
1568 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 5, MAY 2010

Accurate Computation of the MGF of the
Lognormal Distribution and its Application to

Sum of Lognormals
C. Tellambura, Senior Member, IEEE, and D. Senaratne

Abstract—Sums of lognormal random variables (RVs) are of
wide interest in wireless communications and other areas of
science and engineering. Since the distribution of lognormal sums
is not log-normal and does not have a closed-form analytical ex-
pression, many approximations and bounds have been developed.
This paper develops two computational methods for the moment
generating function (MGF) or the characteristic function (CHF)
of a single lognormal RV. The first method uses classical complex
integration techniques based on steepest-descent integration. The
saddle point of the integrand is explicitly expressed by the
Lambert function. The steepest-descent (optimal) contour and
two closely-related closed-form contours are derived. A simple
integration rule (e.g., the midpoint rule) along any of these
contours computes the MGF/CHF with high accuracy. The
second approach uses a variation on the trapezoidal rule due
to Ooura and Mori. Importantly, the cumulative distribution
function of lognormal sums is derived as an alternating series
and convergence acceleration via the Epsilon algorithm is used
to reduce, in some cases, the computational load by a factor of
106! Overall, accuracy levels of 13 to 15 significant digits are
readily achievable.

Index Terms—Sum of lognormals, moment-generating func-
tion, characteristic function.

I. INTRODUCTION

THE lognormal distribution is widely used in various
branches of science and engineering [1]–[3]. In wireless

communications, it is used to model large-scale signal fading
and co-channel interference for cellular mobile networks,
ultra-wide band systems and other wireless networks [4]–[10].
Closed-form exact analytical expressions for the lognormal
characteristic function (CHF), the moment generating function
(MGF), and the distribution function of a sum of independent
lognormal random variables (RVs) are not available. Wireless
researchers have attacked the famous sum of lognormals
(SLN) problem for decades starting with [11]–[15].

Previous SLN studies may broadly be classified into two
categories.

I. The first category approximates the SLN distribution by
another lognormal one (whose parameters are determined
by moment or cumulant matching techniques). For ex-
ample, Fenton [11] approximates based on the first and
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second moments (as well as the third- and fourth-order
moments), while Schleher [13] uses Gram-Charlier series
based on cumulant matching. Schwartz-Yeh [12], Wilkin-
son [12] and Farley [12] also use moment matching.
Other examples include negative moment matching [16];
generalized moment matching [6], [7], [16] and MGF
matching [17]. Some of these approaches have been
extended for correlated lognormal sums as well [17],
[18].

II. Although the lognormal cumulative distribution function
(CDF) is a straight line on a lognormal paper [11], the
SLN CDF is not. Therefore, the above approximations
are not globally accurate [19], [20]. The second category
of approximations thus involves representing the SLN
distribution by a distribution other than the lognormal
distribution. For example, the SLN distribution is approx-
imated by power lognormal and generalized lognormal
distributions [21]–[23], Log-shifted Gamma distribution
[24], [25], and Type-IV Pearson distribution [26]. Refer-
ences [27], [28] use linear and quadratic estimates with
regression analysis.

The main difficulties of numerical integration for the log-
normal MGF/CHF are the oscillations and the slow decay rate
of the integrand. Perhaps because of these drawbacks direct
numerical methods have not been investigated much, except
by Beaulieu and Xie [29]. They investigated the Simpson’s
rule, the trapezoidal rule and Hermite polynomials and settled
on the modified Clenshaw-Curtis rule.

To overcome these problems, we first develop two highly
accurate numerical methods.

I. The first one uses complex contour integration techniques
[30]. The idea is to deform the lognormal MGF/CHF
integral via Cauchy’s theorem. Exploiting this idea, Gub-
ner [31] suggested integrating along a contour parallel to
the x-axis so as to reduce the oscillatory nature of the
integrand; however this contour is not the best. The best
contour ensures a fast decay rate and removes oscilla-
tions of the integrand completely. The steepest-descent
constant-phase contour, which passes through the saddle
point of the integrand, have these properties. Interestingly,
a part of this optimal contour coincides with the Gubner’s
contour [31]. We express the saddle point by using
the Lambert function 𝒲 (𝑥) [32]. Because the optimal
contour is not closed-form, we derive two closely-related
closed-form contours. A simple integration rule (e.g., the
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midpoint rule) along any of these contours computes the
MGF/CHF with extremely high precision.

II. The second approach utilizes the trapezoidal rule to
compute the lognormal CHF. The trapezoidal rule is
very efficient, and the error decreases exponentially when
the integrand is analytic and bounded in a strip around
the real axis [30]. However, direct application of the
trapezoidal rule fails in this case, as has been observed in
[29]. We employ an ingenious transformation proposed
by Ooura and Mori [33], which enables the use of the
trapezoidal rule to derive a highly accurate, efficient
formula for the lognormal CHF.

Given the MGF/CHF, numerical integration is further re-
quired to compute the SLN CDF. We develop an efficient
and accurate method based on Longman [34], [35]. His idea
is to break down a highly oscillating infinite integral, say,∫∞
0 𝑓(𝑥)𝑑𝑥 into a series of finite integrals

∫ 𝑥𝑘+1

𝑥𝑘
𝑓(𝑥)𝑑𝑥,

where 𝑥𝑘 and 𝑥𝑘+1 are two consecutive zeros of 𝑓(𝑥).
Consequently, the integral is expressed as an alternating series
whose individual terms can be readily evaluated by using
simple numerical methods. Using this approach, we derive the
SLN CDF as an alternating series. However, since the number
of terms can sometimes be as high as 106 or more, Longman
[34], [35] originally used convergence acceleration based on
the Euler algorithm. However, the more powerful Epsilon
algorithm [36], [37] is used in this paper. This acceleration
method achieves remarkable computational efficiencies on the
order of 106.

The paper is organized as follows: Section II provides the
background. Section III develops the lognormal MGF/CHF
computation based on contour integration. The Ooura-Mori
based method is developed in Section IV. In Section V we
discuss the SLN CDF problem. Numerical results follow in
Section VI. Section VII concludes the paper.

Notation: The imaginary unit j =
√−1. For complex 𝑧,

𝑧∗ is the conjugate; arg (𝑧), the argument; ∣𝑧∣, the magnitude;
ℜ (𝑧), the real part; ℑ (𝑧), the imaginary part. 𝔼 [ ⋅ ] is the
expected value. The derivative of 𝑔(𝑧) is 𝑔′(𝑧). ℝ and ℂ are
the sets of real and complex numbers. The CDF, CHF and
MGF of a random variable 𝑌 are denoted by 𝐹𝑌 (.), Φ𝑌 (.)
and ℳ𝑌 (.), respectively.

II. BASICS

A. Lognormal distribution

If 𝑋 ∼ 𝒩 (
𝜇, 𝜎2

)
is a Gaussian RV with mean 𝜇 and

variance 𝜎2, then 𝑌 = e𝑋 is a lognormal random variable. In
wireless communications, 𝑋 represents a signal power level
with its mean and the variance expressed in dB units. In this
case, 𝜇 = 𝜉𝜇dB, and 𝜎2 = 𝜉2𝜎2dB, where 𝜉 = ln(10)

10 = 0.2303.
The MGF of the lognormal distribution is given by

ℳ(𝑠) = 𝔼
[
e−𝑠𝑌

]
=

∫ ∞

−∞
e−𝑠e𝑡 e

− 1
2 (

𝑡
𝜎 )

2

√
2𝜋𝜎2

d𝑡, ℜ (𝑠) ≥ 0.

(1)
The MGF exists for all 𝛼 ≥ 0 in the right half of the complex
𝑠 = 𝛼 + j𝜔 plane; and the special case 𝛼 = 0 yields the
CHF. Since ℳ(𝑠∗) = (ℳ(𝑠))∗, we focus, without any loss
of generality, only on the case 𝜔 ≤ 0. Furthermore, we

assume a zero mean for 𝑋 without loss of generality, because
𝔼

[
e−𝑠e𝑋+𝜇

]
= ℳ(𝑠e𝜇). Although the MGF is customarily

defined as 𝔼
[
e𝑠𝑌

]
, the definition 𝔼

[
e−𝑠𝑌

]
, which is the

Laplace transform of the probability density function, is em-
ployed throughout the paper.

The lognormal CHF is given by

Φ(𝜔) = 𝔼
[
ej𝜔𝑌

]
=

∫ ∞

−∞
ej𝜔e

𝑡 1√
2𝜋𝜎2

e−
1
2 (

𝑡
𝜎 )

2

d𝑡. (2)

This equation (2) is a special case of the MGF with Φ(𝜔) =
ℳ(−j𝜔).

B. Contour integration

Consider a complex function 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + j 𝑣(𝑥, 𝑦) of
complex 𝑧 = 𝑥 + j 𝑦, where 𝑥, 𝑦, 𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦) ∈ ℝ. If the
Cauchy-Riemann conditions [38, 3.7.30] are satisfied, 𝑓(𝑧) is
analytic. In this case, the gradients of 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦)
are orthogonal. That is, the contour lines 𝑢(𝑥, 𝑦) = 𝐶𝑢 are
orthogonal to contour lines 𝑣(𝑥, 𝑦) = 𝐶𝑣 for all constants
𝐶𝑢, 𝐶𝑣 ∈ ℝ. If 𝑓(𝑧) is analytic in the neighborhood of 𝑧0 and
𝑓 ′(𝑧0) = 0, then 𝑧0 = 𝑥0 + j 𝑦0 is called a saddle point of
𝑓(𝑧). This name arises because the contours of 𝑢(𝑥, 𝑦) and
𝑣(𝑥, 𝑦) have valleys and hills in orthogonal directions in the
neighborhood of this point, such that the surface bears the
shape of a ‘saddle’. The contour (path) that passes through
this point satisfying 𝑣(𝑥, 𝑦) = 𝑣(𝑥0, 𝑦0) is called the steepest
descent contour for 𝑢(𝑥, 𝑦) [39].

Such contours are useful when we consider integrals of the
form

𝐼 =

∫
𝒞
e−𝜆𝑓(𝑧) d𝑧, (3)

where 𝒞 is a contour in the complex plane. Cauchy’s theorem
tells that for analytic integrands, the integral remains fixed
for a wide class of contours. Thus, 𝒞 can be chosen to be a
contour on which 𝑣(𝑥, 𝑦) remains constant, which eliminates
the oscillations completely! The contribution of the integrand
along this contour would be all in-phase, and therefore, add
coherently. Moreover, since it passes through the saddle point
𝑧0 of 𝑓(𝑧), it is the steepest descent contour for ℜ (𝑓(𝑧)) (i.e.,
the magnitude

∣∣𝑒−𝜆𝑓(𝑧)
∣∣ of the integrand decays the fastest).

Steepest-descent contours are often used to derive asymp-
totic value as 𝜆 → ∞ [39]. The idea of using these for
numerical evaluation, as opposed to asymptotic expansions,
is not new either. References [30], [40], [41] use this idea
for numerical computations. However, the use of this idea to
compute the lognormal MGF/CHF appears to be new.

In sum, the steepest-descent contour ℒ is given by the
constant-phase condition:

ℒ = {𝑥+ j 𝑦∣ 𝑣(𝑥, 𝑦) = 𝑣(𝑥0, 𝑦0)}. (4)

Along this contour, the integral (3) becomes

𝐼 = e−j𝜆𝑣(𝑥0,𝑦0)

∫
ℒ
e−𝜆𝑢(𝑥,𝑦) d𝑧. (5)

Note the two main advantages of integrating along ℒ:

I. The oscillations in the integrand, due to the 𝜆j 𝑣(𝑥, 𝑦)
term in the exponent, are eliminated.
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II. The integrand exhibits the fastest rate of decay, as the
integration moves away from the saddle point 𝑧0 along
the contour ℒ. Often this decay rate is exponential.

These properties greatly facilitate the use of simple numerical
integration methods with high accuracy.

III. COMPUTATION OF THE MGF (CONTOUR

INTEGRATION)

A. Saddle point

We can readily show that the integrand of (1) satisfies the
Cauchy-Riemann conditions and is analytic. Therefore, the
integration path along the real axis can be deformed to obtain
a more desirable contour ℒ on the complex plane. Thus, the
MGF can be written as

ℳ(𝑠) = 𝑐

∫
ℒ
e−𝜆𝜑(𝑧) d𝑧, (6)

where 𝑐 = 1√
2𝜋𝜎2

, 𝜆 = 1/𝜎2, 𝜁 = 𝑠𝜎2, 𝜑(𝑧) = 𝜁e𝑧 + 𝑧2

2 ,
and ℒ is a constant-phase contour to be determined later. As
mentioned before, the saddle point is required for this contour.
Since the saddle point 𝑧0 satisfies 𝜑′(𝑧0) = 𝜁e𝑧0 + 𝑧0 = 0, it
can be explicitly given by

𝑧0 = −𝒲 (𝜁) (7)

where 𝒲 (.) is the Lambert W function, which is defined via
𝒲 (𝑧) e𝒲(𝑧) = 𝑧. It is real for 𝑧 ∈ ℝ and 𝑧 ≥ 1

e . Arbitrary-
precision complex floating point evaluation of 𝒲 (𝑧) for all
𝑧 ∈ ℂ is possible with common software such as Maple,
Mathematica and MATLAB. A comprehensive discussion of
the properties of the Lambert function can be found in [32].

B. Steepest descent constant-phase contour

Let 𝜑(𝑧0) = 𝐶0 + j𝐶1. The derivative d
d𝑧 𝜑(𝑧) = 𝜑

′(𝑧) =
𝜁e𝑧 + 𝑧 is given by

𝜑′(𝑧)=𝜁e𝑥+j 𝑦 + (𝑥+ j 𝑦)

= ∣𝜁∣ e𝑥 cos(𝑦 + 𝜃) +𝑥+j (∣𝜁∣ e𝑥 sin(𝑦 + 𝜃)+𝑦) , (8)

where 𝜃 = arg (𝜁) = arg (𝑠) = tan−1
(
𝜔
𝛼

)
. The relationship

between 𝐶0 and 𝐶1 can be determined, by setting (8) to zero.
We expand 𝜑(𝑧) first, in order to describe the steepest-

descent constant-phase contour. By using 𝑧 = 𝑥 + j 𝑦 and
𝑠 = 𝛼+ j𝜔 the exponent can be expressed as

𝜑(𝑧)= ℜ (𝜑(𝑧))+ jℑ (𝜑(𝑧))=(𝛼+ j𝜔)𝜎2e𝑥+j 𝑦 +
(𝑥+ j 𝑦)2

2

= e𝑥
(
𝛼 cos(𝑦)− 𝜔 sin(𝑦)𝜎2 +

𝑥2 − 𝑦2

2

)

+j e𝑥
(
𝛼 sin(𝑦) + 𝜔 cos(𝑦)𝜎2 + 𝑥𝑦

)
=

(
∣𝜁∣ e𝑥 cos(𝑦 + 𝜃) +

(
𝑥2 − 𝑦2

2

))

+j (∣𝜁∣ e𝑥 sin(𝑦 + 𝜃) + 𝑥𝑦) . (9)

By using the constant phase condition (4) and (9), we obtain
the steepest-descent contour as

ℒ = {𝑥+ j 𝑦 ∣ ∣𝜁∣ e𝑥 sin(𝑦 + 𝜃) + 𝑥𝑦 = 𝐶1 } . (10)

Since (𝑥0, 𝑦0) satisfies (10), this contour ℒ passes through the
saddle point. ℒ can be shown to lie in the range −∞ < 𝑥 <∞

and 0 ≤ 𝑦 ≤ −𝜃. Moreover, the derivative d𝑦
d𝑥 along the

contour ℒ can be computed from (10) to be

d𝑦

d𝑥
= − ∣𝜁∣ e𝑥 sin(𝑦 + 𝜃) + 𝑦

∣𝜁∣ e𝑥 cos(𝑦 + 𝜃) + 𝑥 . (11)

Although (10) and (11) supply what is needed for the problem
at hand, two more points must be clarified here.

I. First, we note that the contour (10) is not resolvable
such that 𝑦 is expressed as a closed-form function of
𝑥. Although, 𝑥 can be obtained as a function of 𝑦,
integrating over 𝑦 is not desired (Subsection III-C). Thus,
for a given 𝑥, 𝑦 ∈ ℒ must be determined numerically.
This determination is not too difficult because we know
that 𝑦 ∈ [0,−𝜃] for all 𝑥. Consequently, a simple
bisection search can be used to determine 𝑦 for each 𝑥.
Although the bisection method is fail-proof, it has only
a linear convergence rate, requiring a large number of
iterations. Since the derivative is explicitly known (11), a
much better alternative is the Newton-Raphson method,
which has a quadratic convergence rate [42]. However,
since the derivative tends to be unstable (see below) near
the saddle point 𝑧0, so does the Newton-Raphson method.
Therefore, we adopted a hybrid strategy whereby the
bisection method is used only when ∣𝑥− 𝑥0∣ ≤ 𝜖 (𝜖 is a
small number). Otherwise, the Newton-method is used to
determine 𝑦 for given 𝑥. The hybrid strategy was found
to be about 100 times faster than the simple bisection
method.

II. The second difficulty is that both the numerator and
denominator of (11) approach zero at the saddle point
(𝑥0, 𝑦0). This finding is not surprising because (8) shows
that the derivative is the ratio between the real and
imaginary parts of 𝜑′(𝑧). Thus, the derivative at the
saddle point is given by a limiting process, which can
be evaluated by using the L’Hospital’s rule. It can be
shown that

d𝑦

d𝑥

∣∣∣∣
𝑥=𝑥0
𝑦=𝑦0

=

√
(1− 𝑥0)2
𝑦20

+ 1−
(
1− 𝑥0
𝑦0

)
. (12)

C. Numerical evaluation

Now we are in a position to evaluate the MGF via the
complex integral (6) and the contour (10). When integrat-
ing over the contour ℒ, either 𝑥 or 𝑦 can be taken as
the independent variable. However, the upper limit of 𝑦 is
dependent on the argument of ℳ(𝑠), whereas the limits
of 𝑥 are not. Moreover, when 𝑠 is real, the limit of 𝑦 is
zero; i.e., the optimal contour is simply the real axis. For
these reasons, we use 𝑥 as the independent variable. Since
d𝑧 = d𝑥+ j d𝑦 =

(
1 + j d𝑦

d𝑥

)
d𝑥, the MGF (10) is given by

ℳ(𝑠) = 𝑐e−j𝜆𝐶1

∫ ∞

−∞
e
−𝜆

(
∣𝜁∣e𝑥 cos(𝑦+𝜃)+𝑥2−𝑦2

2

)

(
1− j

∣𝜁∣ e𝑥 sin(𝑦 + 𝜃) + 𝑦
∣𝜁∣ e𝑥 cos(𝑦 + 𝜃) + 𝑥

)
d𝑥, (13)

where 𝑦 is a function of 𝑥 governed by (10) for each 𝑧 =
𝑥+j 𝑦 ∈ ℒ. We note that the main contribution to the integral
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occurs near the saddle point 𝑥 = 𝑥0. Thus, we substitute√
𝜆
2 (𝑥 − 𝑥0) = 𝑡 to obtain

ℳ(𝑠) =
e−j𝜆𝐶1

√
𝜋

∫ ∞

−∞
e−𝑡2𝑞(𝑡) d𝑡, (14)

where

𝑞(𝑡) = e
−𝜆

(
∣𝜁∣e𝜎̃𝑡+𝑥0 cos(𝑦+𝜃)+

𝑥2
0+2𝜎̃𝑥0𝑡−𝑦2

2

)

(
1− j

∣𝜁∣ e𝜎̃𝑡+𝑥0 sin(𝑦 + 𝜃) + 𝑦

∣𝜁∣ e𝜎̃𝑡+𝑥0 cos(𝑦 + 𝜃) + 𝜎̃𝑡+ 𝑥0

)
, (15)

𝜎̃ =
√
2𝜎, and 𝑦 is given by (10) with 𝑥 = 𝜎̃𝑡 + 𝑥0. The

MGF can now be evaluated by using a simple mid-point rule
as follows:

ℳ(𝑠) =
ℎe−j𝜆𝐶1

√
𝜋

∞∑
𝑘=−∞

e−𝑘2ℎ2

𝑞(𝑘ℎ+ ℎ/2) + 𝐸ℎ, (16)

where the error term 𝐸ℎ rapidly decays with decreasing ℎ.
This computation requires three simple steps:

I Calculate the saddle point 𝑧0 by using (7).
II Solve 𝑦 = 𝑦𝑘 in (10) for 𝑥 = 𝑥𝑘 = 𝜎̃(𝑘ℎ+ ℎ/2) + 𝑥0.

III Sum (16) to the required precision.

This computational method has high accuracy. For example,
the lognormal CDF can be calculated at about 15-digit accu-
racy (i.e., an error less than 10−15) by inverting the CHF on
MATLAB which has a typical accuracy level of 2.2× 10−16.
Further details are found in Section VI.

Nevertheless, the above approach requires the numerical
computation of the steepest-descent contourℒ (10). Evaluation
can be greatly improved if ℒ can be replaced with a contour
along which 𝑦 is given as a function of 𝑥 in closed-form
(i.e., 𝑦 = 𝑦(𝑥)). The replacement contour must be as close as
possible to ℒ in order to retain the twin benefits of reduced
oscillations and the fastest rate of decay. We therefore impose
several constraints on the replacement contour: (i.) it must
pass through the saddle point 𝑧0, (ii.) it must have the same
slope d𝑦

d𝑥 on the saddle point as (12), (iii.) it must have the
same limits as ℒ when 𝑥 → ±∞. In the following, we
develop closed-from ‘atan’ and ‘tanh’ contours that satisfy
these conditions.

D. Atan contour

This closed-form contour is defined by

ℒ1 : 𝑦(𝑥) = − 𝜃
𝜋
tan−1 (𝑎𝑥+ 𝑏)− 𝜃

2
, (17)

where 𝑥 = ℜ (𝑧) , 𝑦 = ℑ (𝑧) , 𝜃 = arg (𝑠) < 0. The case 𝜃 = 0
corresponds to when the argument of ℳ(𝑠) is completely real,
and, in this case, the steepest-descent contour ℒ is the real
axis. The parameters 𝑎, 𝑏 ∈ ℝ are to be estimated such that

∙ ℒ1 passes through the saddle point 𝑧0 = 𝑥0 + j𝑦0 =
−𝒲 (

𝑠𝜎2
)
.

∙ ℒ1 has the same derivative d
d𝑥 𝑦(𝑥)

∣∣
(𝑥0,𝑦0)

= 𝑦′(𝑥0) as
(12).

These conditions translate to

𝑎𝑥0 + 𝑏 = − tan
(
𝜋

𝜃

(
𝑦0 +

𝜃

2

))
= cot

(𝜋𝑦0
𝜃

)
𝑦′(𝑥0) = 𝜑 =

−𝑎𝜃
𝜋
(
1 + (𝑎𝑥0 + 𝑏)

2
) = −𝑎𝜃

𝜋
sin2

(𝜋𝑦0
𝜃

)
,

where 𝜑 = 𝑦0√
(1−𝑥0)2+𝑦2

0+(1−𝑥0)
.

Solving for 𝑎 and 𝑏, one gets

𝑎 =
−𝜋𝜑

𝜃

sin2
(
𝜋𝑦0

𝜃

) , and 𝑏 = −𝑎𝑥0 + cot
(𝜋𝑦0
𝜃

)
.

The parameters 𝑎 and 𝑏 can always be uniquely determined
given that 0 < 𝑦0 < −𝜃 ≤ 𝜋

2 for all 𝑠. Derivative 𝑦′(.) is
given by

𝑦′(𝑥) = −𝑎𝜃
𝜋
sin2

(
𝜋𝑦(𝑥)

𝜃

)
. (18)

This contour ℒ1 can now be used in (6) to obtain

ℳ(𝑠) = 𝑐

∫ ∞

−∞
e−𝜆𝜑(𝑥+j 𝑦(𝑥))(1 + j 𝑦′(𝑥)) d𝑥. (19)

Again, this integrand has virtually no oscillations and decays
rapidly. Therefore, a simple trapezoidal rule or midpoint rule
can be used to evaluate the integral.

Note that due to the conjugate symmetry of ℳ(𝑠), it is
sufficient to be able to evaluate ℳ(𝑠) for ℑ (𝑠) < 0.

E. Tanh contour

Alternatively, a hyperbolic tangent contour given by

ℒ2 : 𝑦(𝑥) = −𝜃
2
tanh (𝑎𝑥+ 𝑏)− 𝜃

2
(20)

may be used. Parameters 𝑎 and 𝑏 can be derived as before to
be

𝑎 =
𝜑

2𝑦0
(
1 + 𝑦0

𝜃

) , and 𝑏 = − tanh−1

(
2𝑦0
𝜃
+ 1

)
− 𝑎𝑥0.

The derivative along ℒ2 is given by

𝑦′(𝑥) = −𝑎𝜃
2
sech2(𝑎𝑥 + 𝑏) = 2𝑎𝑦(𝑥)

(
1 +

𝑦(𝑥)

𝜃

)
.

With this contour, the MGF can be expressed similar to (19).
The accuracy and numerical efficiencies of the steepest-

descent contour, the ‘atan contour’ and the ‘tanh contour’ are
discussed in Section VI.

IV. AN ALTERNATE APPROACH TO STEEPEST DESCENT

CONTOURS: THE OOURA-MORI METHOD

Here we take a different approach to tackle the same
problem. Before describing this method, we will explain the
motivation. The integral

𝐼 =

∫ ∞

−∞
𝐹(𝑥) d𝑥

can be approximated by its trapezoidal sum,

𝐼(ℎ) = ℎ

∞∑
𝑘=−∞

𝐹(𝑘ℎ) ,
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where ℎ > 0 is the step size. The trapezoidal rule is
very efficient, and the error decreases exponentially (i.e.,
∣𝐼 − 𝐼(ℎ)∣ ∼ 𝑂(e−2𝜋𝛼/ℎ) as ℎ→ 0 for some 𝛼 > 0) when the
integrand is analytic and bounded in a strip around the real axis
[30]. However, the truncation of the infinite sum 𝐼(ℎ) results in
a truncation error if the integrand decays slowly. For instance,
the truncation error is not small if 𝐹 (𝑥) ∼ 𝑂(∣𝑥∣−𝛼

) only as
𝑥→ ±∞, but becomes negligibly small if 𝐹 (𝑥) ∼ 𝑂(e−𝛼∣𝑥∣)
as 𝑥 → ±∞. Thus, the fundamental requirement for the
trapezoidal rule to be accurate is that 𝐹 (𝑘ℎ) must rapidly
decay to zero as ∣𝑘∣ → ∞. The Ooura-Mori method [33] is
an ingenious transformation to ensure rapid decay rate of the
integrand.

For simplicity, we consider only the CHF case here. By
substituting e𝑡 = 𝑥 in (2), we find that

Φ(𝜔) =

∫ ∞

0

𝑓(𝑥) cos(𝜔𝑥) d𝑥+ j

∫ ∞

0

𝑓(𝑥) sin(𝜔𝑥) d𝑥,

(21)
where

𝑓(𝑥) =
1√
2𝜋𝜎2

e−
1
2 (

ln 𝑥
𝜎 )

2

/𝑥.

Thus, (21) is a sum 𝐼(0) + j 𝐼(1/2), where

𝐼(𝜉) =

∫ ∞

0

𝑓(𝑥) sin(𝜔𝑥+ 𝜉𝜋) d𝑥. (22)

The basic idea is introducing a variable transformation 𝑥 =
𝑦(𝑡) so that 𝑦(𝑡) → 0 as 𝑡 → −∞ and 𝑦(𝑡) → ∞ as 𝑡 →
∞. This introduces a factor 𝑦′(𝑡), which can be selected to
enhance the rate of decay of the integrand. The transformed
integral is

𝐼(𝜉) =

∫ ∞

−∞
𝑦′(𝑡)𝑓(𝑦(𝑡)) sin(𝜔𝑦(𝑡) + 𝜉𝜋) d𝑡

=

∫ ∞

−∞
𝑔(𝑡) sin(𝜔𝑦(𝑡) + 𝜉𝜋) d𝑡, (23)

where 𝑔(𝑡) = 𝑦′(𝑡)𝑓(𝑦(𝑡)). Then the integral 𝐼 is approxi-
mated by a finite 2𝑁 + 1 point summation having the form

𝐼(𝜉) ≈ ℎ
𝑁∑

𝑘=−𝑁

𝑔(𝑘ℎ) sin (𝜋 𝜓(𝑘ℎ− 𝜉ℎ) + 𝜉𝜋).

Ooura and Mori [33] cleverly select 𝑦(𝑡) such that
(𝜔𝑦(𝑘ℎ)+𝜉𝜋)→ 𝑘𝜋 as 𝑘 → ∞. This forces the truncation er-
ror to diminish rapidly, because the factor sin (𝜋𝜓(𝑘ℎ− 𝜉ℎ)+
𝜉𝜋) in each neglected term tends to zero for large 𝑘.

With much experimentation, they have formulated

𝑦(𝑡) =
𝜋

𝜔ℎ
𝜓(𝑡− 𝜉ℎ),

𝜓(𝑡) = 𝑡
(
1− e−(2𝑡+𝛼(1−e−𝑡)+𝛽(e𝑡−1))

)−1

,

where

𝛽 =
1

4
, 𝛼 = 𝛽

(
1 +

log(1 + 𝜋/ℎ)

4ℎ

)−1/2

,

and ℎ is the step size used in the trapezoidal rule.
The advantage of this method is that it does not use complex

contour integration. However, it require careful programming
to overcome underflow, overflow and unnecessary loss of
precision [43]. As shown comparatively in section VI, this
method too yields very high accuracy.

V. LOGNORMAL SUM CDF

This section develops the new method to compute the SLN
CDF. A ‘lognormal sum’ is

𝑌 =

𝐾∑
𝑘=1

e𝑋𝑘 , (24)

of independent lognormal random variables 𝑋𝑘 ∼ 𝑁(𝜇𝑘, 𝜎2𝑘).
Therefore, the MGF ℳ𝑌 (𝑠) of 𝑌 is easily obtained by
multiplying those of 𝑋𝑘s. The CDF of 𝑌 is thus computed
by numerical Laplace inversion of ℳ𝑌(𝑠)

𝑠 .

A. Conventional approach

Conventionally, the integral (24) is evaluated over a vertical
contour (known as the Bromwich contour), which passes the
real axis at 𝑥 = 𝛼0, 𝛼0 ≥ 0. The accuracy is typically
improved by finding through a simple search in (0,∞), the
best value for 𝛼0.

Suppose 𝑋𝑘 ∼ 𝑁(𝜇, 𝜎2) to be identical. The independent
and non-identically distributed case as well as the non-zero
mean case can be treated; but are omitted for brevity. The
CDF of 𝑌 is given by

𝐹(𝑦) = Pr[𝑌 ≤ 𝑦]. (25)

The MGF of 𝑌 would be given by ℳ𝑌 (𝑠) = (ℳ(𝑠))
𝐾 ,

where ℳ(𝑠) is the MGF of 𝑋𝑘, 𝑘 = 1, . . . ,𝐾 . It is easy to
show that

𝐹(𝑦) =

∫ 𝛼0+j∞

𝛼0−j∞

ℳ𝑌 (𝑠) e
𝑠𝑦

2j𝜋𝑠
d𝑠 =

∫ 𝛼0+j∞

𝛼0−j∞

e𝜍(𝑠)

2j𝜋
d𝑠, (26)

where 𝜍(𝑠) = 𝑠𝑦+log (ℳ𝑌 (𝑠))− log(𝑠), and 𝛼0 is a more or
less free parameter in the range 0 ≤ 𝛼0 <∞. The reason that
the Bromwich contour can be moved in this range is that the
MGF is defined for all ℜ (𝑠) ≥ 0, and no singularities of the
integrand occur except at 𝑠 = 0. Therefore, 𝛼0 can be chosen
to minimize the integrand along the real axis.

The CDF is now given by the integral

𝐹(𝑦) =
1

2𝜋

∫ ∞

−∞

ℳ𝑌 (𝛼0 + j𝜔) e
(𝛼0+j𝜔)𝑦

𝛼0 + j𝜔
d𝜔, (27)

which can be evaluated by using, for example, the Gauss-
Chebyshev quadrature rule. Another method is to choose
𝛼0 = 0 and use traditional numerical techniques (e.g., the
trapezoidal rule, Simpson’s rule, Clenshaw-Curtis rule) [29].

Various numerical integration techniques are available for
integrating along the Bromwich contour. However, their ac-
curacy tends to become poor, when the integrand becomes
oscillatory or tends to decay slowly (this aggravates in SLN
problem when the number of summands is small). Our pro-
posed method overcomes these difficulties.

B. A novel approach

The conventional numerical solution of (27) is not accurate
as 𝑦 gets larger. In this case, optimal 𝛼0, which is a function
of 𝑦, tends to zero, and the integration has to be performed
along a vertical line that approaches the imaginary axis. Thus,
it makes sense to set 𝛼0 = 0, and look at a different approach.
Deforming the contour (as was done in Section III) is not
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possible here, because there is no analytic continuation of the
lognormal MGF to the left half of the 𝑠-plane.

Therefore, we develop a different method than that using the
simple numerical integration of (27). Longman [34], [35] has
developed a powerful technique for the numerical evaluation
of oscillating integrals. His key idea is to break down the
infinite integral into a series of finite integrals, each of which
is evaluated over the successive intervals between the zeros
of the integrand. As a result, the integral is expressed as an
alternating series, the summation of which is accelerated by
Euler’s transformation.

Consider the integral in (27). We set 𝛼0 = 0 and note that
𝐹(𝑦) = 0 for 𝑦 < 0. Thus, (27) can be simplified as

𝐹(𝑦) =
2

𝜋

∫ ∞

0

ℜ (Φ𝑌 (𝜔)) sin(𝜔𝑦)

𝜔
d𝜔,

where Φ𝑌 (𝜔) is the CHF of 𝑌 . Substituting 𝑡 = 𝜔𝑦, we get

𝐹(𝑦) =
2

𝜋

∫ ∞

0

ℜ (Φ𝑌 (𝑡/𝑦))

𝑡
sin 𝑡 d𝑡

=
2

𝜋

∞∑
𝑘=0

∫ (𝑘+1)𝜋

𝑘𝜋

ℜ (Φ𝑌 (𝑡/𝑦))

𝑡
sin 𝑡 d𝑡.

This CDF expression can be finally obtained as

𝐹(𝑦) =
2

𝜋

∞∑
𝑘=0

(−1)𝑘
∫ 𝜋

0

ℜ (Φ𝑌 ((𝑘𝜋 + 𝑡)/𝑦))

𝑡+ 𝑘𝜋
sin 𝑡 d𝑡

=

∞∑
𝑘=0

𝑎𝑘(−1)𝑘, (28)

where

𝑎𝑘 =
2

𝜋

∫ 𝜋

0

ℜ (Φ𝑌 ((𝑘𝜋 + 𝑡)/𝑦))

𝑡+ 𝑘𝜋
sin 𝑡 d𝑡. (29)

The series expression (28) has a built-in error bound for com-
putational purposes, because the truncation error 𝐸 introduced
by approximating the alternating series (28) with the partial
sum of its first 𝑛 terms is upper bounded as ∣𝐸∣ < ∣𝑎𝑛+1∣.
Thus, when the absolute value of the 𝑘-th term drops below the
required precision level, the series can be truncated with the
confidence that the truncation error is under the limit! This
behavior differs from that of the conventional methods. For
example, if one uses direct integration of (27), as was the case
with previously published approaches, the truncation error
cannot be rigorously bounded. The above approach avoids this
problem.

The numerical evaluation of the 𝑘-th term 𝑎𝑘 is quite
easy because the integrand is smooth and well-behaved. Even
the simple adaptive quadrature techniques available in, say,
MATLAB, can reach a precision of 15 significant digits.
However, (28) being a series has a serious drawback - in
terms of performance (see table IV) and accuracy - if a
large number of 𝑎𝑘’s needs to be evaluated. Fortunately,
convergence acceleration algorithms exist, so that a given
series can be transformed into yet another series that converges
faster (i.e, with a fewer number of terms, for a given precision
goal) to the same limit as the original series.

Consider the partial sums 𝑠𝑛 =
∑𝑛

𝑘=0(−1)𝑘𝑎𝑘 for 𝑛 =
0, 1, . . . , 𝑁 − 1. The objective is to estimate the limit 𝑠∞ by
using as few partial sums as possible. The powerful Epsilon

TABLE I
EVEN COLUMNS OF THE 𝜖-TABLE FOR 𝐹(𝑦) AT 𝑦 = 100 FOR SIX I.I.D.

LOGNORMAL SUMMANDS WITH 𝜎 = 4dB

k 𝑟 = 2 𝑟 = 4 𝑟 = 6 𝑟 = 8 𝑟 = 10
0 1.140357316

1 0.945061679 0.995963513

2 1.013907474 0.997596897 0.996500999

3 0.992532962 0.993412056 0.996062704 0.996111912

4 0.993449763 0.992411282 0.996119319 0.996108078 0.996108747

5 1.001274194 0.996695709 0.996105346 0.996108833

6 0.990237648 0.995890592 0.996109957

7 1.001826354 0.996209097

8 0.990925024
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Fig. 1. Constant-phase contours to evaluate the lognormal MGF - for a
lognormal RV with mean 0 dB and standard deviation 6 dB.

algorithm of Shanks [36] and Wynn [37] is suitable for this
purpose. The algorithm generates a two-dimensional array
called the 𝜖-table. In the entries 𝜖(𝑘)𝑟 , subscript 𝑟 is the column
index and the superscript 𝑘 is the location down the column.
To initialize the table, the first column is set to zero as
𝜖
(𝑘)
−1 = 0, ∀𝑘 ≥ 0 and the second column is set to the given

partial sums as 𝜖(𝑘)0 = 𝑠𝑘, 𝑘 = 0, . . . , 𝑁 − 1. The remaining
elements of the 𝜖-table may be calculated from

𝜖
(𝑘)
𝑟+1 = 𝜖

(𝑘+1)
𝑟−1 +

[
𝜖(𝑘+1)
𝑟 − 𝜖(𝑘)𝑟

]−1

(30)

for 𝑟 = 1, 2, . . .. The even columns of the 𝜖-table contains
increasingly accurate estimates of 𝑠∞ = 𝐹(𝑦) – see an
example in Table I, where the first column (𝑟 = 2) is not
convergent at all. The extrapolated values appear the columns
(𝑟 = 8 and 𝑟 = 10) are accurate to about 6 significant digits.
This shows the extraordinary accuracy of the method because
only 10 terms of (28) is required to achieve this level of
accuracy.

VI. NUMERICAL RESULTS

A. Computation of the MGF - contours

Fig. 1 shows several steepest-descent constant-phase con-
tours (10) for a lognormal RV with mean 0 dB and standard
deviation 6 dB. We use the hybrid algorithm that switches
between the simple bisection algorithm and the Newton-
Raphson method [42] to compute the contours (𝑥, 𝑦) in Fig.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on May 18,2010 at 19:43:41 UTC from IEEE Xplore.  Restrictions apply. 



1574 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 5, MAY 2010

TABLE II
COMPARISON OF DIFFERENT CONTOURS (FOR INTEGRATION OVER CONST. PHASE, ‘ATAN’ AND ‘TANH’ CONTOURS, RESPECTIVELY, WITH 64, 128 AND

128 POINTS)

𝑠 const. phase contour ‘atan’ contour ‘tanh’ contour
ℳ(𝑠) time

(ms)
ℳ(𝑠) time

(ms)
ℳ(𝑠) time

(ms)

−j 0.361405531657605
+0.39181088634518j 6.7969 0.361405531657624

+0.391810886345185j 3.5312 0.361405531657624
+0.391810886345185j 3.5938

−10j −0.0283204503044886
+0.0758140547085827j 6.8281 −0.0283204503044922

+0.0758140547086j 3.5469 −0.0283204503044922
+0.0758140547086j 3.5938

1− j 0.305985649295396
+0.16559955405998j 7.3750 0.305985649295412

+0.165599554059981j 3.9844 0.3059856492954
+0.165599554059981j 4.0781

10− j 0.051869201760049
+0.0064605736634504j 6.9531 0.0518692017600611

+0.00646057366345154j 3.9219 0.0518692017600611
+0.00646057366345154j 3.9844

TABLE III
COMPARISON OF OOURA-MORI METHOD AND STEEPEST-DESCENT INTEGRATION

𝜎 𝜔 Ooura-Mori approach contour integration
6 dB 1 0.361405531657622+0.391810886345190j 0.361405531657602+0.391810886345176j

10 −0.028320450304492+0.075814054708598j −0.028320450304489+0.075814054708583j

102 −0.001832371961648−0.000326399122733j −0.001832371961608−0.000326399122730j

103 7.222777293221429×10−7−4.768704568197585×10−6 j 7.222777286929396×10−7−4.768704563153524×10−6 j

104 1.169627421515615×10−9+2.535359603788504×10−10 j 1.169586878600072×10−9+2.535266235219255×10−10 j

105 −8.402986648261929×10−15+2.436379811358153×10−14 j −4.850346982585558×10−15+1.409938611900216×10−14 j

106 −3.989622974947136×10−20−2.117359237557078×10−20 j −2.249403069407797×10−20−1.191840414010014×10−20 j

12dB 1 0.420298929291493+0.214242137746210j 0.420298929291483+0.214242137746207j

10 0.136620889892398+0.135351289903998j 0.136620889892397+0.135351289903997j

102 0.020059924788571+0.043356428016001j 0.020059924788570+0.043356428015999j

103 0.000316202549945+0.006839828632151j 0.000316202549944+0.006839828632148j

104 −1.930070958579791×10−4+5.115996416635931×10−4 j −1.930070958438299×10−4+5.115996416209289×10−4 j

105 −1.673578470955915×10−5+1.688216062994716×10−5 j −1.673578470324281×10−5+1.688216062327433×10−5 j

106 −5.181836418281203×10−7+1.951105011584655×10−7 j −5.181836328384747×10−7+1.951104976897171×10−7 j

107 −6.811209556044497×10−9−5.209512195382616×10−10 j −6.811196135962969×10−9−5.209501196148015×10−10 j
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Fig. 2. A comparison of the steepest descent constant-phase, atan and tanh
contours - for a lognormal RV with mean 0 dB and standard deviation 6 dB.

1. The following trends can be noted. The optimal contours
approach the real axis when 𝑥 → −∞. On the other hand,
as 𝑥 → ∞, it takes the shape of an inverse tangent function,
and it always lies in the horizontal strip 0 ≤ 𝑦 ≤ 𝜋/2 in
the 𝑥-𝑦 plane. As mentioned before, Gubner [31] suggested
the contour ℒ = {𝑧 = 𝑥 + j𝜋/2,−∞ < 𝑥 < ∞} for
numerical evaluation of the CHF. Interestingly, a part of the
optimal contour approaches Gubner’s contour as ℜ (𝑠) → 0
and 𝑥→ ∞.

In Fig. 2, the steepest-descent contour (10), the atan contour
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Fig. 3. Amplitude and phase of ℳ(𝑠), 𝑠 = 𝛼 + j𝜔, for a lognormal RV
with mean 0 dB and standard deviation 𝜎.

(17) and the tanh contour (20) are plotted. Both the atan and
tanh contours closely track the steepest descent contour. Note
that both of these are in closed-form; thus, their use reduces
the computations, while retaining the benefits of the optimal
contour.

Fig. 3 depicts the MGF ℳ(𝑠) , 𝑠 = 𝛼+j𝜔, computed for a
lognormal RV with mean 0 dB and variance 𝜎2. The use of the
optimal contour allows the ℳ(𝑠) to be accurately computed
with the simple midpoint integration rule, even for large values
of the argument 𝑠. The same is possible with the atan and tanh
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Fig. 4. The CDF of the sum of six i.i.d. lognormal RVs with mean 0 dB
and standard deviation 6 dB.

contours as well. As expected, the amplitude of ℳ(𝑠) rapidly
decays with increasing 𝛼.

In Table. II, ℳ(𝑠) values computed using the three contours
and computational times are shown. Roughly, the optimal
contour doubles the time of the other two contours. The
optimal contour is not in closed-form and requires numerical
computation via the hybrid algorithm (see III-B). All three
contours agree extremely well, with the discrepancies being
about 10−15.

B. Computation of the MGF - contour integration vs. Ooura-
Mori method

A comparison of the Ooura-Mori method and steepest-
descent integration is provided in Table III. The two methods
agree extremely well, with the difference being in the order
of 10−15 and is attributable, for instance, to the rounding off
errors.

C. Lognormal sum CDF

Monte Carlo simulation (with 1010 − 1011 sample points,
depending on the required precision) is used to estimate the
CDF of a sum of 𝐾 lognormal RVs. The estimated CDF
is used as a reference to validate our computational results.
Moreover, the Fenton-Wilkinson (FW), Farley (F), Schwartz-
Yeh (SY) and Beaulieu-Rajwani (BR) approximations are used
for comparison purposes. Figures 4, 5 and 6 depict these
results on lognormal paper [11].

Fig. 4 shows the CDF of the sum of six i.i.d. lognormal RVs
with a mean 0 dB and standard deviation 6 dB. The simulations
and the numerical calculations match exactly, for a wide range
of 𝑦, including values as high as 45 dB (above this the Monte
Carlo simulation fails to deliver sufficient accuracy). Note that
apart from the BR method, the other methods fail to track the
CDF accurately. The SY and FW methods fare poorly on the
upper tail region, while the FW and F methods do so on the
lower tail region.

The proposed algorithm based on (28) and (30) works
exceptionally well, with convergence acceleration reducing
the number of terms of (28) dramatically, For example, at
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Fig. 5. The CDF of the sum of 20 i.i.d. lognormal RVs with mean 0 dB and
standard deviation 6 dB.

TABLE IV
TIMING TABLE FOR EVALUATING 𝐹 (𝑦) AT A PRECISION LEVEL OF 10−15

𝜎 y No acceleration Epsilon method
# terms time(s) # terms time(s)

6 dB 0.1 2 65.25 10 17.891
1 15 72.5 15 19.422

10 141 128.906 25 17.313
100 672 569.437 25 22.703

1000 6695 4643.83 25 30.047
10000 26741 21710.6 25 33.329

100000 ≈ 500000
> 1 day

25 28.937
1000000 ≈ 4000000 25 28.485

12 dB 0.1 35 157.14 25 27.125
1 246 397.703 25 32.016

10 887 1057.16 25 33.484
100 8233 8824.69 25 31.140

1000 67706 71168.6 25 39.125
10000 ≈ 500000

> 1 day
25 46.125

100000 ≈ 3500000 25 44.234
1000000 ≈ 25000000 25 42.671

a precision level of 10−15, the number 𝑛 of terms required
varies from a mere 10 to 25 for the case of 𝜎 ∈ {6, 12} dB and
0.1 < 𝑦 < 106. However, up to 25000000 number of terms
are required when the same is attempted without acceleration.
Thus, computational saving by a factor of 106 is possible. A
timing comparison is provided in Table IV. It reveals that
direct computation of (28) (at a precision level of 10−15)
without acceleration requires, in some cases, more than one
day (estimated) to compute a single value, where as it can
be computed in about 30 seconds on the same computational
platform when acceleration is used.

Fig. 5 presents the CDF of the sum of 20 i.i.d. lognormal
RVs with mean 0 dB and standard deviation 6 dB. The simu-
lation and the numerical results match extremely well. Note
that apart from the BR method, the other methods again fail to
track the CDF accurately. The SY and FW methods fare quite
poor on the upper tail region, and the FW and F methods do
so on the lower tail region. Even the BR method fares poorly
in the upper tail region.

Similar comparison for 4 independent but non-identical
lognormal variables having mean 0 dB and respective standard
deviations 6, 8, 10 and 12 dB is made in Fig. 6. The results
for the Beaulieu-Rajwani method are not presented because
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Fig. 6. The CDF of the sum of 4 independent but non-identical lognormal
RVs with mean 0 dB and standard deviations 6, 8, 10 and 12 dB respectively

the parameters are not available for this case. Agreement with
the Monte Carlo results verify the accuracy offered by the
proposed scheme.

D. Verification of the accuracy

Without resorting to simulations, we can verify the accuracy
of our approach for one special case. For a single lognormal
RV e𝑍 , where 𝑍 ∼ 𝒩 (

𝜇, 𝜎2
)
, the CDF is given by

𝐹𝑌 (𝑦)= 𝑃 [e
𝑍 < 𝑦]= 𝑃 [𝑍 < log 𝑦]= 𝜙

(
log 𝑦 − 𝜇

𝜎

)
, (31)

where 𝜙(𝑥) is the CDF of the standard normal distribution
(i.e., 𝒩 (0, 1)). The error is the absolute difference between
(28) and (31). The CHF Φ𝑌 (𝜔) is computed by using the
steepest-descent constant-phase contour. The absolute error is
plotted in Fig. 7 for 𝜎 from 6 to 12 dB. It is always less than
10−11, and is less than 10−13 in most of the cases. This level
of accuracy is, in fact, fairly close to the machine precision
level. Moreover, this is the most difficult test for any lognormal
sum CDF calculation algorithm because the lognormal CHF
Φ(𝜔) of a single lognormal RV decays slower with 𝜔, than
a product of such CHF’s. Thus, as the number of summands
𝐾 increases, the CHF of SLN decays more and more rapidly;
and the CDF calculation becomes easier.

VII. CONCLUSION

This paper develops efficient, accurate computational meth-
ods for the lognormal MGF, the lognormal CHF and the SLN
CDF. To overcome the highly oscillatory nature and slow
decay rate of the integrands, two methods for the lognormal
MGF/CHF are developed. (i.) First, we choose the constant-
phase steepest-descent contour, passing through the saddle
point of the integrand. Simple mid-point-rule-based integration
along it computes the MGF/CHF at an accuracy about 14 to 15
significant digits. Two closed-form contours are also derived,
which achieve the same level of accuracy. (ii) In the second
approach, we use an ingenious transformation of Ooura and
Mori [33] to derive a trapezoidal rule based computational
formula for the lognormal CHF. This method also achieves
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Fig. 7. Absolute Error between (28) and (31) for a single lognormal RV
with mean 0 dB and standard deviation 𝜎.

the same level of accuracy. An accurate alternating series for
the SLN CDF is derived, and the Epsilon algorithm is used
for convergence acceleration. This acceleration dramatically
reduces the computational load – sometimes by six order of
magnitude. We also find that our numerical approach yields
about 14 to 15 significant digits for the CDF range from 10−8

to 1 − 10−12. Popular approximations such as the Fenton-
Wilkinson method, the Farly method and others are much less
accurate in comparison. The CDF computational algorithm
may also be useful in other wireless problems such as outage.
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