⋅ , 𝐹 (c𝑗−1
𝐽 ) in an

increasing order and denote it as 𝐹 𝑗−1
(1 ) , ⋅ ⋅ ⋅ , 𝐹 𝑗−1

(J) . Assign

𝛾𝑗 =
1

⌈𝜌𝐽⌉
⌈𝜌𝐽⌉∑

𝑘=1

𝐹 𝑗−1
(𝑘) , (8)

where ⌈⋅⌉ is the ceiling function.
2) The p𝑗 = (𝑝𝑗,0, ⋅ ⋅ ⋅ , 𝑝𝑗,𝑀−1) is updated as

𝑝𝑗,𝑖 =

∑𝐽
𝑘=1 𝐼{c𝑗−1

𝑘,𝑖 =1} exp (−𝐹 (c𝑗−1
𝑘 )𝜆𝑗)

∑𝐽
𝑘=1 exp (−𝐹 (c𝑗−1

𝑘 )𝜆𝑗)
, (9)

where the indicator function 𝐼{𝑥=1} = 1 if 𝑥 = 1 and 0
otherwise, and the parameter 𝜆𝑗 are obtained from the solution
of the following equation [11]

𝛾𝑗 =

∑𝐽
𝑘=1 𝐹 (c𝑗−1

𝑘 ) exp (−𝐹 (c𝑗−1
𝑘 )𝜆𝑗)∑𝐽

𝑘=1 exp (−𝐹 (c𝑗−1
𝑘 )𝜆𝑗)

. (10)

In order to prevent a fast convergence to a local optimum,
instead of directly using (9), we use a smoothed version [11]

p̂𝑗 = 𝛼p𝑗 + (1− 𝛼)p𝑗−1, (11)

where 𝛼 (0 < 𝛼 < 1) is called a smoothing parameter.
It is important to note that Eq. (9) is similar to the standard

CE heuristic formula (8) in [13], with the only difference that
the indicator function in the CE updating formula 𝐼{𝐹 (c𝑗−1

𝑘 )≤𝛾}
is replaced by exp (−𝐹 (c𝑗−1

𝑘 )𝜆𝑗). Eq. (9) is preferable to the
standard CE formula (8) in [13], because PMCE uses the
entire set of samples, whereas the standard CE only uses the
“elite” samples while updating p. A nearly optimal solution
c∗ that results in lower PAPR will be generated by the PMCE
method.

Our proposed PMCE PAPR-reduction algorithm can thus
be summarized as follows.

1) Initialize p̂0 = [0.5, 0.5, 0.5, . . . , 0.5], 𝜌, and 𝛼.
2) Generate 𝐽 samples c𝑗−1

1 , . . . , c𝑗−1
𝐽 from the density

𝑓(c, p̂𝑗−1) and compute their PAPR 𝐹 (c𝑗−1
𝑘 ) for 𝑘 =

1, ⋅ ⋅ ⋅ , 𝐽 .
3) Compute 𝛾𝑗 by (8), and use (10) to find 𝜆𝑗 .
4) Update p𝑗 by (9).
5) Obtain the smoothed p̂𝑗 by (11).
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Fig. 2. Comparison of PAPR reduction by different methods.

7 7.5 8 8.5 9
10

0

10
1

10
2

10
3

PAPR0 [dB]

A
ve

ra
ge

 n
um

be
rs

 o
f s

ea
rc

hi
ng

 

 

 
OPTS
CE
PMCE
IPTS

Fig. 3. Average numbers of searching for different methods with thresholds.

6) If 0 < p̂𝑗 < 1 for some 𝑗, return to step 2. Otherwise,
output the optimal solution c∗ = 1− 2p∗ and stop.

V. SIMULATION RESULTS

In our simulation, quadrature PSK (QPSK) modulation
with 𝑁 = 256 sub-carriers is used. In order to obtain
the complementary cumulative distribution function (CCDF)
Pr(𝑃𝐴𝑃𝑅 > 𝑃𝐴𝑃𝑅0), 105 random OFDM symbols are
generated. The transmitted signal is oversampled by a factor
of 𝐿 = 4 for accurate PAPR [10].

In Fig. 2, the CCDF for the sub-blocks of 𝑀 = 8 using
random partition is shown. In the PMCE algorithm, 𝜌 = 0.1,
𝛼 = 0.6 and the sample numbers 𝑛 = 40. When CCDF=
10−4, the PAPR of the conventional OFDM is 12 dB. The
PAPR of IPTS with (𝑀 − 1)𝑊 = 7 ⋅ 2 = 14 searches is
8.6 dB. The PAPRs of PMCE and CE with 22 searches are
7.4 dB and 7.5 dB respectively. The PAPR of the optimal PTS

(OPTS) with 28 = 256 searches is 7.4 dB. Compared to the
OPTS technique, PMCE thus offers more or less the same
PAPR reduction with lower complexity and obtains the nearly
optimal phase factors.

In Fig. 3, we compare the average number of searchers
of OPTS, PMCE, CE and IPTS for the thresholds 𝑇 =
7, 7.25, 7.5, 7.75, 8, 8.25, 8.5, 8.75, 9. Here, these
algorithms are terminated whenever a phase factor that leads
to a PAPR below the threshold 𝑇 is found. Fig. 3 reveals that
the PMCE has lower complexity than OPTS and IPTS for
all thresholds. For the thresholds between 7.75 dB and 9 dB,
PMCE and CE has the same complexity. For the thresholds
between 7 dB and 7.75 dB, PMCE has less searching complex-
ity than CE. Fig. 3 shows that PMCE achieves a low PAPR
and decreases the computational complexity.

VI. CONCLUSION

In this paper, we propose a PMCE-based PTS algorithm.
The algorithm finds a nearly optimal combination of phase
factors for OFDM signals, with significantly reduced compu-
tational complexity. Simulation results show that our method
outperforms the existing methods both in the CCDF of PAPR
and the computational complexity.
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