
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 2, FEBRUARY 2010 521

Receive Antenna Selection for Unitary Space-Time
Modulation over Semi-Correlated Ricean Channels

Mahdi Ramezani, Student Member, IEEE, Mahdi Hajiaghayi, Student Member, IEEE,
Chintha Tellambura, Senior Member, IEEE, and Masoud Ardakani, Senior Member, IEEE

Abstract—Receive antenna selection for unitary space-time
modulation (USTM) over semi-correlated Ricean fading channels
is analyzed (this work generalizes that of Ma and Tepedelenlioğlu
for the independent and identically distributed (i.i.d.) Rayleigh
fading case). The antenna selection rule is that the receive
antennas with the largest signal powers are chosen. For single
antenna selection, we derive the maximum likelihood decoding
for the correlated Ricean case. We also derive the Chernoff
bound on the pairwise error probability for the high signal-
to-noise ratio (SNR) region and obtain the coding gain and
diversity order. Our results show that even when there are
transmitter side correlations and a line of sight component,
receive antenna selection with USTM preserves the full diversity
order if the USTM constellation is of full rank. We also give an
approximation to the distribution function of a quadratic form of
non-zero mean complex Gaussian variates (from Nabar et al.) at
the high SNR region. Based on this approximation, a closed-form
expression for the coding gain is also obtained and compared
with that of the i.i.d. Rayleigh case. We also analyze the case
of multiple receive antenna selection and derive the coding gain
and diversity order. We show that USTM constellations, which
have been proposed for the i.i.d. Rayleigh channel, can be used
with the correlated Ricean channel as well.

Index Terms—Space-time codes, unitary space-time modula-
tion, correlated channel, Ricean channel, cumulative distribution
function (CDF), Chernoff bound, antenna selection, pairwise
error probability, diversity.

I. INTRODUCTION

MULTIPLE-input multiple-output (MIMO) systems with
multiple antennas at the transmit and receiver ends of

a wireless link can improve reliability and capacity [1], [2].
However, as the number of antennas and/or the Doppler spread
increases, channel estimation results in added complexity and
a significant overhead of pilot symbols. These drawbacks may
be overcome by the use of unitary space-time modulation
(USTM), which does not use channel estimates, but achieves
full capacity and full diversity order for fast fading MIMO
channels [3]–[6].
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Most USTM studies consider that all available antennas
are utilized for signal transmission and reception [7]–[9]. In
practice, however, each transmit-receive antenna pair requires
a radio frequency (RF) chain, along with an increase in
the complexity of signal processing [10]. A promising low-
complexity solution is the selection of a subset of all avail-
able transmit/receive antenna pairs. Antenna selection (AS)
algorithms have been designed and analyzed extensively [8],
[11]–[17].

Receive antenna selection (RAS) based on a maximum-
norm (power) criterion for independent and identically dis-
tributed (i.i.d.) Rayleigh fading channels was developed by
Ma and Tepedelenlioğlu [18]. With this selection method,
a subset of receive antennas whose received signal powers
are the largest is chosen [18] and this method requires no
channel state information (CSI) at the receiver. By analyzing
the pairwise error probability (PEP), they showed that the
diversity gain with AS in this case is preserved for unitary
space-time codes with full spatial diversity, the same as for
the case with the CSI at the receiver.

However, [18] considers only the i.i.d. fading case. In
reality, insufficient antenna spacing, angle spread or the lack of
rich scattering may cause spatial correlation among antennas,
particularly at the transmit side [19], [20]. Moreover, channel
measurements show that in some propagation environments, a
line of sight (LOS) component is present [21], [22]. In such
cases, the Ricean distribution is used to model the channel,
and the mean of the channel matrix is not zero.

This paper considers semi-correlated Ricean fading chan-
nels with spatial correlation among the transmit antennas. The
correlations and LOS components are long-term statistics of
the channel, which do not vary during the transmission. We
first investigate the selection of one receive antenna based on
the maximum received signal power. The maximum likelihood
(ML) detection rule based on this antenna selection criteria
is derived. This rule has considerably less complexity than
that of the full complexity system, where all receive antennas
and all of the signal points in the constellation are searched.
The Chernoff bound on the PEP is derived. We show that
the proposed system achieves the full diversity order just
like the full complexity system. Surprisingly, the effect of
the correlation and the LOS components on the coding gain
(compared to the i.i.d. Rayleigh channel [18]) can be described
within a factor which depends only on the long-term statistics
of the channel. Therefore, since in a full diversity system, the
code design process is usually based on the maximization of
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the coding gain, the rich unitary codes for the i.i.d. Rayleigh
channel reported in [18] can be used for the correlated Ricean
fading channel as well. The results are also extended to the
multiple antenna selection scenario. It is shown that the effect
of the correlation and the LOS components on the coding
gain for no antenna selection (utilizing all receive antennas) is
described by the same factor as in the single antenna selection
case.

This paper is organized as follows. In Section II, we
describe the system model and present the USTM and dif-
ferential USTM. In Section III, the ML detection and antenna
selection rule for selecting single antenna at the receiver is
discussed. Performance analysis using the Chernoff bound on
the PEP is presented in Section IV. Multiple antenna selection
is considered in Section V, followed by the simulation results
in Section VI. We conclude the paper in Section VII.

Notation: The real part, Hermitian, transpose, trace, deter-
minant and Frobenius norm of a matrix A are denoted by
ℜ(A), A†, A′, Tr (A), ∣A∣, ∥A∥F, respectively. All vectors
are column vectors and the all-one vector is denoted by 1.
Also, a circularly symmetric complex Gaussian random vector
with mean vector m and covariance matrix Σ is denoted
by x ∼ 𝒞𝒩 (m,Σ). 𝐸 denotes the expectation and the
set of complex numbers and nonnegative real numbers are
represented by ℂ and ℝ+. We write a function 𝑓(𝑥) as 𝑜(𝑥)
if it falls off faster than 𝑥 when 𝑥 goes to infinity, i.e.,
lim𝑥→∞ 𝑓(𝑥)/𝑥 = 0. For an 𝜖 ∈ [0, 1], 𝜖 stands for 1− 𝜖. The

notation
𝐽

max𝑛 𝑋𝑛 means the 𝐽 largest 𝑋𝑛’s. Also, we use the
notation ℐ𝑁 (𝑘) =

{
𝑚1, . . . ,𝑚𝑁 ∈ {0, 1, . . . , 𝑘}∣∑𝑁

𝑖=1 𝑚𝑖 =
𝑘
}

to simplify some indices. The cardinality of ℐ𝑁 (𝑘) is
∣ℐ𝑁 (𝑘)∣ =

(
𝑁+𝑘−1
𝑁−1

)
.

II. SYSTEM MODEL AND THE USTM SCHEME

We consider a MIMO system with 𝑀 transmit and 𝑁
receive antennas operating over flat Ricean-fading channels.
The channel coefficient ℎ𝑖𝑗 between the 𝑖th transmit antenna
and the 𝑗th receive antenna is assumed to be constant for 𝑇
(𝑇 > 𝑀 ) symbol periods. The received matrix signal is [3]

Y =

√
𝜌

𝑀
SH + W (1)

where Y = [y1, . . . ,y𝑁 ] is a 𝑇 ×𝑁 complex received signal
matrix, S is a 𝑇 ×𝑀 complex transmitted signal matrix, H is
an 𝑀 ×𝑁 channel matrix, and W denotes a 𝑇 ×𝑁 additive
noise matrix with i.i.d. 𝒞𝒩 (0, 1) elements.

Let 𝑠𝑡,𝑖 be the data symbol transmitted from the 𝑖th antenna
at time 𝑡. At each time slot 𝑡 = 1, 2, . . . , 𝑇 , the transmitted
signal is normalized to have a unit average power over the
𝑀 transmit antennas, i.e., 1

𝑀

∑𝑀
𝑖=1 𝐸∣𝑠𝑡,𝑖∣2 = 1, so that 𝜌 is

the average SNR at each receive antenna, regardless of the
number of transmit antennas.

The channel model H is assumed to be correlated Ricean,
i.e., it consists of a fixed component and a random component.
The channel may be represented as [22], [23]

H =

√
𝐾

𝐾 + 1
H̄ +

√
1

𝐾 + 1
R

1/2
𝑇 H𝑤 (2)

where the first and second terms are the mean (LOS) and
the diffuse of the communication channel, respectively. The

Ricean factor 𝐾 indicates the relative strength of the LOS
component over the diffuse component, indicating the link
quality [24]. Also, the 𝑀 ×𝑁 matrix H𝑤 has i.i.d. 𝒞𝒩 (0, 1)
elements. The 𝑀 ×𝑀 positive Hermitian matrix R𝑇 denotes
the spatial transmit correlation with all diagonal entries 1. In
(2), H̄, 𝐾 and R𝑇 are long-term statistics of the channel
known to the receiver and remain fixed for each period of
signal transmission. All 𝑁 receive antennas experience the
same LOS component, i.e., all columns of H̄ are identical
and denoted by h̄, hereafter.

A. Correlation models

The transmit correlation matrix can take several forms.
The exponential correlation model [25] is often used to
describe the correlation coefficients among antennas and may
hold for the practical case of an equi-spaced linear array of
antennas. The correlation matrix and corresponding (distinct)
eigenvalues of this model are given by [25], [26]

[R𝑇 ]𝑖𝑗 = 𝑟∣𝑖−𝑗∣, ∣𝑟∣ ≤ 1, (3)

and 𝜆𝑖 = (1 − 𝑟2)/(1 − 2𝑟 cos 𝜃𝑖 + 𝑟2), 𝑖 = 1, 2, . . . ,𝑀,
respectively, where 𝑟 is the correlation coefficient of the neigh-
boring antennas and 𝜃𝑖s are the solutions of sin

(
𝑀+1

2 𝜃
)

=
𝑟 sin

(
𝑀−1

2 𝜃
)

and cos
(
𝑀+1

2 𝜃
)

= 𝑟 cos
(
𝑀−1

2 𝜃
)
.

Constant correlation matrix is another practical model that
is frequently used for an array of three antennas placed on an
equilateral triangle or for closely spaced antennas [27]. The
correlation matrix is

[R𝑇 ]𝑖𝑗 =

{
1 𝑖 = 𝑗
𝑟 𝑖 ∕= 𝑗.

R𝑇 has only two eigenvalues 𝜆1 = 1 + 𝑟(𝑀 − 1) and 𝜆2 =
1 − 𝑟 of order one and 𝑀 − 1, respectively.

Our analysis holds for an arbitrary correlation matrix.
The above correlation models are used only for simulation
purposes.

B. USTM constellation

The USTM constellation 𝒱 contains 𝐿 unitary signals as
[3]

𝒱 =
{
Sℓ, ℓ ∈ {0, 1, . . . , 𝐿− 1}∣∣Sℓ =

√
𝑇Φℓ, Φ

†
ℓΦℓ = I𝑀

}
,

where the 𝑇 × 𝑀 unitary matrix Φℓ has 𝑀 orthonormal
columns. To transmit a data sequence of integers 𝑧1, 𝑧2, . . .
with 𝑧𝜏 ∈ {0, 1, . . . , 𝐿 − 1}, each 𝑧𝜏 is mapped to a
distinct unitary matrix Φ𝑧𝜏 and S𝜏 =

√
𝑇Φ𝑧𝜏 from the

constellation 𝒱 is transmitted. The rate of the constellation
𝒱 is 𝑅 = 1

𝑇 log2 𝐿 bits per channel use. Finally, note that at
high SNR, USTM is capacity achieving provided that 𝑇 > 𝑀
[3].

In differential USTM [5], a unitary codebook of 𝑀 × 𝑀
matrices {V0, . . . ,V𝐿−1} is used. Each 𝑧𝜏 is mapped to the
corresponding V𝑧𝜏 . The transmitted signal used in (1) will be
of the form S = [S′

𝜏−1 S′
𝜏 ]′ where S𝜏 = V𝑧𝜏S𝜏−1, 𝜏 =

1, 2, . . . , and S0 = I𝑀 . From [5], differential USTM can be
viewed as a special case of general USTM by defining an
equivalent 𝑇 × 𝑀 unitary matrix Φ𝑧𝜏 of the form Φ𝑧𝜏 =
1√
2
[I𝑀V′

𝑧𝜏 ]′, where 𝑇 = 2𝑀 . As a result, only USTM is
discussed in the remained of this paper.
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III. ANTENNA SELECTION AND ML DECODING

We first consider the case in which only one receive antenna
(𝐽 = 1), say the 𝑛̂th antenna, is selected. By using the system
model (1), for the transmission of Sℓ ∈ 𝒱 , the mean of the
received signal at the selected antenna can be written as

ȳ =
√

𝜂𝐾Φℓh̄, (4)

where 𝜂 = 𝜌𝑇
𝑀(𝐾+1) . The use of 𝜂 instead of 𝜌 ensures

notational brevity.
The received signal at the selected antenna is y𝑛̂ ∼

𝒞𝒩 (ȳ,Rℓ) where Rℓ is a 𝑇 ×𝑇 matrix indicating the receive
covariance matrix. The probability density function of y𝑛̂

conditioned on the transmission of Sℓ =
√
𝑇Φℓ is

𝑝y𝑛̂
(y∣Φℓ) =

1

𝜋𝑇 ∣Rℓ∣ exp
(−(y − ȳℓ)

†R−1
ℓ (y − ȳℓ)

)
. (5)

For single antenna selection, the optimal selection rule coupled
with the maximum a posteriori (MAP) decoding rule is

𝑛̂ = arg max
𝑛=1,2,...,𝑁

max
Sℓ∈𝒱

𝑝y𝑛(Sℓ∣y), (6)

which has high complexity because it needs the receiver to
search over all receive antennas and all signals 𝒱 [18]. As a
result, a simple antenna selection rule is called for. The simple
maximum-power selection rule, where the antenna with the
largest received signal norm is chosen [18], fits the bill. This
simple rule eliminates the need for the full search required
in (6). Since the antenna whose received power is the largest
among all receive antennas is selected [18], we find

𝑛̂ = arg max
𝑛=1,2,...,𝑁

∥y𝑛∥2. (7)

This rule can be implemented by the use of simple analog
circuits before the analog/digital converter at the receiver [18].

In Section IV, we will show that by using the maximum-
norm criteria over the correlated Ricean channels, the full
diversity can be achieved.

A. Decoding rule

The maximum-norm antenna selection rule (7) is used
throughout this paper. Once a receive antenna is selected, the
output of the selected antenna is used by the receiver for signal
detection. The resulting ML decoding rule for the selected
antenna is given by

ΦML = arg max
Φℓ∈𝒱

𝑝y𝑛̂
(y∣Φℓ)

where Φℓ corresponds to Sℓ. In order to expand and simplify
this decoding rule, we need several properties of the receive
correlation matrix that appears in the pdf (5).

By using the received signal model (1), the receive covari-
ance matrix can be written as

Rℓ = I𝑇 + 𝜂ΦℓR𝑇Φ
†
ℓ . (8)

This result is due to the i.i.d. columns of the received signal
matrix Y. From (8), it is clear that the receive covariance
matrix Rℓ is full rank and has 𝑇 nonzero eigenvalues; i.e.,
𝑇 − 𝑀 eigenvalues are unity and the rest are {1 + 𝜂𝜆𝑖}𝑀𝑖=1,

where 𝜆𝑖’s are the eigenvalues of R𝑇 . The determinant of
∣Rℓ∣ is then given by

∣Rℓ∣ =
𝑀∏
𝑖=1

(1 + 𝜂𝜆𝑖). (9)

This result shows that the determinant of the receive correla-
tion matrix is independent of the transmit signal matrix Φℓ.

Let the eigenvalue decomposition of the spatial correlation
matrix be R𝑇 = UDU†, where D = diag{𝜆𝑖}𝑀𝑖=1, and U is
unitary. Define

Υ = I𝑀 − (
I𝑀 + 𝜂R𝑇

)−1
.

By using Woodbury’s identity, we find

R−1
ℓ = I𝑇 −Φℓ

[
I𝑀 + (𝜂R𝑇 )−1

]−1
Φ†

ℓ

= I𝑇 −ΦℓU
[
I𝑀 + (𝜂D)−1

]−1
U†Φ†

ℓ

= I𝑇 −ΦℓΦ
†
ℓ + Φℓ

(
I𝑀 + 𝜂R𝑇

)−1
Φ†

ℓ

= I𝑇 −ΦℓΥΦ†
ℓ . (10)

Note that the eigenvalues of Rℓ and thus ∣Rℓ∣ are indepen-
dent of the transmitted signal Φℓ. Therefore, the determinant
(5) remains the same for all elements of the USTM signal
constellation. Using (10), we can simplify the ML decoding
rule as

ΦML = arg min
Φℓ∈𝒱

{
y†R−1

ℓ y − 2ℜ{y†R−1
ℓ ȳℓ} + ȳ†

ℓR
−1
ℓ ȳℓ

}
= arg max

Φℓ∈𝒱
{∥y†ΦℓΥ

1
2 ∥2 + 2

√
𝜂𝐾ℜ{y†Φℓ(I𝑀 −Υ)h̄}}

(11)

where the first term corresponds to the ML detection rule for
the USTM with RAS for i.i.d. Rayleigh channel (𝐾 = 0 and
R𝑇 = I𝑀 ) [18], i.e.,

ΦML = arg max
Φℓ∈𝒱

∥y†Φℓ∥.

Note that in order to extract the most likely transmitted
signal using (11), the LOS component h̄, the 𝐾 factor, the
transmit correlation matrix R𝑇 , and average SNR 𝜌 (hence
𝜂 and Υ), which are in the channel model and assumed to
be fixed over a long time, should be known at the receiver.
Because of the size of the search space, the detection rule of
(11) has considerably lower complexity compared to the full
complexity detection given in (6).

IV. PERFORMANCE ANALYSIS

We now evaluate the performance of the USTM with
RAS for the correlated Ricean fading channels in terms of
the Chernoff bound on the pairwise error probability (PEP).
First, we derive the diversity order and coding gain of the
system. Then, the cumulative distribution function (cdf) of the
instantaneous power at the selected antenna, which is needed
for performance analysis, will be derived.
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A. Coding gain and diversity order derivation using the
Chernoff bound

By using the theory of order statistics [28], the Chernoff
bound on the PEP of mistaking Φℓ for Φℓ′ based on the
selection of the antenna with the maximum instantaneous
power is expressed as [18], [29]:

𝑃CB(𝜇) =
𝑁

2

∫
ℂ𝑇

𝐹𝑁−1(y†y)𝑒−𝜉(𝜇∣y)

∣𝜋Rℓ∣𝜇̄∣𝜋Rℓ′ ∣𝜇 𝑑y

where 𝜇 ∈ (0, 1) is a free parameter that is chosen to minimize
𝑃CB(𝜇) and 𝜉(𝜇∣y) is

𝜇(y − ȳℓ′)
†R−1

ℓ′ (y − ȳℓ′) + 𝜇̄(y − ȳℓ)
†R−1

ℓ (y − ȳℓ).

Also, 𝐹 (⋅) denotes the cdf of ∥y∥2, and Rℓ and Rℓ′ are
receive covariance matrices conditioned on the transmission
of Φℓ and Φℓ′ , respectively.

By (4) and (10), one can expand 𝜉(𝜇∣y) and obtain

𝜉(𝜇∣y) = y†Ω(𝜇, 𝜌)y − 2ℜ{y†Ξ(𝜇, 𝜌)} + Δ(𝜌)

where

Ω(𝜇, 𝜌) = 𝜇R−1
ℓ′ + 𝜇̄R−1

ℓ

= I𝑇 − 𝜇Φℓ′ΥΦ†
ℓ′ − 𝜇̄ΦℓΥΦ†

ℓ ,

Ξ(𝜇, 𝜌) = 𝜇Rℓ′ ȳ
†
ℓ′ + 𝜇̄Rℓȳ

†
ℓ

=

√
𝜂𝐾

1 + 𝜂

(
𝜇Φℓ′ + 𝜇̄Φℓ

)
h̄, (12)

Δ(𝜌) = 𝜇ȳ†
ℓ′R

−1
ℓ′ ȳℓ′ + 𝜇̄ȳ†

ℓR
−1
ℓ ȳℓ

= 𝜂𝐾h̄†(I𝑀 + 𝜂R𝑇

)−1
h̄.

In order to obtain the diversity order and coding gain, the
Chernoff bound must be further simplified. At the high SNR
region, the Chernoff bound on the PEP may be approximated
as

𝑃CB = (𝐺𝑐𝜌)−𝐺𝑑 + 𝑜(𝜌−𝐺𝑑), as 𝜌 → ∞ (13)

where 𝐺𝑑 and 𝐺𝑐 are the diversity order and coding gain,
respectively.

From (12), it is clear that lim𝜌→∞ Ξ(𝜇, 𝜌) = 0. Let Ω(𝜇) =
lim𝜌→∞ Ω(𝜇, 𝜌) and Δ = lim𝜌→∞ Δ(𝜌). At high SNR, one
gets

Ω(𝜇) = I𝑇 − 𝜇Φℓ′Φ
†
ℓ′ − 𝜇̄ΦℓΦ

†
ℓ , (14a)

Δ = 𝐾h̄†R−1
𝑇 h̄. (14b)

Consider codes that can achieve full spatial diversity. Such
codes satisfy [3] for ∀ℓ ∕= ℓ′,

rank{I𝑀 −Φ†
ℓΦℓ′Φ

†
ℓ′Φℓ} = 𝑀. (15)

Considering the singular values of Φ†
ℓΦℓ′ as 𝜎

(
Φ†

ℓΦℓ′
)

=
{𝑑𝑚}𝑀𝑚=1, one can see that (15) results in 𝑑𝑚 ∈ [0, 1), 𝑚 =
1, 2, . . . ,𝑀.

Now, we prove that Ω(𝜇) given in (14a) is full rank for any
𝜇 ∈ (0, 1), suggesting that the eigenvalues of Ω(𝜇, 𝜌) are all
nonzero and tend to eigenvalues of Ω(𝜇) at high SNR.

Let Φ = [
√
𝜇Φℓ′

√
𝜇̄Φℓ] be a 𝑇 × 2𝑀 matrix. Note that

Ω(𝜇) = I𝑇 −ΦΦ†, and

Φ†Φ =

[
𝜇I𝑀

√
𝜇𝜇̄Φ†

ℓ′Φℓ√
𝜇𝜇̄Φ†

ℓΦℓ′ 𝜇̄I𝑀

]
.

It is true that

∣I𝑇 −ΦΦ†∣ = ∣I2𝑀 −Φ†Φ∣.
Thus, in order to obtain ∣Ω(𝜇)∣, it is enough to find the
eigenvalues of Φ†Φ, i.e., 𝜆(Φ†Φ). Using the block matrix
determinant lemma which is∣∣∣∣ A B

C D

∣∣∣∣ = ∣A∣∣D−CA−1B∣,

provided that A is invertible, we have∣∣Φ†Φ− 𝜆I2𝑀
∣∣

= (𝜇− 𝜆)𝑀
∣∣∣(𝜇̄− 𝜆)I𝑀 − 𝜇𝜇̄

𝜇− 𝜆
Φ†

ℓΦℓ′Φ
†
ℓ′Φℓ

∣∣∣
=

∣∣∣(𝜇− 𝜆)(𝜇̄ − 𝜆)I𝑀 − 𝜇𝜇̄diag{𝑑2𝑚}𝑀𝑚=1

∣∣∣ = 0

and hence,

𝜆(Φ†Φ) =
1

2

(
1 ±

√
1 − 4𝜇𝜇̄(1 − 𝑑2𝑚)

)
, 𝑚 = 1, 2, . . . ,𝑀.

Finally, we arrive at

∣Ω(𝜇)∣ = ∣I2𝑀 −Φ†Φ∣

=

2𝑀∏
𝑚=1

(
1 − 𝜆(Φ†Φ)

)
=

𝑀∏
𝑚=1

𝜇𝜇̄(1 − 𝑑2𝑚). (16)

That is, for any 𝜇 ∈ (0, 1), Ω(𝜇) is full rank. Thus, the
eigenvalues of Ω(𝜇, 𝜌) are all nonzero and tend to eigenvalues
of Ω(𝜇) at high SNR.

As shown in the Appendix, at high SNR 𝐹 (𝑥) can be
written as

𝐹 (𝑥) = 𝜂−𝑀Ψ(𝑥) + 𝑜(𝜌−𝑀 ) (17)

where 𝑀 is the number of transmit antennas and Ψ(𝑥)
is a function depending on the channel model. Using the
Lebesgue’s dominated convergence theorem [30], at high SNR
the Chernoff bound on the PEP becomes

𝑃CB(𝜇) =
𝜂−𝑀𝑁𝑁𝑒−Δ

2𝜋𝑇 ∣R𝑇 ∣
∫
ℂ𝑇

𝑒−y†Ω(𝜇)yΨ𝑁−1(y†y) 𝑑y

+ 𝑜(𝜌−𝑀𝑁 )

where from (9), we know that ∣Rℓ∣ does not depend on
the transmitted Φℓ, and at high SNR ∣Rℓ∣ → 𝜂𝑀 ∣R𝑇 ∣.
Now, consider the eigenvalue decomposition of Ω(𝜇) as
Qdiag{𝜎𝑖}𝑇𝑖=1Q

†. Let 𝑥𝑖 = ∣𝑣𝑖∣2, 𝑖 = 1, 2, . . . , 𝑇 , where
𝑣𝑖 is the 𝑖th element of yQ. Since for an entire function 𝑓(𝑠)

1

𝜋

∫
ℂ

𝑓(∣𝑠∣2)𝑑𝑠 =

∫ ∞

0

𝑓(𝑡)𝑑𝑡,

we can see that
1

𝜋𝑇

∫
ℂ𝑇

𝑒−y†Ω(𝜇)yΨ𝑁−1(y†y) 𝑑y

=

∫
ℝ𝑇

+

𝑒−Σ′xΨ𝑁−1(1′x) 𝑑x

where Σ is a column vector of the eigenvalues of Ω(𝜇).
Finally, the Chernoff bound is obtained as

𝑃CB(𝜇) =
𝜂−𝑀𝑁𝑁𝑒−Δ

2∣R𝑇 ∣
∫
ℝ𝑇

+

𝑒−Σ′xΨ𝑁−1(1′x) 𝑑x

+ 𝑜(𝜌−𝑀𝑁 ) (18)
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which, according to (13), gives the full diversity order and
coding gain as

𝐺𝑐 =
𝑇

𝑀(𝐾 + 1)

(
𝑁𝑒−Δ

2∣R𝑇 ∣
∫
ℝ𝑇

+

𝑒−Σ′xΨ𝑁−1(1′x) 𝑑x

)−1/𝐺𝑑

.

(19)

Therefore, similar to the full complexity system, USTM with
the simple maximum-norm RAS criteria achieves full diversity
order over the semi-correlated Ricean fading channels. Thus,
the good news is that RAS in this case achieves the full
diversity order while reducing the overall complexity. It is
worth noticing that the union bound on the probability of error
would be

𝑃UB = inf
𝜇∈[0,1]

1

𝐿

𝐿−1∑
ℓ=0

𝐿−1∑
ℓ′=0

ℓ′ ∕=ℓ

𝑃CB(𝜇)

which means that the full diversity is preserved.
The i.i.d. Rayleigh case where R𝑇 = I𝑀 and 𝐾 = 0 is well

studied in [18]. Surprisingly, Ψ(𝑥) given by Theorem 3 in the
Appendix is the same as in the i.i.d. Rayleigh channel case,
except for a multiplicative factor (𝑓0, see the Appendix), which
only depends on the LOS component and the transmit spatial
correlation. Let Ψ𝑅(𝑥) be the corresponding Ψ(𝑥) function for
the i.i.d. Rayleigh case; i.e., Ψ𝑅(𝑥) = Ψ(𝑥)/𝑓0. The coding
gains for the i.i.d. Rayleigh channel given in [18] and for the
correlated Ricean channel given in (19) are

𝐺𝑅
𝑐 =

𝑇

𝑀

(
𝑁

2

∫
ℝ𝑇

+

𝑒−Σ′xΨ𝑁−1
𝑅 (1′x) 𝑑x

)−1/𝐺𝑑

and

𝐺𝑐 =
𝑇

𝑀(𝐾 + 1)

(
𝑁𝑓0

2

∫
ℝ𝑇

+

𝑒−Σ′xΨ𝑁−1(1′x) 𝑑x

)−1/𝐺𝑑

,

respectively. Therefore, the ratio of the coding gains taking
the correlation and LOS components into account can be
expressed as

Γ =
𝐺𝑐

𝐺𝑅
𝑐

=

(
𝑓𝑁
0

)−1/𝐺𝑑

𝐾 + 1

=
1

𝐾 + 1
exp

(
𝐾

𝑀
h̄†R−1

𝑇 h̄

)
∣R𝑇 ∣1/𝑀 (20)

where 𝑀 is the number of transmit antennas. By setting 𝐾 =
0 (correlated Rayleigh) and/or R𝑇 = I𝑀 (Ricean), one can
see the effect of the correlation and/or LOS component on
the coding gain. In Section VI, the numerical evaluations of
Γ will be given.

V. MULTIPLE ANTENNA SELECTION

This section develops performance analysis of multiple-
receive-antenna selection. We may select 𝐽 antennas, denoted
by 𝑛̂1, . . . , 𝑛̂𝐽 , whose received-signal norms are the largest
[18]; i.e.,

[𝑛̂1, . . . , 𝑛̂𝐽 ] = arg
𝐽

max
𝑛=1,2,...,𝑁

∥y𝑛∥2.

We can show that the ML decoder will be the same as (11) by
using a Tr(⋅) operator and replacing the norm ∥⋅∥, the vectors

y, and h̄ with the Frobenius norm ∥ ⋅ ∥F, Ŷ = [y𝑛̂1 , . . . ,y𝑛̂𝐽 ],
and H̄𝐽 = [h̄𝑛̂1 , . . . , h̄𝑛̂𝐽 ], respectively. Therefore, the ML
decoding rule is

ΦML = arg max
Φℓ∈𝒱

{∥Ŷ†ΦℓΥ
1
2 ∥2F + 2

√
𝜂𝐾

× Tr
{ℜ{Ŷ†Φℓ(I𝑀 −Υ)H̄𝐽}

}}
.

In order to calculate the Chernoff bound on the PEP, we use
the order statistics theory [28] to find the cdf of the 𝐽 largest
instantaneous power at the receive antennas. Unlike what we
did with the case of single antenna selection, we now have
to confine the integration range to the region in which the
order of selected antenna is preserved [18]. For the sake of
simplicity, we can still integrate over the whole space and get
a looser bound on the PEP as in [18]. In the case of multiple
antenna selection, we have to replace Δ in the single antenna
case by

Δ𝐽 = 𝐾
𝐽∑

𝑖=1

h̄†
𝑖R

−1
𝑇 h̄𝑖 = 𝐽Δ

where the last equality results because the columns of H̄ are
all identical.

Therefore, from (17) and [18], we have

𝑃CB(𝜇) ≤ 𝜂−𝑀𝑁

(
𝑁
𝐽

)
𝑒−𝐽Δ

2𝐽𝜋𝑇𝐽 ∣R𝑇 ∣𝐽
∫
ℂ𝑇𝐽

𝑒−
∑𝐽

𝑖=1 y†
𝑖Ω(𝜇)y𝑖

×
𝐽∑

𝑖=1

Ψ𝑁−𝐽(∥y𝑖∥2) 𝑑Y + 𝑜(𝜌−𝑀𝑁 ).

(21)

which shows that we can achieve the full diversity order as
we did in the full complexity system. In (21), we implicitly
assumed that 𝑑Y =

∏𝐽
𝑖=1 𝑑y𝑖. We can see that for 𝐽 = 1, the

bound in (21) gets tight and coincides with (18).
Also, forcing 𝐽 = 𝑁 tightens the bound and is equivalent to

the Chernoff bound on the PEP for the full complexity system,
i.e.,

𝑃CB(𝜇) = 𝜂−𝑀𝑁 𝑒−𝑁Δ

2∣R𝑇 ∣𝑁 ∣Ω(𝜇)∣𝑁 + 𝑜(𝜌−𝑀𝑁 )

=
1

2
𝜂−𝑀𝑁𝑓𝑁

0

(
𝑀∏

𝑚=1

𝜇𝜇̄(1 − 𝑑2𝑚)

)−𝑁

+ 𝑜(𝜌−𝑀𝑁 )

where 𝑓0 is defined in Theorem 2, and the last equality results
from (16). In order to get the minimum of the Chernoff bound,
we should choose 𝜇 = 1

2 , since the term 𝜇𝜇̄ appears in the
denominator. Moreover, from [3, Theorem 5], for the full
complexity system over the i.i.d. Rayleigh channel, we have

𝑃𝑅
CB =

1

2

𝑀∏
𝑚=1

(
1 +

(𝜌𝑇/𝑀)2(1 − 𝑑2𝑚)

4(1 + 𝜌𝑇/𝑀)

)−𝑁

=
1

2

(
𝜌𝑇

𝑀

)−𝑀𝑁
(

𝑀∏
𝑚=1

1

4
(1 − 𝑑2𝑚)

)−𝑁

+ 𝑜(𝜌−𝑀𝑁 ).

Similar to how the coding gain ratio was defined in (20), the
same ratio can be defined as

Γfull =
𝐺full

𝑐

𝐺𝑅,full
𝑐

=

(
𝑓𝑁
0

)−1/𝐺𝑑

𝐾 + 1
= Γ
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Fig. 1. The ratio of the coding gains for a 2 × 2 system over a correlated
Ricean channel (constant correlation and an all–one H̄) and the i.i.d. Rayleigh
channel.

where Γ is the ratio of the coding gains of the correlated
Ricean and i.i.d. Rayleigh channels, which employ USTM
with RAS.

VI. SIMULATION RESULTS

A. A simple 2 × 2 MIMO system

We consider a simple 2×2 USTM system with 𝑇 = 4, over
a channel with constant transmit correlation matrix, which is
equal to the exponential correlation matrix (3), and a LOS
component with an all–one 2× 2 H̄. The following quantities
are used to simplify the results:

ℳ𝑇
𝑗 (𝜇) =

∫
ℝ𝑇

+

𝑒−Σ′x

(
1′x

)𝑗
𝑗!

𝑑x = ∣Ω(𝜇)∣−1
∑
ℐ𝑇 (𝑗)

𝑇∏
𝑡=1

𝜎−𝑚𝑡
𝑡

𝒩 𝑇
𝑗 (𝜇) =

∫
ℝ𝑇

+

𝑒−Σ′x𝛾𝑗(1
′x) 𝑑x = ∣Ω(𝜇)∣−1

− ∣I𝑇 + Ω(𝜇)∣−1

𝑗−1∑
𝑝=0

∑
ℐ𝑇 (𝑝)

𝑇∏
𝑡=1

(𝜎𝑡 + 1)−𝑚𝑡

where Σ = [𝜎1, . . . , 𝜎𝑇 ]′ is a positive vector comprising the
eigenvalues of Ω(𝜇) defined in (14a).

From Theorem 2 and Theorem 3 in the Appendix, we get

𝐹 (𝑥) =
exp(− 2𝐾

1+𝑟 )

4𝜌2(1 − 𝑟2)

(
2𝛾1(𝑥) + 𝛾2(𝑥) − 2𝑥 +

𝑥2

2

)
+𝑜(𝜌−2).

Therefore, the Chernoff bound on the PEP will be

𝑃CB(𝜇) =
(𝐾 + 1)4 exp(− 4𝐾

1+𝑟 )

16𝜌4(1 − 𝑟2)2
(
2𝒩 4

1 (𝜇) + 𝒩 4
2 (𝜇)

− 2ℳ4
1(𝜇) + ℳ4

2(𝜇)
)

+ 𝑜(𝜌−4). (22)

In order to determine the optimum 𝜇 to minimize 𝑃CB, one
can run a computer search to find 𝜇opt over the interval [0,1].
However, according to the results of Section IV, Ψ(𝑥) and
therefore 𝑃CB are proportional to those of the i.i.d. Rayleigh
case studied in [18]. Thus, following the same lines as in [18],
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F
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K=1, High SNR approx.
K=1, Exact
K=2, High SNR approx.
K=2, Exact

Fig. 2. The comparison between the exact form and high SNR approximation
of 𝐹 (𝑥) at 𝑥 = 2 for a 2×2 system over a correlated Ricean channel (constant
correlation with 𝑟 = 0.3 and an all–one H̄).

we conclude that (22) is a monotonically decreasing function
of 𝜇𝜇̄, which is minimized by 𝜇opt = 1

2 .
The ratio of coding gains for the correlated Ricean channel

and i.i.d. Rayleigh channel (see (20)) is

Γ =
𝑒

𝐾
1+𝑟

√
1 − 𝑟2

𝐾 + 1
.

Fig. 1 shows Γ versus 𝑟 for different values of 𝐾–factor. The
higher the 𝐾–factor, the larger the ratio. The point 𝐾 = 0 and
𝑟 = 0 correspond to the i.i.d. Rayleigh channel. The coding
gains is quite sensitive to 𝑟 and highly correlated transmit
antennas may result in gains even lower than those in i.i.d.
Rayleigh case.

B. Code selection

Since our results show that USTM with RAS achieves the
full diversity order over the correlated Ricean channels, codes
can be designed based on the maximization of the coding
gain. We consider an elegant class of unitary codes called
parametric codes [31]. These codes perform better than the
differential Alamouti codes [32] and diagonal cyclic group
codes [5]. In [18], the authors report the best parametric codes
with the maximum coding gain. From Section IV, we know
that the coding gains for the correlated Ricean channel and
i.i.d. Rayleigh channels are proportional via a factor which
depends only on the long-term stationary parameters. Thus,
the same optimal codes given in [18] can be utilized for the
correlated Ricean case.

C. Results

Consider the 2 × 2 MIMO system described earlier in this
section. Fig. 2, compares the exact and high SNR approxi-
mation of 𝐹 (𝑥) at 𝑥 = 2 for different 𝐾–factors. As SNR
increases, it can be seen that 𝐹 (𝑥) decreases as 𝜌−2 and the
approximation becomes more accurate.

For a constellation of rate 𝑅 = 2, i.e., 𝐿 = 16, by using
the optimal parametric codes [18], we compare the effects of
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Fig. 3. The BER comparison for a 2× 2 system employing a constellation
of rate 𝑅 = 2 over a correlated Ricean channel (constant correlation with
𝑟 = 0.1 and 𝑟 = 0.3, and an all–one H̄) with different 𝐾–factors.
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Fig. 4. The comparison between the simulated PEP and the PEP upper
bound for a pair of codewords from the optimal parametric codebook for a
2 × 2 system over a correlated Ricean channel (𝑟 = 0.1, 𝐾 = 2 and an
all–one H̄).

𝐾–factor and correlation 𝑟 when a single antenna is selected
at the receiver. Fig. 3 shows the real bit error rate (BER)
versus SNR for 𝑟 = 0.1 and 𝑟 = 0.3 for different 𝐾–factors.
As we expected from Fig. 1 at high SNR, the larger the 𝐾–
factor, the larger the coding gain. Note that in all cases the full
diversity order is achieved. Also, for a pair of codewords from
the optimal parametric codes reported in [18], Fig. 4 shows
the simulated PEP versus the high SNR approximation. We
can see that as SNR increases, PEP falls off as 𝜌−4 and the
approximation gets more accurate.

In Fig. 5, we compare the performance in terms of the
number of antennas selected at the receiver. Clearly, when
𝑁 = 1, the diversity is less than the case with two antennas.
When 𝑁 = 2 (no matter how many antenna is selected), the
full diversity is achieved. The coding gain for 𝑁 = 2 when
one antenna is selected, i.e., 𝐽 = 1, is between that of the full

complexity system (𝐽 = 2) and that of the system with one
antenna.

VII. CONCLUSION

The performance of receive antenna selection for USTM
over the semi-correlated Ricean fading channels were analyzed
(this work generalizes that of Ma and Tepedelenlioğlu for
the independent and identically distributed (i.i.d.) Rayleigh
fading case). Instead of performing the full complexity ML
detection with all the receive antennas, we considered both
the single antenna and multiple antenna selection scenarios
based on the maximum received instantaneous power. The
distribution function of a quadratic form of non-zero mean
complex Gaussian variates was approximated at the high SNR
region. It was shown that if the unitary codebook is of the
full rank then the USTM system achieves the full diversity
order as does the full complexity system. The coding gain
expression was obtained and compared with the i.i.d. Rayleigh
channel. To demonstrate the effect of correlation and LOS
components, computer simulation results were provided for
different channel parameters and antenna setups.

APPENDIX

APPROXIMATE 𝐹 (𝑥) IN THE HIGH SNR REGION

The cdf of the instantaneous power received at each antenna
is required to compute the Chernoff bound and coding gain
given in (18) and (19), respectively. In this appendix, we will
show that for the channel model given in (2), the cdf can be
written as

𝐹 (𝑥) = 𝜂−𝑀Ψ(𝑥) + 𝑜(𝜌−𝑀 )

where Ψ(𝑥) depends on the channel model parameters.
In fact, the cdf of ∥y∥2 is the cdf of a noncentral quadratic

form over a complex circularly symmetric Gaussian random
vector; i.e., y ∼ 𝒞𝒩 (ȳ,Rℓ). We will use the results of [33]
and [34]. In [33], the cdf is obtained for the real Gaussian
vector, while [34] extends the results to the complex case. In
the following, we first state the results of [34] by Theorem 1.
Then, based on these results, we characterize the behavior of
𝐹 (𝑥) at the high SNR region, when this function is applied
to our problem, by using Theorem 2.

Theorem 1 (Nabar et al. [34]): Consider a 𝑃 × 1 complex
circularly symmetric Gaussian vector with mean x̄ and a
covariance matrix R whose eigenvalue decomposition is R =
VΛV† where Λ = diag{𝜅𝑖}𝑃𝑖=1. The cdf of the quadratic
form x†x over x ∼ 𝒞𝒩 (x̄,R) is

𝐹 (𝑥) =

∞∑
𝑘=0

𝑓𝑘
(𝑥− 𝛿)rank(R)+𝑘

(rank(R) + 𝑘)!
𝑢(𝑥− 𝛿)

where 𝑢(𝑥) is the unit step function,

𝛿 = ∥x̄∥2 −
rank(R)∑
𝑗=1

∣𝑞𝑗 ∣2
𝜅𝑗

,
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Fig. 5. The BER comparison for a 2× 2 system employing a constellation
of rate 𝑅 = 2 over a correlated Ricean channel (constant correlation with
𝑟 = 0.3, an all–one H̄, and 𝐾 = 2) with different number of selected
antennas.

q = [𝑞1, . . . , 𝑞𝑃 ]′ = Λ
1
2V†x̄, and the coefficients 𝑓𝑘 are

obtained recursively by

𝑓0 =
1

∣Rℓ∣ exp

⎛
⎝−

𝑃∑
𝑗=1

∣𝑞𝑗 ∣2
𝜅2
𝑗

⎞
⎠ , 𝑓𝑘 =

1

𝑘

𝑘−1∑
𝑟=0

𝑓𝑟ℎ𝑘−𝑟,

ℎ𝑘 = (−1)𝑘
𝑃∑

𝑗=1

(
1

𝜅𝑘𝑗
− 𝑘∣𝑞𝑗 ∣2

𝜅𝑘+2
𝑗

)
.

Now, we use Theorem 1 to investigate the behavior of 𝐹 (𝑥)
when the SNR gets large. Let us start with the eigenvalue
decomposition of the received covariance matrix as Rℓ =
VΛV† where Λ = diag{𝜅𝑖}𝑇𝑖=1. From (8), we know that the
eigenvalues of Rℓ are 1 of order 𝑇 − 𝑀 and {1 + 𝜂𝜆𝑖}𝑀𝑖=1,
where {𝜆𝑖}𝑀𝑖=1 are the eigenvalues of the spatial correlation
matrix R𝑇 . Let q = [𝑞1, . . . , 𝑞𝑇 ]′ = Λ

1
2V†ȳ. In Theorem 2,

we show that at high SNR, the dominant term of 𝐹 (𝑥) in
terms of SNR is 𝜂−𝑀 .

We first state the following lemma, which will be useful in
the proof of Theorem 2.

Lemma 1: For R−1
ℓ given in (10) and any positive integer

𝑚, we have

R−𝑚
ℓ = I𝑇 −Φℓ

[
I𝑀 − (I𝑀 + 𝜂R𝑇 )−𝑚

]
Φ†

ℓ .

Proof: We use the binomial expansion as follows:

R−𝑚
ℓ = I𝑇 −ΦℓΦ

†
ℓ +

𝑚∑
𝑝=0

(
𝑚

𝑝

)
(−1)𝑝ΦℓΥ

𝑝Φ†
ℓ

= I𝑇 −ΦℓΦ
†
ℓ + Φℓ

[ 𝑚∑
𝑝=0

(
𝑚

𝑝

)
(−1)𝑝Υ𝑝

]
Φ†

ℓ.

The following theorem approximates the cdf as an infinite
series at the high SNR region.

Theorem 2: At high SNR, the cdf of y†y over y ∼
𝒞𝒩 (ȳ,Rℓ) is 𝐹 (𝑥) = 𝜂−𝑀Ψ(𝑥) + 𝑜(𝜌−𝑀 ) where

Ψ(𝑥) =
∞∑
𝑘=0

𝑓𝑘
𝑥𝑇+𝑘

(𝑇 + 𝑘)!
, 𝑥 ≥ 0.

The coefficients 𝑓𝑘 are

𝑓𝑘 = (−1)𝑘
(
𝑇−𝑀+𝑘−1

𝑘

)
𝑓0, 𝑓0 =

𝑒−Δ

∣R𝑇 ∣
and Δ is defined in (14b).

Proof: According to Theorem 1, since Rℓ is full rank,
𝛿 = ∥ȳ∥2−q†Λ−1q = 0. Also, the exponent of the numerator
of 𝑓0 is

q†Λ−2q = ȳ†R−1
ℓ ȳ = Δ(𝜌)

where Δ(𝜌) is defined in Section IV-A. Therefore, we arrive
at

𝑓0 = 𝑒−Δ(𝜌)
𝑀∏
𝑖=1

(1 + 𝜂𝜆𝑖)
−1 = 𝜂−𝑀𝑓0 + 𝑜(𝜌−𝑀 ) (23)

where 𝑓0 = 𝑒−Δ

∣R𝑇 ∣ and Δ is defined in (14b). Notice that the
factor 𝜂−𝑀 has appeared in (23), and since the coefficient 𝑓𝑘
is calculated recursively, only the constant term of ℎ𝑘 is taken
into account. Hence, we have

(−1)𝑘ℎ𝑘 = Tr(Λ−𝑘) − 𝑘q†Λ−(𝑘+2)q

= 𝑇 −𝑀 + 𝜂−𝑘 Tr(R−𝑘
𝑇 ) + 𝑜(𝜌−𝑘)

− 𝑘ȳ†R−(𝑘+1)
ℓ ȳ

(𝑎)
= 𝑇 −𝑀 + 𝜂−𝑘 Tr(R−𝑘

𝑇 ) − 𝑘𝜂𝐾h̄†

× (I𝑀 + 𝜂R𝑇 )−(𝑘+1)h̄ + 𝑜(𝜌−𝑘)

= 𝑇 −𝑀 + 𝜂−𝑘 Tr(R−𝑘
𝑇 ) − 𝑘𝜂−𝑘𝐾

× h̄†R−(𝑘+1)
𝑇 h̄ + 𝑜(𝜌−𝑘)

= 𝑇 −𝑀 + 𝜂−𝑘𝑑𝑘 + 𝑜(𝜌−𝑘)

where 𝑑𝑘 = Tr(R−𝑘
𝑇 ) − 𝑘𝐾h̄†(I𝑀 + 𝜂R𝑇 )−(𝑘+1)h̄, and (𝑎)

results from Lemma 1. Thus, the constant term in ℎ𝑘 is ℎ̂𝑘 =
(−1)𝑘(𝑇 −𝑀).

For 𝑘 = 1, 2, we have

𝑓1 = 𝑓0ℎ1 = −𝜂−𝑀 (𝑇 −𝑀)𝑓0 + 𝑜(𝜌−𝑀 )

and

𝑓2 =
1

2
(𝑓0ℎ2 + 𝑓1ℎ1)

= 𝜂−𝑀 1

2
(𝑇 −𝑀)(𝑇 −𝑀 + 1)𝑓0 + 𝑜(𝜌−𝑀 ).

By induction, it can be shown that 𝑓𝑘 = 𝜂−𝑀𝑓𝑘 + 𝑜(𝜌−𝑀 )
where 𝑓𝑘 is given in Theorem 2.

Therefore, at high SNR, 𝐹 (𝑥) is

𝐹 (𝑥) = 𝜂−𝑀
∞∑
𝑘=0

𝑓𝑘
𝑥𝑇+𝑘

(𝑇 + 𝑘)!︸ ︷︷ ︸
Ψ(𝑥)

+𝑜(𝜌−𝑀 ).
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In the sequel, we invoke the regularized incomplete Gamma
function defined as

𝛾𝑛(𝑥) =

∫ 𝑥

0

𝑢𝑛−1𝑒−𝑢

(𝑛− 1)!
𝑑𝑢 =

∞∑
𝑗=0

(−1)𝑗𝑥𝑗+𝑛

𝑗!(𝑛− 1)!(𝑗 + 𝑛)
.

To avoid infinite summations in the calculation of the coding
gain, we propose a closed-form finite summation for Ψ(𝑥) by
the following theorem.

Theorem 3: The function Ψ(𝑥) given in Theorem 2 can be
written as

Ψ(𝑥) =

𝑇−𝑀∑
𝑘=1

𝑔𝑘𝛾𝑘(𝑥) +

𝑀∑
𝑘=1

𝑡𝑘
𝑥𝑘

𝑘!
(24)

where

𝑔𝑘 = (−1)𝑀
(

𝑇−𝑘−1

𝑇−𝑘−𝑀

)
𝑓0, 𝑡𝑘 = (−1)𝑀+𝑘

(
𝑇−𝑘−1

𝑇−𝑀−1

)
𝑓0.

Proof: For a fixed 𝑘, one can compare the coefficient of
𝑥𝑘/𝑘! from Ψ(𝑥) given in Theorem 2 and the one resulting
from the two summations given in (24) and show that they
are equal for every 𝑘.
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