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Analysis of Area under the
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Abstract—A simple figure of merit to describe the performance
of an energy detector is desirable. The area under the receiver
operating characteristic (ROC) curve, denoted (AUC), is such
a measure, which varies between 1

2
and 1. If the detector’s

performance is no better than flipping a coin, then the AUC
is 1

2
, and it increases to one as the detector performance

improves. However, in the wireless literature, the AUC measure
has gone unnoticed. In this paper, to address this gap, we
comprehensively analyze the AUC of an energy detector with no-
diversity reception and with several popular diversity schemes.
The channel model is assumed to be Nakagami-𝑚 fading. First,
the average AUC is derived for the case of no-diversity reception.
Second, the average AUC is derived for diversity reception
cases including maximal ratio combining (MRC), square-law
combining (SLC) and selection combining (SC). Further, for
Rayleigh fading channels, the impacts of channel estimation
errors and fading correlations are analyzed. High SNR (signal-
to-noise ratio) approximations and the detection diversity gain
are also derived. The analytical results are verified by numerical
computations and by Monte-Carlo simulations.

Index Terms—Area under the curve, energy detection, receiver
operating characteristic (ROC).

I. INTRODUCTION

DETECTION of the presence or the absence of an un-
known signal has recently received tremendous attention

in view of the development of cognitive radio and ultra-
wideband (UWB) systems. Signal detection based on the
received signal energy, referred to as energy detection, is a
commonly used approach. The energy detector, a non-coherent
detection device, measures the received signal energy over an
observation time period, compares the measured energy level
with a pre-defined threshold, and determines the presence or
the absence of the unknown signal. Since it does not require
channel gains and other parameter estimates, the energy detec-
tor might enable certain wireless devices to become low-cost.

The performance of an energy detector is traditionally char-
acterized through its receiver operating characteristic (ROC)
curves [1]. ROC curves are generated by plotting either
detection probability (𝑃𝑑) versus false alarm probability (𝑃𝑓 )
or missed detection probability (1 − 𝑃𝑑) versus 𝑃𝑓 (called
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complementary ROC) [2]. Extensive ROC analysis of the
energy detector is available in the wireless literature. For
instance, in [3], 𝑃𝑑 and 𝑃𝑓 are derived for Rayleigh, Rice
and Nakagami fading channels. In [4], the analysis focuses
on the no-diversity case under Rayleigh, Rice and Nakagami
fading channels, and in [5] the focus is on different diversity
receptions such as maximal ratio combining (MRC), selection
combining (SC), switch-and-stay combining (SSC), square-
law combining (SLC) and square-law selection (SLS) under
Rayleigh fading channels. The energy detector with equal
gain combining (EGC) reception under Nakagami-𝑚 fading
channels is analyzed in [6]. The energy detector performance
is investigated in [7] for relay-based cognitive radio networks
and in [8] for channels with both multipath fading and
shadowing. Finally, looking further afield, we find that ROC
analysis is regularly used, for example, in the health care field
for diagnostic tests, drug testing and others [9], and in machine
learning algorithms [10].

Detection probability 𝑃𝑑(𝜆) and false alarm probability
𝑃𝑓 (𝜆) depend on the threshold (𝜆) of the energy detector, the
number (𝑢) of samples taken for the decision statistic, fading
parameters of the fading channel, the number (𝐿) of diversity
branches or the number (𝑛) of relays, and average signal-
to-noise ratio (SNR) (𝛾) for each branch. When threshold 𝜆
changes from 0 → ∞, the ROC curve starts at the upper-
right point (1, 1) and eventually moves to the lower-left point
(0, 0). When 𝛾, 𝐿 or 𝑛 increases and 𝑢 decreases, the ROC
curves are shifted to the upper left-hand side of the ROC graph
[4]- [8]. Generally, ROC curves are plotted by varying only
one parameter while keeping other parameters fixed, and a
variety of curves can be generated for different combinations
of parameters of interest.

Although the ROC curves fully characterize the perfor-
mance of an energy detector, it is desirable to have a single
figure of merit. Such a measure is the area under the ROC
curve (AUC), which varies between 1

2 and 1. If the detector’s
performance is no better than flipping a coin, then the AUC
becomes 1

2 , and it increases to one as the detector performance
improves. As well, the Area Theorem [11] has shown that
the AUC is a measure of the detection capability. Actually,
in [12], it has been pointed out that the area under the
curve represents the probability that choosing the correct
decision at the detector is more likely than choosing the
incorrect decision. However, as indicated in [13], [14], the
exact computation of AUC is difficult for realistic detection
tasks. Therefore, the previous research efforts mainly focus
on bounds of the AUC [13], [14] or the asymptotic expansion
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and limiting value of AUC [15]. Unlike [13]–[15], our target
is to derive closed-form expressions for the AUC of an energy
detector in several scenarios that are of interest to wireless
researchers.

In this paper, we comprehensively analyze the AUC of an
energy detector with no-diversity reception and with several
popular diversity schemes. The channel model is assumed to
be Nakagami-𝑚 fading. First, the average AUC is derived for
the case of no-diversity reception. Second, the average AUC is
derived for diversity reception cases including maximal ratio
combining, square-law combining and selection combining.
Further, for maximal ratio combining under Rayleigh fading
(which is a special case of Nakagami-𝑚 fading), the impacts of
channel estimation errors and fading correlations are analyzed.
High SNR approximations and the detection diversity gain are
also derived. The analytical results are verified by numerical
computations and by Monte-Carlo simulations.

The rest of the paper is organized as follows. The system
model is described in Section II. AUC of the energy detector
is analyzed in Section III. The average AUC of the energy
detector with no-diversity and with diversity receptions over
Nakagami-𝑚 fading channels is analyzed in Section IV. The
average AUC with maximal ratio combining under Rayleigh
fading is considered in Section V when channel estimation
errors and channel fading correlations exist. The numerical and
simulation results are presented in Section VI. The concluding
remarks are made in Section VII.

II. SYSTEM MODEL

At an energy detector, a two-state model can be used
to represent the received signal. Assuming flat fading, the
received signal at the receiver at time 𝑡 is

𝑦(𝑡) =

{
𝑤(𝑡); 𝐻0,
ℎ𝑠(𝑡) + 𝑤(𝑡); 𝐻1,

(1)

where ℎ is the complex channel gain of the channel between
the transmitter and the receiver, 𝑠(𝑡) is the transmitted signal
with average power 𝐸𝑠, and 𝑤(𝑡) is the additive white Gaus-
sian noise (AWGN) signal at the receiver with the single-sided
power spectral density 𝑁0. The hypothesis 𝐻0 means that the
signal 𝑠(𝑡) is absent, while the hypothesis 𝐻1 means that the
signal 𝑠(𝑡) is present. Further, we assume that the channel is
time-invariant during the detection process.

A. Energy Detector

As described in [2], [4], [5], first the energy detector uses a
properly designed ideal bandpass filter with carrier frequency
𝑓𝑐 and bandwidth 𝑊 (Hz) for limiting the noise power and
normalizing the noise variance. Second, the output signal
from the filter is squared and integrated over time duration
𝑇 to measure the energy of the received signal at the energy
detector. The collected energy, denoted 𝐸, is the test statistic
of the detector. For each component (in-phase or quadrature)
of the received signal, the number of samples is integer 𝑢.
Further, according to [5], the value of 𝑢 could be either 𝑇𝑊
or (𝑇𝑊 +1), depending on the position of the first sample. In
[4], it is shown that the test statistic 𝐸 follows a central chi-
square distribution with 2𝑢 degrees of freedom when the signal

is absent (i.e., under hypothesis 𝐻0), or follows a non-central
chi-square distribution with 2𝑢 degrees of freedom with the
presence of the signal (i.e., under hypothesis 𝐻1). Finally,
the energy detector compares the test statistic 𝐸 with a pre-
specified threshold 𝜆 and determines that the signal is present
if 𝐸 > 𝜆, or absent otherwise.

The detection probability (𝑃𝑑) and false alarm probability
(𝑃𝑓 ) are defined as the probabilities that the test statistic
is larger than the threshold, given that the signal is present
and absent, respectively. By using the cumulative distribution
functions (CDF) of the central chi-square distribution and the
non-central chi-square distribution, the two probabilities 𝑃𝑑

and 𝑃𝑓 can be calculated as [4]

𝑃𝑓 (𝜆) = Pr(𝐸 > 𝜆∣𝐻0) =
Γ(𝑢, 𝜆2 )

Γ(𝑢)
(2)

and

𝑃𝑑(𝛾, 𝜆) = Pr(𝐸 > 𝜆∣𝐻1) = 𝑄𝑢(
√

2𝛾,
√
𝜆), (3)

respectively. Here, 𝑄𝑢(⋅, ⋅) is the generalized Marcum-Q
function, Γ(⋅, ⋅) is the upper incomplete gamma function
defined as Γ(𝑎, 𝑥) ≜

∫∞
𝑥 𝑡𝑎−1𝑒−𝑡𝑑𝑡, and Γ(𝑎, 0) = Γ(𝑎) ≜∫∞

0 𝑡𝑎−1𝑒−𝑡𝑑𝑡, and 𝛾 is the received instantaneous SNR of the
target signal at the energy detector. The instantaneous SNR
of the received signal through a single diversity branch is
𝛾 = ℎ2𝐸𝑠/𝑁0.

B. Fading Channel

We assume that the channel undergoes Nakagami-𝑚 fading,
a distribution that is widely used to characterize the wireless
channel fading [16], with 𝑚 being the fading parameter. Let
𝛾 denote the instantaneous SNR at the receiver. Given the
assumption of Nakagami-𝑚 fading, the SNR 𝛾 follows a
gamma distribution, denoted 𝑓𝛾(𝑥). For a fading channel, the
average AUC can be obtained by averaging the AUC (for
instantaneous SNR value 𝛾) by the distribution of 𝛾.

III. AREA UNDER THE ROC CURVE (AUC)

The ROC curve is usually illustrated as 𝑃𝑑 versus 𝑃𝑓 .
For two energy detectors, it is difficult to compare their
performance based on visual perception of their ROC curves,
since the curves may cross. On the other hand, following the
Area Theorem [11], we introduce the AUC, which is equal
to the area covered by the ROC curve of 𝑃𝑑 versus 𝑃𝑓 .
As aforementioned, the AUC is a measure of the detection
capability of the energy detector. Generally, as the threshold
𝜆 in the energy detection varies from ∞ to 0, the false alarm
and the detection probabilities vary from value 0 to value 1,
and accordingly, the AUC varies from 0.5 to 1.

A. AUC for Instantaneous SNR Value 𝛾

Consider the ROC curve of 𝑃𝑑 versus 𝑃𝑓 . Let 𝐴(𝛾) denote
the AUC which is a function of instantaneous SNR value 𝛾.
Therefore, 𝐴(𝛾) can be evaluated as

𝐴(𝛾) =

∫ 1

0

𝑃𝑑(𝛾, 𝜆)𝑑𝑃𝑓 (𝜆). (4)
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Both 𝑃𝑓 (𝜆) and 𝑃𝑑(𝛾, 𝜆) are functions of the threshold 𝜆.
Therefore, we can apply the threshold averaging method [17]
when calculating the AUC. When the value of 𝑃𝑓 (𝜆) varies
from 0 → 1, it is equivalent to 𝜆 ranging from ∞ → 0.
Therefore, Eq. (4) can be re-written as

𝐴(𝛾) = −
∫ ∞

0

𝑃𝑑(𝛾, 𝜆)
∂𝑃𝑓 (𝜆)

∂𝜆
𝑑𝜆 (5)

where ∂𝑃𝑓 (𝜆)/∂𝜆 is the partial derivative1 of 𝑃𝑓 with respect
to 𝜆, which is given from (2) as

∂𝑃𝑓 (𝜆)

∂𝜆
= −𝜆

𝑢−1𝑒−
𝜆
2

2𝑢Γ(𝑢)
. (6)

After the substitution of (3) and (6) into (5), and the transfor-
mation

√
𝜆 = 𝑡, Eq. (5) can be written as

𝐴(𝛾) =
1

2𝑢−1Γ(𝑢)

∫ ∞

0

𝑡2𝑢−1𝑒−
𝑡2

2 𝑄𝑢(
√

2𝛾, 𝑡)𝑑𝑡. (7)

Using the following identity of the Marcum-Q function

𝑄𝑢(𝛽, 𝛼) =1−𝑄𝑢(𝛼, 𝛽) + 𝑒−
𝛼2+𝛽2

2

𝑢−1∑
𝑟=1−𝑢

(
𝛼

𝛽

)𝑟

𝐼𝑟(𝛼𝛽)

where 𝐼𝑟(⋅) is the 𝑟th-order modified Bessel function of the
first kind, Eq. (7) can be re-written as

𝐴(𝛾) =
1

2𝑢−1Γ(𝑢)

∫ ∞

0

𝑡2𝑢−1𝑒−
𝑡2

2

(
1−𝑄𝑢(𝑡,

√
2𝛾)+

𝑒−
2𝛾+𝑡2

2

𝑢−1∑
𝑘=1−𝑢

(
𝑡√
2𝛾

)𝑘

𝐼𝑘(
√
2𝛾𝑡)

)
𝑑𝑡.

(8)

After some mathematical manipulations and with the aid of
expression (26) in the Appendix, 𝐴(𝛾) can be evaluated in
closed-form as (see the Appendix for the detailed derivation)

𝐴(𝛾) =1−
𝑢−1∑
𝑘=0

1

2𝑘 𝑘!
𝛾𝑘𝑒−

𝛾
2

+

𝑢−1∑
𝑘=1−𝑢

Γ(𝑢+ 𝑘)

2𝑢+𝑘Γ(𝑢)
𝑒−𝛾

1𝐹1

(
𝑢+ 𝑘; 1 + 𝑘;

𝛾

2

) (9)

where 1𝐹1(⋅; ⋅; ⋅) is the regularized confluent hypergeometric
function of the confluent hypergeometric function 1𝐹1(⋅; ⋅; ⋅)
[18]. Note that Eq. (9) gives the AUC of an energy detector
for a specific value of instantaneous SNR 𝛾. Therefore, 𝐴(𝛾)
is defined as unfaded AUC. The average AUC in closed-form
under the AWGN channel can be found from expression (9)
after replacing 𝛾 by 𝛾, where 𝛾 is the average SNR.

B. Partial AUC

Although the AUC is a measure of the overall detection
capability, it may not always unambiguously indicate when
one detector is better than another. For example, when two
ROC curves cross, it is possible that the AUC for the two
ROC curves is the same. This situation can arise when
the two associated detectors have different performance in
different regions of detection threshold 𝜆. The area of the ROC

1Note that the false alarm probability 𝑃𝑓 is also a function of 𝑢. We omit
variable 𝑢 from expression of 𝑃𝑓 for simplicity of presentation.

curve (for 𝜆 from 0 to ∞) only gives the overall detection
performance, but cannot differentiate the two detectors in a
small region of 𝜆, say 𝜆1 ≤ 𝜆 ≤ 𝜆2. To remedy this drawback,
the partial area under the ROC curve [19] in region (𝜆1, 𝜆2)
can be used to demonstrate the difference, as given by

𝐴𝑃𝑎𝑟(𝛾) = −
∫ 𝜆2

𝜆1

𝑃𝑑(𝛾, 𝜆)
∂𝑃𝑓 (𝜆)

∂𝜆
𝑑𝜆. (10)

Nevertheless, the partial AUC measure appears intractable
for closed-form analysis. It can however be readily evaluated
via numerical integration methods that are available in the
mathematical software packages such as MATHEMATICA
and MATLAB. For the sake of brevity, we do not further
study this measure.

IV. AVERAGE AUC OVER NAKAGAMI-𝑚 FADING

CHANNELS

The average AUC, 𝐴, over Nakagami-𝑚 channels can
be evaluated through averaging (9) by the SNR distribution
(𝑓𝛾(𝑥)). Therefore, 𝐴 can be written as

𝐴 =

∫ ∞

0

𝐴(𝑥)𝑓𝛾(𝑥)𝑑𝑥. (11)

In this section, we derive closed-form average AUC expres-
sions for no-diversity and diversity receptions, respectively,
over Nakagami-𝑚 distribution which is widely employed for
characterizing wireless channel fading. Further, we derive the
expression of the average AUC for the high SNR approxima-
tion (i.e. 𝛾 → ∞) for each case.

A. No-Diversity Reception

If the signal amplitude follows a Nakagami-𝑚 distribution,
then the SNR has a probability density function (PDF) given
by [20]

𝑓𝛾𝑁𝑎𝑘(𝑥) =
1

Γ(𝑚)

(
𝑚

𝛾

)𝑚

𝑥𝑚−1𝑒−
𝑚
𝛾 𝑥, 𝑥 ≥ 0 (12)

where 𝛾 is the average SNR and 𝑚 is Nakagami fading
parameter. The average AUC for Nakagami-𝑚 fading channel
with no diversity, 𝐴𝑁𝑎𝑘, can be evaluated through averaging
𝐴(𝛾) in (9) by the SNR distribution 𝑓𝛾𝑁𝑎𝑘(𝑥) given in (12).
𝐴𝑁𝑎𝑘 can be written for integer 𝑚 in closed-form as (see the
Appendix for the detailed derivation) in (13) on the next page,
where 2𝐹1(⋅; ⋅; ⋅; ⋅) is the regularized confluent hypergeometric
function of the confluent hypergeometric function 2𝐹1(⋅; ⋅; ⋅)
[18]. When 𝑚 = 1, the result in (13) means the average AUC
over a Rayleigh fading channel.

For higher 𝛾, 𝐴𝑁𝑎𝑘 in (13) can be approximated as in
(14) on the next page, where 𝑔𝑁𝑎𝑘(𝑚,𝑢) is the term in
the square brackets which depends on parameters 𝑚 and 𝑢.
When 𝑚 increases, the average AUC converges to 1, and the
convergence speed is with the order of 𝑚. So we define 𝑚 as
the detection diversity gain or detection diversity order.
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𝐴𝑁𝑎𝑘 = 1− 1
Γ(𝑚)

(
2𝑚

2𝑚+𝛾

)𝑚∑𝑢−1
𝑘=0

Γ(𝑘+𝑚)
𝑘!

(
𝛾

2𝑚+𝛾

)𝑘
+
(

𝑚
𝑚+𝛾

)𝑚∑𝑢−1
𝑘=1−𝑢

Γ(𝑢+𝑘)
2𝑢+𝑘Γ(𝑢) 2

𝐹1

(
𝑚;𝑢+ 𝑘; 1 + 𝑘; 𝛾

2(𝑚+𝛾)

)
.(13)

𝐴𝑁𝑎𝑘 ≈ 1−
[
(2𝑚)𝑚

Γ(𝑚)

𝑢−1∑
𝑘=0

Γ(𝑘 +𝑚)

𝑘!
−

𝑢−1∑
𝑘=1−𝑢

𝑚𝑚Γ(𝑢+ 𝑘)

2𝑢+𝑘Γ(𝑢)
2𝐹1

(
𝑚;𝑢+ 𝑘; 1 + 𝑘;

1

2

)]
𝛾−𝑚

= 1− 𝑔𝑁𝑎𝑘(𝑚,𝑢)𝛾−𝑚. (14)

B. Diversity Reception

Diversity combining techniques are used at the receiver to
increase the receiver SNR. Next we derive the average AUC
under MRC, SLC and SC diversity receptions. The 𝐿 diversity
paths are independent and identically distributed (𝑖.𝑖.𝑑.) over
Nakagami-𝑚 fading channels. And 𝛾𝑘 is the SNR in the 𝑘th
branch.

1) Maximal Ratio Combining (MRC): MRC is a coherent
combining method, which requires channel estimations. Thus
the use of MRC with energy detection is not desirable. In
this case, the energy detector measures the energy of the
MRC combined signal rather than measuring the energy of
each individual branch before combining (e.g. in square-law
combining). Nevertheless, the use of MRC with energy de-
tection deserves investigation. For instance, the ROC analysis
of the energy detector with MRC reception has been studied
in [4], [21]–[23]. The performance of this setup serves as an
upper bound of the achievable performance by a combination
of energy detection and any other diversity scheme.

In MRC, all the diversity branches are coherently combined,
and the instantaneous SNR at the output of the combiner is
𝛾𝑀𝑅𝐶 =

∑𝐿
𝑘=1 𝛾𝑘. The PDF of 𝛾𝑀𝑅𝐶 for 𝑖.𝑖.𝑑. Nakagami-𝑚

fading channels is given by [20]

𝑓𝛾𝑀𝑅𝐶(𝑥) =
1

Γ(𝐿𝑚)

(
𝑚

𝛾

)𝐿𝑚

𝑥𝐿𝑚−1 𝑒−(
𝑚
𝛾 )𝑥, 𝑥 ≥ 0.

(15)
Similar to the derivation of (13) in the Appendix, the

average AUC under MRC, 𝐴
𝑀𝑅𝐶

𝑁𝑎𝑘 , can be evaluated through
averaging 𝐴(𝛾) in (9) by the SNR distribution in (15), given
as in (16) on the next page. For higher 𝛾, 𝐴

𝑀𝑅𝐶

𝑁𝑎𝑘 in (16)
can be approximated as in (17) on the next page, where
𝑔𝑀𝑅𝐶(𝑚,𝐿, 𝑢) is the term in the square brackets which
depends on parameters 𝑚, 𝐿 and 𝑢. The detection diversity
gain is equal to 𝐿𝑚.

2) Square-Law Combining (SLC): In contrast to the MRC,
𝐿 diversity branches in SLC are combined after the received
signal from each branch is squared and integrated (over period
𝑇 ). The energy detector receives the sum of 𝐿 decision
statistics. Therefore, the resultant decision statistic follows a
central chi-square distribution with 2𝐿𝑢 degrees of freedom
and a non-central chi-square distribution with 2𝐿𝑢 degrees
of freedom under hypothesis 𝐻0 and 𝐻1, respectively. The
non-centrality parameter under hypothesis 𝐻1 is 𝛾𝑆𝐿𝐶 =∑𝐿

𝑘=1 𝛾𝑘. The false alarm and the detection probabilities
𝑃𝑓 (𝜆) and 𝑃𝑑(𝛾

𝑆𝐿𝐶 , 𝜆) under AWGN channel are shown to
be given by (2) and (3) with 𝑢 and 𝛾 being replaced by 𝐿𝑢
and 𝛾𝑆𝐿𝐶 , respectively [5].

It can be seen that the AUC under SLC for AWGN channel
is equivalent to 𝐴(𝛾) in (9), after replacing 𝑢 by 𝐿𝑢. Since
𝛾𝑆𝐿𝐶 and 𝛾𝑀𝑅𝐶 have similar expression (

∑𝐿
𝑘=1 𝛾𝑘), the

average AUC under SLC with Nakagami-𝑚 fading channels,
𝐴

𝑆𝐿𝐶

𝑁𝑎𝑘 , can be evaluated as 𝐴
𝑀𝑅𝐶

𝑁𝑎𝑘 in (16) after replacing 𝑢 by
𝐿𝑢. Further, high average SNR approximation can be derived
as

𝐴
𝑆𝐿𝐶

𝑁𝑎𝑘 ≈ 1− 𝑔𝑆𝐿𝐶(𝑚,𝐿, 𝑢)𝛾−𝐿𝑚 (18)

where 𝑔𝑆𝐿𝐶(𝑚,𝐿, 𝑢) is equivalent to 𝑔𝑀𝑅𝐶(𝑚,𝐿, 𝑢) after
replacing 𝑢 by 𝐿𝑢. The detection diversity gain is equal to
𝐿𝑚.

3) Selection Combining (SC): In SC, the branch with
the strongest SNR among all diversity branches is selected.
The instantaneous SNR at the output of the combiner is
𝛾𝑆𝐶 = max{𝛾1, ..., 𝛾𝐿}. The PDF of 𝛾𝑆𝐶 for 𝑖.𝑖.𝑑. Nakagami-
𝑚 fading channels with integer 𝑚 is given by [24]

𝑓𝛾𝑆𝐶 (𝑥) =
𝐿

Γ(𝑚)

𝐿−1∑
𝑙=0

(−1)𝑙
(
𝐿− 1

𝑙

)
𝑒−

(𝑙+1)𝑚
𝛾 𝑥

𝑙(𝑚−1)∑
𝑛=0

𝛽(𝑛, 𝑙,𝑚)

(
𝑚

𝛾

)𝑚+𝑛

𝑥𝑚+𝑛−1, 𝑥 ≥ 0

(19)

where 𝛽(𝑛, 𝑙,𝑚) is the notation defined in [24]. Similar to the
derivation of (13) in the Appendix, average AUC under SC
with Nakagami-𝑚 fading channels, 𝐴

𝑆𝐶

𝑁𝑎𝑘, can be evaluated
as in (20) on the next page. For higher 𝛾, 𝐴

𝑆𝐶

𝑁𝑎𝑘 in (20)
can be approximated as in (21) on the next page, where
𝑔𝑆𝐶(𝑚,𝐿, 𝑙, 𝑢, 𝑛) is the term in the square brackets. The
effective detection diversity gain is equal to 𝐿𝑚.

V. AVERAGE AUC OF MRC UNDER RAYLEIGH FADING

WITH CHANNEL ESTIMATION ERRORS AND CHANNEL

FADING CORRELATIONS

A. Impact of Channel Estimation Errors

In Section IV, the average AUC of MRC is derived by
assuming that each branch is weighted with its perfect channel
knowledge (i.e. perfect channel estimation). But in practice,
channel estimation errors are inevitable. So it is important
to incorporate the effect of channel estimation errors on the
average AUC. Assuming that the complex Gaussian error is
accumulated to each weighting factor in the combiner, a PDF
of the output SNR is derived in [25] for MRC under Rayleigh
fading channels. By re-arranging the terms of the results in
[25], an alternative form of the PDF of the output SNR of
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𝐴
𝑀𝑅𝐶

𝑁𝑎𝑘 = 1 − 1

Γ(𝐿𝑚)

(
2𝑚

2𝑚+ 𝛾

)𝐿𝑚 𝑢−1∑
𝑘=0

Γ(𝑘 +𝑚)

𝑘!

(
𝛾

2𝑚+ 𝛾

)𝑘

+

(
𝑚

𝑚+ 𝛾

)𝐿𝑚 𝑢−1∑
𝑘=1−𝑢

Γ(𝑢+ 𝑘)

2𝑢+𝑘Γ(𝑢)
2𝐹1

(
𝐿𝑚, 𝑢+ 𝑘; 1 + 𝑘;

𝛾

2(𝑚+ 𝛾)

)
. (16)

𝐴
𝑀𝑅𝐶

𝑁𝑎𝑘 ≈ 1−
[
(2𝑚)𝐿𝑚

Γ(𝐿𝑚)

𝑢−1∑
𝑘=0

Γ(𝑘 +𝑚)

𝑘!
−

𝑢−1∑
𝑘=1−𝑢

𝑚𝐿𝑚Γ(𝑢 + 𝑘)

2𝑢+𝑘Γ(𝑢)
2𝐹1

(
𝐿𝑚;𝑢+ 𝑘; 1 + 𝑘;

1

2

)]
𝛾−𝐿𝑚

= 1− 𝑔𝑀𝑅𝐶(𝑚,𝐿, 𝑢)𝛾−𝐿𝑚. (17)

𝐴
𝑆𝐶

𝑁𝑎𝑘 = 1−
𝐿−1∑
𝑙=0

(−1)𝑙𝐿𝛽(𝑛, 𝑙,𝑚)

Γ(𝑚)

(
𝐿− 1

𝑙

)(
𝑚

𝛾

)𝑚+𝑛 [ 𝑢−1∑
𝑘=0

Γ(𝑘 +𝑚+ 𝑛)

2𝑘 𝑘!

(
2𝛾

2𝑚(𝑙+ 1) + 𝛾

)𝑘+𝑚+𝑛

−
𝑢−1∑

𝑘=1−𝑢

Γ(𝑢+ 𝑘)Γ(𝑚+ 𝑛)

2𝑢+𝑘Γ(𝑢)

(
𝛾

𝛾 +𝑚(𝑙 + 1)

)𝑚+𝑛

2𝐹1

(
𝑚+ 𝑛;𝑢+ 𝑘; 1 + 𝑘;

𝛾

2(𝑚(𝑙 + 1) + 𝛾)

)]
. (20)

𝐴
𝑆𝐶

𝑁𝑎𝑘 ≈ 1−
𝐿−1∑
𝑙=0

𝑙(𝑚−1)∑
𝑛=0

[
(−1)𝑙𝐿𝛽(𝑛, 𝑙,𝑚)𝑚𝑚+𝑛

Γ(𝑚)

(
𝐿− 1

𝑙

)(𝑢−1∑
𝑘=0

2𝑚+𝑛Γ(𝑘 +𝑚+ 𝑛)

𝑘!

−
𝑢−1∑

𝑘=1−𝑢

Γ(𝑢+ 𝑘)Γ(𝑚+ 𝑛)

2𝑢+𝑘Γ(𝑢)
2𝐹1

(
𝑚+ 𝑛;𝑢+ 𝑘; 1 + 𝑘;

1

2

))]
𝛾−(𝑚+𝑛)

= 1−
𝐿−1∑
𝑙=0

𝑙(𝑚−1)∑
𝑛=0

𝑔𝑆𝐶(𝑚,𝐿, 𝑙, 𝑢, 𝑛)𝛾−(𝑚+𝑛). (21)

MRC under 𝑖.𝑖.𝑑. Rayleigh fading channels, 𝑓𝛾𝐸𝑟𝑟(𝑥), is given
in [26]. Applying the definition of Bernstein polynomials,
𝐵𝑛

𝑖 (𝑡) =
(
𝑛
𝑖

)
𝑡𝑖(1 − 𝑡)𝑛−𝑖 [27], the PDF 𝑓𝛾𝐸𝑟𝑟(𝑥) can be re-

written as

𝑓𝛾𝐸𝑟𝑟(𝑥) =

𝐿∑
𝑙=1

𝐵𝐿−1
𝑙−1 (𝜌2)

1

(𝑙 − 1)! 𝛾𝑙
𝑥𝑙−1𝑒−

𝑥
𝛾 , 𝑥 ≥ 0

(22)

where 𝜌 is the correlation coefficient between the correct
complex channel gain and the estimated complex channel
gain (0 ≤ 𝜌 ≤ 1). So 𝜌 represents the channel estimation
accuracy level. The average AUC in this case, 𝐴𝐸𝑟𝑟, can
be evaluated through averaging 𝐴(𝛾) in (9) by the SNR
distribution 𝑓𝛾𝐸𝑟𝑟(𝑥) given in (22). Similar to the derivation
of (13) in the Appendix, 𝐴𝐸𝑟𝑟 can be evaluated as in (23) on
the next page.

B. Impact of Channel Fading Correlations

In the previous sections, we assume that the diversity
branches are independent with each other. However, in prac-
tice, this assumption is not always valid. Therefore, it is im-
portant to analyze the performance of the energy detector with
correlated fading channels. Since there are multiple correlation
scenarios, we do not have space to consider all interesting
cases. Instead, we consider one simple yet instructive case:

a dual-branch MRC receiver under correlated and identically
distributed Rayleigh fading. The PDF of output SNR, 𝛾𝐶𝑟𝑟,
is given as [28]

𝑓𝛾𝐶𝑟𝑟(𝑥) =
1

2
√
𝜇𝛾

(
𝑒
− 𝑥

(1+
√

𝜇)𝛾 − 𝑒
− 𝑥

(1−√
𝜇)𝛾

)
, 𝑥 ≥ 0

(24)

where 𝜇 is the power correlation coefficient of dual-branch
signals (0 < 𝜇 ≤ 1). The average AUC, 𝐴𝐶𝑟𝑟, can be eval-
uated through averaging 𝐴(𝛾) in (9) by the SNR distribution
𝑓𝛾𝐶𝑟𝑟(𝑥) in (24), which is given in (25) on the next page with
𝑎1 = 1/(1 +

√
𝜇)𝛾 and 𝑎2 = 1/(1−√

𝜇)𝛾.

VI. NUMERICAL AND SIMULATION RESULTS

In this section, we present numerical and Monte-Carlo
simulation results. Since the average AUC depends on pa-
rameters such as 𝑚, 𝑢, 𝛾 and 𝐿 (if diversity reception is
used), several different cases are discussed here. Analytical
expressions in (13), (16), (20), (23) and (25) for average AUCs
are verified by numerical calculations and by Monte-Carlo
simulations using MATHEMATICA and MATLAB software
packages, respectively. Continuous and dashed lines in the
following figures represent numerical values, while discrete
signs represent simulation values.

Fig. 1 shows the analytical and simulation results for
average AUC with no diversity reception under Nakagami-
𝑚 fading model. The analytical results are based on (13).
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𝐴𝐸𝑟𝑟 = 1−
𝐿∑

𝑙=1

𝐵𝐿−1
𝑙−1 (𝜌2)

1

(𝑙 − 1)! 𝛾𝑙

[𝑢−1∑
𝑘=0

2𝑙 Γ(𝑘 + 𝑙)

𝑘!

(
𝛾

𝛾 + 2

)𝑘+𝑙

−
𝑢−1∑

𝑘=1−𝑢

Γ(𝑢+ 𝑘)Γ(𝑙)

2𝑢+𝑘Γ(𝑢)

(
𝛾

1 + 𝛾

)𝑙

2𝐹1

(
𝑙;𝑢+ 𝑘; 1 + 𝑘;

𝛾

2(1 + 𝛾)

)]
. (23)

𝐴𝐶𝑟𝑟 = 1− 1

2
√
𝜇𝛾

[
𝑢−1∑
𝑘=0

Γ(𝑘 + 𝑙)

2𝑘 𝑘!

(
1(

𝑎1 +
1
2

)𝑘+1
− 1(

𝑎2 +
1
2

)𝑘+1

)
−

𝑢−1∑
𝑘=1−𝑢

Γ(𝑢 + 𝑘)

2𝑢+𝑘Γ(𝑢)⎛
⎝2𝐹1

(
1;𝑢+ 𝑘; 1 + 𝑘; 1

2(1+𝑎1)

)
1 + 𝑎1

−
2𝐹1

(
1;𝑢+ 𝑘; 1 + 𝑘; 1

2(1+𝑎2)

)
1 + 𝑎2

⎞
⎠]. (25)
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Fig. 1. Average AUC versus average SNR 𝛾 with no diversity case (𝑢 = 4).

This figure shows the average AUC versus average SNR with
different fading parameter 𝑚 values. Note that numerical and
simulation results match well. Note also that a higher 𝑚 leads
to larger average AUC, and thus, higher overall detection
capability. This is because the average AUC converges to unity
faster when the average SNR and the fading index 𝑚 increase,
as the detection diversity order is equal to 𝑚 based on (14).
Since the accuracy of expression (13) is verified in Fig. 1
by comparison of numerical and simulation results, to avoid
clutter, simulation results are not shown in Fig. 2, Fig. 3 and
Fig. 4.

Also for the no-diversity case, Fig. 2 shows (by solid
lines) the average AUC versus fading parameter 𝑚 with
different average SNR values. It can be seen that, between
the average SNR and the fading parameter, the average SNR
is the dominant factor in determining the detection capability,
particularly in the low-SNR region. The average AUC reaches
unity even for the small values of 𝑚 when the average SNR
is high (e.g. 𝛾 > 15 dB), as explained in (14). For higher 𝑚
values, there is an asymptotic value of the average AUC for
a specific average SNR value. When 𝑚 → ∞, the fading
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Fig. 2. The Average AUC as a function of fading parameter 𝑚 (𝑢 = 4).

channel is equivalent to the AWGN channel. The average
AUC under the AWGN channel is equivalent to expression
(9) after replacing 𝛾 by 𝛾, which is also plotted in Fig. 2 (by
dashed lines) as the asymptotic value of the average AUC of
the Nakagami-𝑚 fading channel.

The influence of the number of samples 𝑢 on the AUC
performance is investigated in Figs. 3 and 4. When the fading
parameter is fixed at 𝑚 = 2, Fig. 3 shows the average AUC
versus the average SNR for different 𝑢 values, while Fig. 4
shows the average AUC versus 𝑢 with different average SNR
values. Somewhat paradoxically, a higher number of samples
𝑢 tends towards a lower detection capability. The reason is as
follows. When the value of 𝑢 increases, the detection and false
alarm probabilities both increase. However, the false alarm
probability increases faster than the detection probability, thus
leading to a lower overall detection capability. Nevertheless,
in the high SNR region (𝛾 > 15 dB), the differences among
different AUC values for different 𝑢 values peter out.

For diversity reception case, when 𝑢 is fixed at 𝑢 = 4 and
fading parameter is fixed at 𝑚 = 2, Fig. 5 shows the analytical
and simulation results for the average AUC as a function
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Fig. 3. Average AUC versus average SNR for different 𝑢 with no diversity
(𝑚 = 2).
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Fig. 4. Average AUC versus the number 𝑢 of samples for different average
SNR 𝛾 with no diversity (𝑚 = 2).

of the average SNR for different values of diversity branch
number 𝐿, while Fig. 6 shows the analytical and simulation
results for the average AUC as a function of the number of
branches 𝐿 for different average SNR. As can be expected,
Figs. 5 and 6 show that MRC always outperforms SLC and
SC. For a specific AUC value, say 0.75, the MRC scheme
with five diversity branches gains about 8 dB in terms of the
average SNR. Moreover, it can be seen that, with the increase
of 𝐿, the average AUC in MRC and SLC approaches unity
much faster than the average AUC in SC. The reason is the
difference of the SNR after the combiners, for which we have
𝛾𝑀𝑅𝐶 > 𝛾𝑆𝐿𝐶 > 𝛾𝑆𝐶 . Note that the detection diversity gains
of the three combiners are all 𝐿𝑚. A similar observation is
also found in [4] for dual-branch MRC and SC.

Note that the cost of using MRC is the requirement of
high-quality channel estimates. The performance of MRC is

−10 −5 0 5 10 15 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Average SNR (dB)

A
ve

ra
ge

 A
U

C

 

 

L = 1
L = 2 MRC
L = 3 MRC
L = 5 MRC
L = 2 SC
L = 3 SC
L = 5 SC
L = 2 SLC
L = 3 SLC
L = 5 SLC

Fig. 5. Average AUC versus average SNR with different 𝐿 in diversity
receptions (𝑢 = 4 and 𝑚 = 2).
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Fig. 6. Average AUC versus branch number for different average SNR in
diversity receptions (𝑢 = 4 and 𝑚 = 2).

likely to deteriorate with poor channel quality estimates. Since
high-quality estimates are unlikely to be present for energy-
detection-type applications, an interesting question is how
good the quality of channel estimates should be in order for
MRC to outperform SLC (which does not require channel
estimates). This question is answered in Fig. 7, which shows
the analytical and simulation results for the average AUC (for
MRC) versus the average SNR with different level of channel
estimation accuracy (𝜌). It can be seen that the simulation and
analytical results match well. The average AUC degrades as
𝜌 changes from 1 (perfect channel estimation) to 0.5. As a
comparison, the performance with SLC is also presented in
Fig. 7 by a dashed line. In this particular example, we can see
that if 𝜌 is less than 0.6, it is better to implement SLC receiver
rather than implementing a post-detection MRC receiver.

Fig. 8 shows the average AUC versus the average SNR
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Fig. 7. Average AUC versus average SNR for MRC with different 𝜌 (𝑢 = 4
and 𝑚 = 1).
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Fig. 8. Average AUC versus average SNR for dual-branch MRC with
different 𝜇 (𝑢 = 4 and 𝑚 = 1).

with different channel correlation coefficient (𝜇) for dual-
branch MRC. The average AUC is seen to degrade as the
correlation between the two branches increases. If channels
are fully correlated (𝜇 = 1) and fully uncorrelated (𝜇 = 0),
it corresponds to the single-branch case and the independent-
dual-branch MRC case, respectively. Since expression (25) is
valid for 0 < 𝜇 < 1, in Fig. 8 we plot numerically calculated
average AUC for 𝜇 → 1 and 𝜇→ 0. Both curves match well
with fully correlated (𝜇 = 1) and fully uncorrelated (𝜇 = 0)
Monte-Carlo simulation results, respectively.

VII. CONCLUSIONS

A simple figure of merit characterizing the performance of
an energy detector is the AUC. The AUC is simply the area
under the ROC curve. No AUC results appear to be available
in the wireless literature. In this paper, the average AUC of
an energy detector is derived for Nakagami-𝑚 fading channels

with no-diversity based on threshold averaging technique. The
average AUC derivation is then extended to diversity reception
cases such as selection combining, square-law combining,
and maximal ratio combining with Nakagami-𝑚 fading diver-
sity branches. The impacts of channel estimation errors and
channel fading correlations are also investigated. High SNR
approximations and detection diversity gain are also derived.
We anticipate that the AUC measure will also be useful for
characterizing the performance of other numerous detection
algorithms.

APPENDIX

A. Necessary Integrations

Some integrations necessary for the rest of the derivations
are presented below.

First, we define

𝐽1(𝑎, 𝑝, 𝑟, 𝑐) ≜
∫ ∞

0

𝑥𝑎−1𝑒−𝑝𝑥2

𝐼𝑟(𝑐𝑥) 𝑑𝑥 (26)

with parameters 𝑎, 𝑝, 𝑟, 𝑐, where Re[𝑎] > 0 ∧ Re[𝑝] > 0 2.
Although a closed-form solution for 𝐽1(𝑎, 𝑝, 𝑟, 𝑐) is available
in [29, eq. (2.15.5.4)], it can not be applied for negative integer
values of 𝑟. Therefore, we present an alternative method for
any integer 𝑟, as follows.

After applying series expansion of 𝐼𝑟(𝑐𝑥) in (26), and with
transformation 𝑡 = 𝑥2, 𝐽1(𝑎, 𝑝, 𝑟, 𝑐) can be written as

𝐽1(𝑎, 𝑝, 𝑟, 𝑐) =

∞∑
𝑘=0

(
𝑐
2

)2𝑘+𝑟

Γ(𝑘 + 𝑟 + 1)𝑘!

1

2

∫ ∞

0

𝑡𝑘+
𝑟+𝑎
2 −1𝑒−𝑝𝑡 𝑑𝑡.

Further, 𝐽1(𝑎, 𝑝, 𝑟, 𝑐) can be shown to be

𝐽1(𝑎, 𝑝, 𝑟, 𝑐) =
𝑐𝑟

2𝑟+1
𝑝−

𝑎+𝑟
2 Γ

(
𝑎+ 𝑟

2

)
∞∑
𝑘=0

(
𝑎+𝑟
2

)
𝑘
𝑝−𝑘

Γ(𝑘 + 𝑟 + 1) 𝑘!

(
𝑐2

4

)𝑘

where (𝑛)𝑘 is the Pochhammer symbol defined as (𝑛)𝑘 =
Γ(𝑛+𝑘)
Γ(𝑛) [30].
Given a hypergeometric or generalized hypergeometric

function 𝑝𝐹𝑞(𝑎1, ..., 𝑎𝑝; 𝑏1, ..., 𝑏𝑞; 𝑧), the corresponding reg-
ularized hypergeometric function is defined as [18, eq.
07.32.02.0001.01]

𝑝𝐹𝑞(𝑎1, ..., 𝑎𝑝; 𝑏1, ..., 𝑏𝑞; 𝑧) ≜ 𝑝𝐹𝑞(𝑎1, ..., 𝑎𝑝; 𝑏1, ..., 𝑏𝑞; 𝑧)

Γ(𝑏1)...Γ(𝑏𝑞)

=

∞∑
𝑘=0

∏𝑝
𝑗=1 (𝑎𝑗)𝑘 𝑧

𝑘

𝑘!
∏𝑞

𝑗=1 Γ(𝑘 + 𝑏𝑗)
.

(27)

Therefore, 𝐽1(𝑎, 𝑝, 𝑟, 𝑐) can be evaluated as

𝐽1(𝑎, 𝑝, 𝑟, 𝑐) =
𝑐𝑟𝑝−

𝑎+𝑟
2 Γ

(
𝑎+𝑟
2

)
2𝑟+1 1𝐹1

(
𝑎+ 𝑟

2
; 𝑟 + 1;

𝑐2

4𝑝

)
.

(28)

Next, we define

𝐽2(𝑎, 𝑝, 𝑏, 𝑑, 𝑐) ≜
∫ ∞

0

𝑥𝑎−1𝑒−𝑝𝑥
1𝐹1 (𝑏; 𝑑; 𝑐𝑥) 𝑑𝑥 (29)

2Here ∧ stands for AND.
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with parameters 𝑎, 𝑝, 𝑏, 𝑑, 𝑐, where Re[𝑎] > 0 ∧ Re[𝑝] > 0.
Using the definition of the regularized hypergeometric func-
tions 𝑝𝐹𝑞 in (27), 𝐽2(𝑎, 𝑝, 𝑏, 𝑑, 𝑐) can be solved as

𝐽2(𝑎, 𝑝, 𝑏, 𝑑, 𝑐) =
∞∑
𝑘=0

(𝑎)𝑘 𝑐
𝑘

𝑘! Γ(𝑏 + 𝑘)

∫ ∞

0

𝑥𝑘+𝑎−1𝑒−𝑝𝑥 𝑑𝑥

=
∞∑
𝑘=0

(𝑎)𝑘𝑐
𝑘

𝑘! Γ(𝑏 + 𝑘)

Γ(𝑘 + 𝑎)

𝑝𝑘+𝑎
.

With the relationship of Γ(𝑘 + 𝑎) = (𝑎)𝑘Γ(𝑎) for integer
values of 𝑎, 𝐽2(𝑎, 𝑝, 𝑏, 𝑑, 𝑐) is shown to be

𝐽2(𝑎, 𝑝, 𝑏, 𝑑, 𝑐) = 𝑝−𝑎Γ(𝑎)2𝐹1

(
𝑎; 𝑏; 𝑑;

𝑐

𝑝

)
. (30)

B. Derivation of 𝐴(𝛾) in (9)

Eq. (8) can be written as

𝐴(𝛾) =
1

2𝑢−1Γ(𝑢)
(𝐼1 − 𝐼2 + 𝐼3) (31)

where 𝐼1, 𝐼2 and 𝐼3 are defined as follows

𝐼1 ≜
∫ ∞

0

𝑡2𝑢−1𝑒−
𝑡2

2 𝑑𝑡 = 22𝑢−1Γ(𝑢)

𝐼2 ≜
∫ ∞

0

𝑡2𝑢−1𝑒−
𝑡2

2 𝑄𝑢(𝑡,
√
2𝛾) 𝑑𝑡

=22𝑢−1(𝑢− 1)! 𝑒−
𝛾
2

𝑢−1∑
𝑘=0

1

𝑘!

(𝛾
2

)𝑘

𝐼3 ≜𝑒−𝛾
𝑢−1∑

𝑘=1−𝑢

(
1

2𝛾

) 𝑘
2
∫ ∞

0

𝑡2𝑢+𝑘−1𝑒−𝑡2𝐼𝑘

(√
2𝛾𝑡
)
𝑑𝑡

=𝑒−𝛾
𝑢−1∑

𝑘=1−𝑢

2−(1+𝑘)Γ(𝑢+ 𝑘) 1𝐹1

(
𝑢+ 𝑘; 1 + 𝑘;

𝛾

2

)

where the second equality of 𝐼2 is from [31, eq. (28)], and the
second equality of 𝐼3 is from (26) and (28). 1𝐹1(⋅; ⋅; ⋅) is the
regularized confluent hypergeometric function of 1𝐹1 [18].

After replacing 𝐼1, 𝐼2, and 𝐼3 by the above definitions, Eq.
(31) is exactly (9).

C. Derivation of 𝐴𝑁𝑎𝑘 in (13)

With (9), (11), (12) and the fact
∫∞
0
𝑓𝛾(𝑥) = 1, 𝐴𝑁𝑎𝑘 can

be written as

𝐴𝑁𝑎𝑘 = 1− 1

Γ(𝑚)

(
𝑚

𝛾

)𝑚 𝑢−1∑
𝑘=0

1

2𝑘 𝑘!
𝐼4

+
1

Γ(𝑚)

(
𝑚

𝛾

)𝑚 𝑢−1∑
𝑘=1−𝑢

Γ(𝑢 + 𝑘)

2𝑢+𝑘Γ(𝑢)
𝐼5

(32)

where 𝐼4 and 𝐼5 are defined as

𝐼4 ≜
∫ ∞

0

𝑥𝑚+𝑘−1𝑒−(
𝑚
�̄� + 1

2 )𝑥 𝑑𝑥

=Γ(𝑘 +𝑚)

(
𝑚

𝛾
+

1

2

)−(𝑘+𝑚) (33)

and

𝐼5 ≜
∫ ∞

0

𝑥𝑚−1𝑒−(
𝑚
𝛾 +1)𝑥

1𝐹1

(
𝑢+ 𝑘; 1 + 𝑘;

𝑥

2

)
𝑑𝑥.

Using the transformation 𝑥 = 2𝑦 and based on (29) and (30),
𝐼5 can be evaluated for integer 𝑚 as

𝐼5 =
Γ(𝑚)(

𝑚
𝛾 + 1

)𝑚 2𝐹1

(
𝑚;𝑢+ 𝑘; 1 + 𝑘;

𝛾

2(𝑚+ 𝛾)

)
. (34)

After replacing 𝐼4 by (33) and replacing 𝐼5 by (34), Eq. (32)
is exactly Eq. (13).
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