
168 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 1, JANUARY 2010

Semiorthogonal Space–Time Block Codes
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Abstract—In this paper, a new class of full-diversity, rate-one
space–time block codes (STBCs) called semiorthogonal algebraic
space–time block codes (SAST codes) is proposed. SAST codes
are delay optimal when the number of transmit antennas is even.
The SAST codeword matrix has a generalized Alamouti structure
where the transmitted symbols are replaced by circulant ma-
trices and the commutativity of circulant matrices simplifies the
detection of transmit symbols. SAST codes with maximal coding
gain are constructed by using rate-one linear threaded algebraic
space–time (LTAST) codes. Compared with LTSAT codes, SAST
codes not only reduce the complexity of maximum-likelihood
detection, but also provide remarkable performance gain. They
also outperform other STBC with rate one or less. SAST codes also
perform well with suboptimal detectors such as the vertical-Bell
Laboratories layered space–time (V-BLAST) nulling and can-
cellation receiver. Finally, SAST codes attain nearly 100% of
the Shannon capacity of open-loop multiple-input–single-output
(MISO) channels.

Index Terms—Alamouti code, circulant matrix, multiple-
input–multiple-output (MIMO) capacity, space–time block codes
(STBCs), threaded algebraic space–time (TAST) codes, transmit
diversity.

I. INTRODUCTION

S PACE–TIME BLOCK CODES (STBCs), as one of
space–time (ST) techniques for multiple-input–mul-

tiple-output (MIMO) systems, have been extensively studied
recently. They have been proposed for several current and fu-
ture wireless standards [1]. One of the most well-known STBC
is the Alamouti code, first designed for two transmit antennas
[2] and later generalized as an orthogonal STBC (OSTBC)
[3]. Orthogonal designs result in a decoupling of symbol
detection, enabling minimal complexity maximum-likelihood
(ML) detection. OSTBC is said to be single-symbol decodable
[4]. However, orthogonality entails low code rates [5]; a code
rate (defined by the average number of transmitted information
symbols per channel use (pcu) [6]) of one symbol pcu with
complex constellations is available for two transmit antennas
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only, and the code rate approaches for a large number of
transmit antennas [5].

The code rate may be improved by using quasi-orthogonal
STBC (QSTBC) [7], [8], which achieve full diversity by signal
constellation rotations (see [9] and references therein), but
require joint ML detection1 of pairs of symbols (double-symbol
decoding). Moreover, QSTBC also have low code rates because
they are based on OSTBC. A novel code design framework,
namely coordinate interleaved orthogonal design (CIOD),
has been proposed in [4]. CIOD codes are also derived from
OSTBC; the former however offer similar or higher rates than
those of OSTBC and QSTBC, while the detection complexity
is the same as OSTBC. For eight transmit antennas, another
double-symbol decodable CIOD code of rate one is presented
in [10]. Similar to QSTBC codes, CIOD codes require signal
rotation to achieve full diversity.

On the other hand, full-diversity diagonal space–time (DST)
codes are designed without considering the column orthogo-
nality of codeword matrices [11], [12], and rate-one codes can
thus be constructed for any number of transmit antennas. Op-
timal DST codes yield better coding gains compared to those
of OSTBC for more than two transmit antennas. However, DST
codes exhibit high peak-to-average-power ratio (PAPR). There-
fore, linear threaded algebraic space–time (LTAST) codes have
been proposed to reduce the PAPR of DST codes [13]. Rate-one
LTAST codes have a circulant structure [14] and the same PAPR
as the input constellation. Another framework to design high-
rate codes is proposed in [15] by using division algebras. Specif-
ically, a rate-one code is derived from field extensions and has

-circulant structure [15, Sec. III.A.1]. DST, LTAST, and STBC
from division algebras are all delay optimal in the sense that the
number of channel uses per ST codeword equals to the number
of transmit antennas; i.e., the ST codewords are square matrices
[3]. However, their ML decoding complexity is much higher
than that of QSTBC or CIOD codes since all the transmitted
symbols must be jointly decoded.

In this paper, we present a new class of STBC called
semiorthogonal algebraic space–time (SAST) codes for any
number of transmit antennas. SAST codes are of rate one
and achieve full diversity. The structure of SAST codes can
be viewed as a generalization of the Alamouti code, where
each data symbol is replaced by a circulant matrix. Hence, the
left-half columns of the codeword matrices are orthogonal to
the right-half columns. Consequently, each half of the input
symbols can be ML detected separately. Therefore, the com-
plexity of ML detection for SAST codes is remarkably less
than that of rate-one LTAST codes. If the number of transmit
antennas is even, i.e., , SAST codes are also
delay optimal. Otherwise, the codes for can

1We use the terms detection and decoding synonymously.
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be obtained by deleting one column of the codes designed for
. SAST codes can achieve full diversity by proper

signal designs, such as signal rotation techniques [13]. With its
special structure, optimal rotations of different constellations
for SAST codes are shown to be the ones designed for rate-one
LTAST codes [13].

The idea of using the Alamouti code structure to build
rate-one STBC, called extended Alamouti STBC, for
transmit antennas is also investigated in [16]. The extended
Alamouti codes have a recursive structure, where a code for

is used to construct another code for .
However, the codes do not achieve full diversity and have a
low coding gain. In [17], the authors present another recursive
rate-one STBC construction, in which one-half of the symbols
are orthogonal to the other half, and each half can be decoded
separately. While this feature is similar to that of our proposed
codes, the authors’ codes are not delay optimal for ;
therefore, these codes have higher decoding complexity than
that of our codes for . Additionally, the coding
gain is not maximized; thus, the performance of these codes
may be inferior to that of our codes.

The paper is organized as follows. Section II describes the
system model, provides necessary mathematical backgrounds
for the design of SAST codes, and briefly reviews the properties
of rate-one LTAST constellations. The design of SAST codes
and their properties are given in Section III. The simulations
results are discussed in Section IV. The conclusions and final
remarks are presented in Section V.

II. PRELIMINARIES

A. Notation

Superscripts , , and denote matrix transpose, conjugate,
and transpose conjugate operations. denotes the statistical
mean. A complex Gaussian random variable with mean and
variance is denoted by . A signal constellation
of points is a subset of the field of complex numbers ; is
called the order or size of . The minimum Euclidean distance
of is , where repre-
sents the absolute value of . An element of is called a signal
or a symbol, and all the elements are equally likely to be trans-
mitted. The average energy of a constellation is normalized such
that . For example, a square quadrature amplitude
modulation (QAM) constellation can be represented as a set

.

B. System Model

We consider data transmission over a quasi-static Rayleigh
flat fading channel. The transmitter and receiver are equipped
with transmit and receive antennas. The channel gain

between the th
transmit–receive antenna pair is assumed to be . We
assume that there is no spatial correlation at either the transmit
array or the receive array, and that the receiver, but not the trans-
mitter, completely knows the channel gains.

The ST encoder maps data symbols into ST codewords
of size where is the symbol transmitted from

antenna at time . The average energy of a
codeword is constrained such that .

The received signals of th antenna at time can be ar-
ranged in a matrix of size . Thus, one can represent
the transmit–receive signal relation compactly as

(1)

where , of size , and are inde-
pendently, identically distributed (i.i.d.) . The transmit
power is scaled by so that the average signal-to-noise ratio
(SNR) at each receive antenna is , independent of the number
of transmit antennas.

The upper bound of pair-wire error probability (PEP) derived
by Tarokh et al. [6] is as follows:

(2)

where and are the transmitted and erroneously de-
coded codewords, is the minimum rank of a matrix

for all , and are
nonzero eigenvalues of a product matrix . We
can define as a distance of two distinct
ST codewords. The diversity gain or diversity order and
the coding gain of the ST codes are defined as
and , respectively.
Since , if of an ST code is of full rank

for all pairs of distinct codewords, then so is the , and
the diversity order is maximized; i.e., . In this case,
the ST code is said to achieve full diversity. The coding gain
follows .

For example, the coding gain of OSTBC is given by [9]

(3)

where is the code rate of the OSTBC designed for
transmit antennas [9].2 The multiplicative factor appears
because of the transmit power constraint. The maximal rate
of OSTBC with the number of transmit antennas or

is given by [5]. The optimal coding
gain of QSTBC with even transmit antennas can be derived
as [9]

(4)

Note that the coding gain is simply an asymptotic perfor-
mance metric since it is defined for a worst case PEP basis and
at high SNR. The actual performance of an ST code depends
on the whole distance spectrum. Simulations are, therefore, re-
quired to compare the SNR gain of different ST codes.

C. Circulant Matrices

The circulant matrix [14] structure is proposed for rate-one
LTAST codes in [13]. However, some interesting properties of
circulant matrix are not exploited. We thus first review several

2In [9], the authors define a parameter � , namely, the diversity product. The
coding gain can be calculated as � � �� .
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properties of circulant matrices that will be employed to develop
SAST codes.

A matrix is called a circulant matrix of order

...
...

...
(5)

Therefore, . Since a circulant has only
independent entries, which are the elements of vector

, we can write to emphasize that the first
row of the circulant is exactly the row vector . Other rows
th are obtained by circular shifts to the right

times of the vector . The basic properties of circulants
are given as follows.

P1) is a circulant if and only if is a circulant.
P2) If and are circulants of order , and and are

two scalars, then the matrices , , are
circulants.

P3) All circulants of the same order commute, i.e.,
.

P4) Let be a Fourier transform matrix with
, where . If is a cir-

culant, it is diagonalized by : , where
, and is the eigenvalue of

.
P5) The eigenvalues of a circulant are the Fourier transform

of the first row of the circulant as
. Thus, any order- circulant always has dis-

tinct eigenvectors, which are the columns of the Fourier
transform matrix. However, the number of eigenvalues
may be less than .

Another type of circulant matrix is the left circulant [14] that
we can denote by , where the th row is obtained by cir-
cular shifts times to the left vector

...
...

...
(6)

Let a permutation on an arbitrary matrix be such
that the th row is permuted with the th row for

, where is the ceiling function. One can
verify that

(7)

This useful operator will be used for our derivation.

D. Linear Threaded Algebraic Space–Time Constellations

We briefly review the code construction and properties of
rate-one LTAST codes. For a full treatment of LTAST codes, the
reader is referred to [13] and the references therein. For brevity,
we use the term LTAST codes to denote the rate-one LTAST
codes when there is no ambiguity.

Let be the number of transmit antennas. Modulation
symbols are drawn from a constellation with the min-

imum Euclidean distance and arranged in a vector
. The transmitted vector is given by

(8)

where and is called
a Diophantine number [13]. LTAST codewords are circulants
given by

(9)

The upper bound of coding gain is as follows.

Proposition 1 [13, eq. (7)]: The coding gain of the rate-one
LTAST codes is upper bounded by .

To ensure the codes achieve full diversity, the Diophantine
number is chosen as . Thus, the th symbol is rotated
by an angle . The optimal values of that maximize the
coding gain are specified in [13, Th. 2].

Proposition 2: For , the optimal coding gain
of rate-one LTAST codes, i.e., , can be obtained
by choosing the Diophantine number and
constellations carved from the ring of Gaussian integers, and
for by choosing and con-
stellations carved from the ring of Einstein integers.

Note that the constellations carved from the ring of Gaussian
integers include QAM constellations, while the constellations
carved from the ring of Einstein integers include hexagonal con-
stellations [18]. In [13, Th. 1], it was also suggested how to se-
lect for PSK constellations; however, a computer search is
required to find the that maximizes the coding gain. Addi-
tionally, for or , only local maxima of the
coding gain are certain to be found by a computer search.

Full diversity for LTAST codes is achieved when the
transmitted symbols are jointly ML detected, for example, by
a sphere decoder [19]. Therefore, the decoding complexity of
the LTAST codes is higher than that of OSTBC for . Ad-
ditionally, Proposition 1 shows that the coding gain decreases
when increases.

In the next section, we will present our new SAST codes
by using a block circulant structure. Constellation rotation
is needed to achieve full diversity as is the case for LTAST
codes. However, SAST codes exploit the commutativity of
circulant matrices and, hence, yield significant improvements
over LTAST codes.

III. SAST CODE CONSTRUCTION AND PROPERTIES

A. Encoder

We consider the number of transmit antennas is .
The SAST codeword designed for transmit antennas is for-
mulated as follows:

(10)

where and are two circulant matrices generated
by two input data vectors and , and each consists of
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information symbols drawn from the same signal constellation.
is a power normalization constant. We sometimes

omit for brevity, where no confusion may arise. In principle,
and can be considered as two codewords of rate-one

LTAST codes. We do not have to restrict ourselves to the optimal
rotations of the LTAST codes given in Proposition 2. The only
requirement is that the building LTAST codes of size are
full diversity. To satisfy this requirement, input vectors are first
rotated by the same rotation matrix such that and

; then the rotated vectors are used to generate two
LTAST codewords of size and .

Our structure of SAST codes is different from that of the
QSTBC proposed by Jafarkhani [7] with a codeword matrix

where and are conjugated, but not conju-

gate transposed as SAST codes. SAST codes’ structure is also
different from the QSTBC structure introduced by Tirkkonen et

al. [8], where the codeword is . Furthermore, in both

these QSTBC structures, and are OSTBC codewords of
the same size, but are not the circulant matrices. Hence, these
QSTBC are rate one for only, whereas SAST codes
are rate one for any number of antennas.

The SAST codes for four and six antennas are given as the
following examples:

B. Properties of SAST Codes

As the most important design criterion, the diversity gain of
SAST codes is first analyzed.

Lemma 1: SAST codes achieve full diversity for quasi-static
channels if the building LTAST codes have full diversity.

Proof: Let and be two distinct SAST codewords; then
the product matrix is given by

(11)

where , , , and
, and denotes the all-zero matrix. The

second line of (11) comes from the property P3) of circulant
matrices.

For two distinct codewords, at least either or .
Thus, at least one of the matrices and is full rank or
they both are full rank because and are the codewords of

the LTAST codes. Equivalently, at least one of or or
they are both positive-definite matrices. Without loss of gener-
ality, we assume that is positive definite. Let ,

, and be the eigenvalues of
matrices , , and , respectively, arranged in
nondecreasing order. Then, .
From [20, Th. 7.2.1, p. 402], we have

(12)

Consequently,

Thus, the matrix is always
full rank for all input symbols, and the SAST block codes
achieve full diversity.

Now we consider the coding gain of the SAST block codes.
In the worst case, .
With reference to Proposition 1, the coding gain of SAST
codes is .
Note that , and that is actually
the coding gain of the LTAST codes for antennas, which is

. Hence, , which turns out to
be the coding gain of the LTAST codes for antennas. We
thus have the following Lemma for the coding gain of SAST
codes.

Lemma 2: The coding gain of SAST codes is equal to that
of the rate-one LTAST codes for the same transmit
antennas and is upper bounded by .

Lemma 2 shows that optimal rotation angles of the LTAST
codes are also optimal for SAST codes. Although the two codes
have the same coding gain, SAST codes have a much better dis-
tance spectrum compared with the LTAST codes, and thus, the
former has a much better performance, as we will demonstrate
in our investigation of simulation results in Section IV. We next
show that this improvement comes without any extra detection
complexity, and, better still, that the ML detection complexity
reduces.

C. SAST Detector

Since detection of transmit symbols is an essential part of the
system, we will derive the detectors for SAST codes and show
how to reduce the detection complexity.

We initially consider one receive antenna . If ,
we can perform maximal ratio combining (MRC) for the re-
ceived signals of each receive antenna, and the decoder for one
receive antenna can still be employed.

Let , ,
, ,

, ,
, , and

; then we obtain

(13)

An equivalent form of (13) is

(14)
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where

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

By using (14), two vectors and can be jointly detected
by, for example, a sphere decoder. However, the joint detectors
result in the same complexity as that of the LTAST decoders.
Next, we will show how to reduce the detection complexity.

Applying permutation (defined in Section II-B) for the
column matrix , we obtain

(15)

where , , , ,
, and . The elements of and have the

same statistics as the elements of and . We now
perform MRC by left multiplying to both sides of (15). Let

; then we get

(16)

The covariance matrix of the additive noise vector is

(17)

Therefore, the noise vectors and are uncorrelated and have
the same covariance matrix . Thus, and can be detected
separately by using , .

If there are receive antennas, we have matrices
for , received vectors , and noise

vectors . Let , , and

; then the following equations can be used to detect
the data vectors:

for (18)

The noise vectors and can be whitened by using the
same whitening matrix . Finally, we obtain

(19)

Any detectors for the LTAST codes such as the optimum
sphere decoder [19], vertical-Bell Laboratories layered
space–time (V-BLAST) successive nulling, and cancella-
tion [21] can be employed for the decoding of the SAST codes.
However, two data vectors and can be detected in parallel.
On average, the ML detection complexity of SAST codes
reduces largely compared with that of that rate-one LTAST
codes (Section IV).

D. Maximum Mutual Information

We now study the maximum mutual information of SAST
codes over multiple-input–single-output (MISO) chan-
nels. The equivalent channel given in (15) can be used to cal-
culate the maximum mutual information [22] of SAST codes as

(20)

The normalizing factor is used to account for channel
uses. Note that . Since and are circulant

matrices, we have , where

is also a circulant matrix of size
. Using property P4) of circulant matrices, we have

, where ’s are the eigenvalues
of . Therefore, ,
where and are eigenvalues of and , re-
spectively. From property P5) of circulant matrices, we get

, and each
has distribution . Let ; then

. We obtain a new expression for the max-
imum mutual information as

(21)

where the subindex can take one of the values of
, and, without loss of generality, can be

omitted. This expression is exactly the maximum mutual infor-
mation of the Alamouti code (cf., [23, eq. (9)]). In other words,
the maximum mutual information of SAST codes is constant
with respect to the number of transmit antennas and is the
open-loop capacity of a MISO Rayleigh fading channel.
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Fig. 1. Channel capacity and maximum mutual information of SAST and some other codes over open-loop MISO channels.

Let and , then by similar deriva-
tion steps as those for SAST codes, the maximum mutual infor-
mation of the LTAST codes can be shown as

(22)

where . Thus, the maximum mutual information
of the LTAST codes is also constant with respect to the number
of transmit antennas and is equal only to the open-loop ca-
pacity of the single-input–single-output (SISO) Rayleigh fading
channel. This behavior is similar to that of the rate-one -circu-
lant codes [15, p. 2605]. Clearly, the maximum mutual infor-
mation of the LTAST and -circulant codes is less than that of
SAST codes.

Fig. 1 illustrates the maximum mutual information of the
SAST, LTAST, -circulant, and the rate-one CIOD codes for
four antennas [4, eq. (132)] and eight antennas [10], together
with the capacity of the MISO channels for .
In fact, SAST codes achieve the same channel capacity as that
of the aforementioned CIOD codes, and this capacity is higher
than that of the LTAST and -circulant codes.

To provide a closer comparison, the relative channel capac-
ities attained by the SAST and LTAST codes are presented in
Fig. 2. For , SAST codes reach more than 95% and up to
98% of the channel capacity. For , SAST codes achieve
no less than about 92% channel capacity. This result occurs be-
cause for a specific high SNR, the channel capacity does not
actually increase when the number of transmit antennas keeps
growing, but the number of receive antennas is fixed [24]. Fig. 1
also shows that the capacity increment of the MISO channel is
negligible when the number of transmit antennas increases from

eight to 16. Therefore, the SAST codes nearly attain the capacity
of the MISO channels.

If we consider the MIMO Rayleigh fading channels, i.e., the
number of receive antennas , the maximum mutual infor-
mation of the SAST and LTAST codes can be shown as follows:

(23)

(24)

Arguments are used to highlight the operation SNR and
the antenna configuration. Let be the capacity of

MIMO channels. We can compare the maximum mu-
tual information of SAST and LTAST codes with the channel
capacity [23] as follows:

The two codes have a significant capacity loss if they are used
in the MIMO Rayleigh fading channels. This result is not sur-
prising, because the SAST and rate-one LTAST codes support
only 1 symbol pcu, while the maximum multiplexing capacity
is symbols pcu. Nevertheless, the rate loss of SAST codes is
always smaller than that of the rate-one LTAST codes.

Before investigating the bit error rate (BER) performance of
SAST codes in the next section, we summarize the main param-
eters of SAST codes and compare them with several existing ST
codes, including OSTBC, CIOD, QSTBC, and rate-one TAST/
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Fig. 2. Capacity achievable rates of SAST and LTAST codes compared with the capacity of open-loop MISO channels.

TABLE I
COMPARISONS OF SEVERAL STBC FOR ��� �� SYSTEMS

TABLE II
COMPARISONS OF SEVERAL STBC FOR ����� SYSTEMS

LTAST codes (or DST codes), for MIMO systems with
transmit and receive antennas (see Tables I and II). The

compared parameters are the diversity gain , coding gain3

, code rate ( , in symbol pcu), number of symbols to be
jointly ML detected, and degree of orthogonality (DO). The DO
is defined as the minimum number of columns of codeword ma-
trix that a column is orthogonal with.

SAST codes have the same coding gains compared to those
of rate-one LTAST codes; however, the distance spectrum of

3Note that the optimal signal rotation for the double-symbol decodable CIOD
code in [10] is unknown. The best coding gain of this code with a 4-QAM signal
is suggested in [25].

SAST codes is much improved. For example, a computer search
showed that for the codes designed for four transmit antennas
and 4-QAM, the numbers of the codeword pairs having a min-
imum distance (coding gain) of SAST codes and the LTAST
codes are 2560 and 7104, respectively. Hence, the performance
of the former is significantly better than that of the latter. The
simulation results in the next section will support this theoret-
ical analysis.

IV. SIMULATION RESULTS

A. Performance Results

In this section, we compare the performance of SAST codes
and other STBC with rate of one symbol pcu or less. Unless
stated otherwise, the BER curves are obtained by ML detection.
Gray bit mapping is applied for all constellations.

Fig. 3 plots the BER of the SAST and LTAST codes for a
system using 4-, 16- and 64-QAM (with spectral efficien-

cies 2, 4, and 6 bits pcu accordingly). The SNR gain of SAST
codes over that of the LTAST codes is substantial. For example,
the SNR gain is about 1.3, 2, and 2.5 dB for 2, 4, and 6 bits pcu,
respectively. The gains increase with the spectral efficiency.

Similar gains can be observed for higher numbers of transmit
antennas. Fig. 4 compares the BER of the SAST and LTAST
codes for a system. Again, SAST codes outperform the
LTAST codes. The SNR gain is 0.7 and 1.3 dB with 2 and 4 bits
pcu, respectively.

In Fig. 5, the BER of SAST, -circulant, and CIOD codes
in Tables I and II are compared. With four and eight transmit
antennas, SAST codes outperform the other two codes.

The performances of SAST and QSTBC [7], [9] are com-
pared in Fig. 6. When , the two codes have the same
rate-one symbol pcu and perform identically. However, if
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Fig. 3. Performance comparison of SAST and LTAST codes with� � � and � � �.

Fig. 4. Performance comparison of SAST and LTAST codes with� � � and � � �.

, and the code rate of QSTBC is , then we use
16-QAM for the QSTBC codes and 8-hexagonal constella-
tion (8-HEX) [18] for SAST codes (optimal coding gain for

) so that the two codes have the same 3 bits pcu.
Fig. 6 shows that SAST codes produce about a 1.2-dB gain
over the QSTBC codes. This performance gain of the SAST
codes can be explained by examining the minimum Euclidean
distances of 8-HEX and 16-QAM, which are 0.9631 and
0.6325, respectively. Clearly, SAST codes have better spectral
efficiency than that of the QSTBC codes; SAST codes can

perform better than the QSTBC for six transmit antennas by
using smaller constellations with a larger minimum Euclidean
distance. This result can be extended for other cases when the
number of transmit antennas is five or more.

While our theoretical analysis is carried out for even numbers
of transmit antennas, SAST codes for an odd number of transmit
antennas can be obtained by deleting one column of the SAST
codewords (or switching off one transmit antenna) and by set-
ting the channel gain associated with the switched-off antenna
to zero at the decoder.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on February 5, 2010 at 18:29 from IEEE Xplore.  Restrictions apply. 



176 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 1, JANUARY 2010

Fig. 5. Performance comparison of SAST, CIOD, and �-circulant codes with 4-QAM (2 bits pcu), for � � �� � and � � �.

Fig. 6. Performance comparison of SAST and QSTBC codes with 2 and 3 bits pcu, for � � �� �, � � �.

Fig. 7 illustrates the performance of SAST codes and the ST
linear constellation precoding (ST-LCP) codes [12] with the
same 2 bits pcu (4-QAM). The ST-LCP codes, in fact, are equiv-
alent to DAST codes proposed in [11]; by using fast Fourier
transform (FFT), one can convert the LTAST codes to the DAST
codes (see [13] and property P4) of the circulant matrices in
Section II-C). The slopes of the BER curves of the SAST and
ST-LCP codes are almost parallel, indicating that the former
achieve full diversity. Furthermore, notable gains of 1 and 1.5

dB over the ST-LCP codes are obtained for and ,
respectively. Thus, SAST codes perform better compared to the
LTAST codes for any number of transmit antennas.

Fig. 8 compares the performance of SAST, ST-LCP and
linear dispersion (LD) codes [23] for spectral efficiency 2 and
6 bits pcu (4- and 64-QAM, respectively) and with and

. Fig. 8 shows that SAST codes perform better than the
ST-LCP codes for all bit rates. SAST codes also perform better
than the LD code with the same delay . With 2 and 6 bits
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Fig. 7. Performance comparison of SAST and ST-LCP codes with 4-QAM, � � �� �, � � �.

Fig. 8. Performance comparison of SAST, ST-LCP, and LD codes with 4- and 64-QAM, � � �, � � �.

pcu, SAST codes gain about 0.4 and 0.7 dB over the LD codes
at BER . With a higher delay design and for 2 bits
pcu, SAST codes perform the same as LD codes at a low SNR,
but slightly better at high SNR. SAST codes improve over the
LD codes because the design criterion of the LD codes aims at
maximizing the mutual information. Hence, LD codes may not
achieve full diversity, which may lead to inferior performance
at high SNR. Note that the decoding complexity of the LD
codes is always higher than that of SAST codes.

We have investigated the error-rate performance of SAST
codes. The results show that they outperform CIOD, LTAST,

-circulant, ST-LCP/DAST, QSTBC, and LD codes. Since the
performance of OSTBC codes is inferior to that of these codes
[9], [11], [12], [23], SAST codes also outperform OSTBC
codes.

In some applications, suboptimal detectors may be employed
to reduce the detection complexity. We thus examine the perfor-
mance of LTAST and SAST codes with 16-QAM by using the
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Fig. 9. Performance comparison of SAST and LTAST codes using V-BLAST optimal nulling and cancellation (or ZF-DFE for short) receiver for 16-QAM,
� � �� �, � � �.

Fig. 10. Comparison of ML detection complexity of SAST and LTAST codes with sphere decoders for 16-QAM, � � �� � and � � �.

V-BLAST optimal nulling and a cancellation receiver or an op-
timal zero-forcing decision feedback equalization (ZF-DFE) re-
ceiver [21]. Fig. 9 depicts the performance of the two codes with
such receiver. The BER of SAST codes with (Alamouti
code) and when using the sphere decoder, and the
uncoded BER over a single Rayleigh fading channel, are also
presented for comparison. By comparing the slopes of the BER
curves, we can conclude that with the V-BLAST ZF-DFE re-

ceiver, SAST codes achieve a diversity order of , while the di-
versity order of the LTAST codes is only ; moreover, the SAST
codes yield a much better BER than that of the LTAST codes.
With the ZF-DFE receiver, the LTAST codes produce a mar-
ginal gain compared with that of the uncoded data transmitted
over a single Rayleigh fading channel . On the
other hand, the SAST codes with and gain about 1 and
2.9 dB, respectively, compared to the Alamouti code. With the
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Fig. 11. Ratio of average numbers of flops used by sphere decoders for ML detection of LTAST and SAST codes for 16-QAM, � � �� � and � � �.

ZF-DFE receiver, the diversity order of SAST codes is only ,
but the code still delivers a notable coding gain.

B. Complexity Comparison

We present the average number of flops and
used by the sphere decoders to detect the transmitted symbols
of LTAST and SAST codes, respectively, as a metric of com-
plexity measure. Note that the two sphere decoders can be run
in parallel for decoding the SAST code, greatly decreasing the
decoding time. The computations required by the preprocessing
stage are not included. Fig. 10 plots and for the
systems using 16-QAM with and . For a
better illustration, the ratio is plotted in Fig. 11.
The computation savings of the SAST codes compared with
those of the LTAST codes are significant, especially at low and
medium SNR ranges. This saving increases sharply with the
number of transmit antennas. For example, at 16 dB, the com-
putational complexity decreases 2.2 and 3.4 times for and

systems.

V. CONCLUSION AND REMARKS

We derived a new class of ST block codes called SAST codes.
They are full diversity, rate one (symbol pcu), and delay optimal
for an even numbers of transmit antennas. The key design of
SAST codes involves the block circulant structure, where the
commutative property is exploited to reduce the decoding com-
plexity. Compared with rate-one LTAST codes, SAST codes not
only significantly reduce the detection complexity, but also give
remarkable SNR gain of several decibels. SAST codes also out-
perform other STBC codes. Even when using the V-BLAST
nulling and cancellation receiver, SAST codes perform much
better than the LTAST codes and also outperform the Alamouti

code. Note that this comparison is somewhat unfair as the Alam-
outi code uses only two transmit antennas. However, LTAST
codes with the VBLAST suboptimal decoder could not perform
better than the Alamouti code.

The construction of SAST codes can be extended in some
ways. For example, since the code matrices of DAST [11], [12]
and -circulant [15] codes are commutative, we can construct
SAST codes by using these two codes.

Damen et al. [13, Prop. 4] showed that full-rate (designed
for ) or rate-one (designed for ) LTAST codes
when concatenated with a Gaussian codebook and ML decoding
achieve the optimal diversity multiplexing tradeoff (DMT) [26].
Additionally, Shashidhar et al. showed that the lower bound
on D-MT of STBC from division algebras (including rate-one

-circulant codes) is very close to the optimal D-MT for the
MISO channel [27]. Since the SAST codes can be constructed
from these two codes, and also because of our simulation results,
where the data rate of SAST codes approximately increases 2
bits per 6 dB of SNR increment (cf., Figs. 3 and 4), we may
predict that SAST codes with QAM achieve the optimal DMT
for MISO channels [26], [28]. This observation needs to be an-
alytically proved. Nevertheless, in terms of maximum mutual
information, the use of SAST codes is nearly optimal for MISO
channels. Hence, the SAST codes may be a good choice for the
downlink of a mobile wireless system, where the base stations
can be equipped with multiple transmit antennas, and the mobile
handsets are equipped with only one receive antenna because of
size/cost constraints.
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