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Abstract—In this paper1, the performance analysis of an
energy detector is exploited under the η−μ fading channel model.
The received unknown signal at the energy detector is considered
as the primary signal transmitted by a primary network user (e.g.
cognitive radio network). This research is focused on derivation
of the closed-form average detection probability over the η − μ
fading channel model. Further, results are extended to two
diversity reception cases such as maximal ratio combining (MRC)
and square-law combining (SLC) techniques with independent
fading channels. Detection performance is discussed with receiver
operating characteristics (ROC) curves. Our analysis is validated
by numerical and simulation results.

Index Terms—η − μ fading model, diversity, energy detection.

I. INTRODUCTION

Currently, there is an increasing interest of energy detection
of unknown signals. As an obvious example, detection of
primary user signals is one of the key challenges in cognitive
radio networks. Due to the spectrum scarcity in wireless net-
works, low-priority secondary users try to access the spectrum
of primary users (licensed users) once the primary users are
sensed to be idle over their allocated spectrum band [1], [2],
[3], [4]. This kind of spectrum sensing can be done with a
matched filter, a cyclostationary feature detector, or an energy
detector [5].

Since the energy detector is non-coherent type with low
implementation complexity, it is a popular method which has
been analyzed in the literature. An energy detector measures
the received signal energy and compares it with a pre-defined
threshold to determine the presence or absence of an un-
known signal in wireless communication networks. Further,
applications of the energy detector is widely used in ultra-
wideband (UWB) communications to borrow an idle channel
from authorized users [6].

Detection probability (Pd), false alarm probability (Pf ) and
missed detection probability (Pm = 1 − Pd) are the key
measurement metrics that are used to discuss the performance
of an energy detector. In conventional studies, performance
of an energy detector is illustrated by the receiver operating
characteristics (ROC) curve which is a plot of Pd versus Pf or
Pm versus Pf . The detection of an unknown deterministic sig-
nal in the presence of additive white Gaussian noise (AWGN)
is analytically formulated in [7] for a flat and band-limited
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Gaussian channel. Based on the results in [7], Pd and Pf

have been derived in closed-form over AWGN channel in [9].
The ROC analysis for Rayleigh, Rice and Nakagami fading
channels is discussed in [8] and [9] as two independent works
with different analytical approaches. Further, energy detection
under different diversity receptions such as maximal ratio
combining (MRC), selection combining (SC), switch-and-stay
combining (SSC), square-law combining (SLC), square-law
selection (SLS) and equal gain combining (EGC) is analyzed
in [9], [10], [11]. Detection performance of an energy detector
is investigated in [12] for relay-based cognitive radio networks
in order to sense the “white spaces” in the spectrum coopera-
tively. Considering the multipath fading and the shadowing
effect, signal detection is analyzed for K and KG fading
models in [13]. In [14], area under the ROC curve (AUC)
is introduced as a simpler performance measure of the overall
detection capability of the energy detector.

The η − μ distribution is a more general physical fading
model because it can represent one-sided Gaussian, Rayleigh,
Nakagami-m and Hoyt (Nakagami-q) distributions by chang-
ing the parameters η and μ [15], [16]. However, performance
of digital communication systems over η-μ fading channel
has not been investigated widely in wireless networks. In this
paper, we analyze the performance of an energy detector under
the η − μ fading channel. The average detection probabili-
ties are derived in closed-form, for cases without diversity
reception and with diversity reception such as MRC and SLC.
Moment generating function (MGF) approach is applied to
evaluate Pd. Further, the Residue Theorem is used to solve
the contour integration in the expression of Pd.

The rest of the paper is organized as follows. The system
model and the channel model are described in Section II. Av-
erage detection problem of the energy detector is analyzed in
Section III and Section IV for cases without diversity reception
and with diversity reception, respectively. The numerical and
simulation results are presented in Section V. The concluding
remarks are made in Section VI.

II. SYSTEM MODEL

In general, the received signal at time t, y(t) at the wireless
receiver can simply be expressed as y(t) = c·s(t)+n(t), where
c, s(t) and n(t) are channel coefficient between transmitter
and receiver, transmitted signal and AWGN with single-sided
power spectral density N0 at the receiver, respectively. When
there is no signal from the transmitter, the receiver receives
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noise signal only, which is denoted as hypothesis H0. Oth-
erwise, the receiver receives both signal and noise, which is
denoted as hypothesis H1. Therefore, the received signal at
the receiver can be interpreted as a binary hypothesis:

y(t) =
{

n(t) : H0,
c · s(t) + n(t) : H1.

(1)

A. Fading Channel Model

The η-μ fading channel model is a generalized channel
representation to model the non-line of sight small-scale
fading such as Rayleigh, Nakagami-m and Hoyt (Nakagami-
q) distributions. The probability density function (PDF) of the
normalized fading envelop, X , can be written as [16]

fX(x) =
4
√

πμμ+ 1
2 hμ

Γ(μ)Hμ− 1
2

x2μe−2μhx2
Iμ− 1

2

(
2μHx2

)
(2)

where the parameter μ = E
2(X2)

2V ar(X2)

(
1 + H2

h2

)
represents the

number of multipath clusters (μ > 0), Γ(·) is the gamma
function, and Iv(·) is the vth order modified Bessel function
of the first kind. Here E(·) and V ar(·) represent mathematical
expectation and variance, respectively. The η-μ fading channel
includes two different physical representations as Format 1 and
Format 2. The parameters H , h and η are defined for both
formats as follows.

1) Format 1: Independent in-phase and quadrature compo-
nents of the fading coefficient have different powers. And η
is the power ratio, 0 < η < ∞. The respective H and h are
defined as

H =
η−1 − η

4
and h =

2 + η−1 + η

4
.

2) Format 2: Correlated in-phase and quadrature compo-
nents of the fading coefficient have identical powers. And η
is the correlation coefficient, −1 < η < 1. The respective H
and h are defined as

H =
η

1− η2
and h =

1
1− η2

.

B. Signal-to-Noise Ratio (SNR)

The received instantaneous signal-to-noise ratio (SNR),
denoted γ, is the key measurement of the digital wireless
communication networks. The PDF of SNR under the η − μ
fading model is given by [16]

fγ(x) =
2
√

πμμ+ 1
2 hμ

Γ(μ)Hμ− 1
2 γ̄μ+ 1

2
xμ− 1

2 e
−2μhx

γ̄ Iμ− 1
2

(
2μHx

γ̄

)
(3)

where γ̄ is the average SNR of the fading channel.
The moment generating function (MGF) of γ, Mγ(s) =

E(e−sγ), is given by [17]

Mγ(s) =
(

K

(s + c1)(s + c2)

)μ

(4)

where K = 4μ2h
γ̄2 , c1 = 2(h−H)μ

γ̄ and c2 = 2(h+H)μ
γ̄ .

III. DETECTION ANALYSIS

In this section, we derive the closed-form average detection
probability for an energy detector under the η − μ fading
channel model.

A. Energy Detector

As described in [7], [9], the received signal is first filtered
with a bandpass filter in bandwidth W to normalize the noise
variance and to limit the noise power. The output signal is
then squared and integrated as follows: for each in-phase or
quadrature component, a number u of samples over a time
interval T are squared and summed. The summation results
of the in-phase component and quadrature component are
added together, which yields the test statistic, denoted Y . The
PDF of the test statistic, fY (y), follows a central chi-square
distribution under H0, and a noncentral chi-square distribution
under H1, given by [9]

fY (y) =

{
1

2uΓ(u)y
u−1e−

y
2 : H0,

1
2 ( y

2γ )
u−1

2 e−
2γ+y

2 Iu−1(
√

2γy) : H1.
(5)

Note that u is an integer equal to TW or (TW + 1). The
test statistic Y is compared with a predefined threshold value
λ at the receiver. The probabilities of false alarm (Pf ) and
detection (Pd) can be generally evaluated by Pr(Y > λ|H0)
and Pr(Y > λ|H1) respectively to yield [9]

Pf =
Γ(u, λ

2 )
Γ(u)

(6)

and

Pd = Qu(
√

2γ,
√

λ), (7)

where Qu(·, ·) is the generalized Marcum-Q function and
Γ(·, ·) is the upper incomplete gamma function which is
defined by the integral form Γ(a, x) =

∫ ∞
x ta−1e−tdt and

Γ(a, 0) = Γ(a). Probability of false alarm Pf can easily be
calculated using (6). Therefore, our focus in the following is
on the detection probability.

B. Average Detection Probability

Average detection probability can be found by averaging (7)
by SNR distribution fγ(x) in (3). However, it is difficult to
find a closed-form solution for direct integration of the gen-
eralized Marcum-Q function. Therefore, we use an alternative
method which is also used in [12]. The generalized Marcum-
Q function can be written as a circular contour integral within
the contour radius r ∈ [0, 1). Therefore, expression (7) can be
re-written [18] as

Pd =
e−

λ
2

j2π

∮
C

e( 1
z −1)γ+ λ

2 z

zu(1 − z)
dz, (8)
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where C is a circular contour of radius r ∈ [0, 1). Then, the
average detection probability is

Pd =
∫ ∞

0

Pdfγ(x)dx

=
e−

λ
2

j2π

∮
C

(∫ ∞

0

e( 1
z −1)xfγ(x)dx

)
e

λ
2 z

zu(1 − z)
dz

=
e−

λ
2

j2π

∮
C

Mγ

(
1− 1

z

)
e

λ
2 z

zu(1− z)
dz. (9)

where the last equality comes from the fact that Mγ

(
1− 1

z

)
=∫ ∞

0
e( 1

z −1)xfγ(x)dx.
Since the MGF of the η-μ channel is known (as given in

(4)), the average detection probability can be re-written as

Pd =
(

K

(1 + c1)(1 + c2)

)μ
e−

λ
2

j2π

∮
C

g(z)dz, (10)

where g(z) = e
λ
2 z

zu−2μ(1−z)
�

z− 1
1+c1

�μ�
z− 1

1+c2

�μ .

The Residue Theorem [19] shows that the solution of a
contour integral with a closed contour in the complex plane
can be evaluated with the residues of the integrand. Therefore,
Pd in (10) can be calculated from the residues of g(z) within
the contour radius r ∈ [0, 1). Two cases need to be considered.
Note that we consider μ to be an integer.

1) When u > 2μ: There are (u−2μ) poles at origin, μ poles
at 1

1+c1
and μ poles at 1

1+c2
in radius r ∈ [0, 1). Therefore,

Pd can be derived as

Pd =e−
λ
2

(
K

(1 + c1)(1 + c2)

)μ

·
(

Res (g; 0) + Res
(
g;

1
1 + c1

)
+ Res

(
g;

1
1 + c2

))

(11)

where Res (g; 0), Res
(
g; 1

1+c1

)
and Res

(
g; 1

1+c2

)
denote the

residue of the function g(z) at origin, 1
1+c1

and 1
1+c2

, respec-
tively. Each residue can be calculated as

Res (g; 0) =
1

(u− 2μ− 1)!

·
[ du−2μ−1

dzu−2μ−1

e
λz
2

(1 − z)
∏2

i=1

(
z − 1

1+ci

)μ

]∣∣∣∣∣
z=0

,

(12)

Res
(
g;

1
1 + c1

)
=

1
(μ− 1)!

·
[ dμ−1

dzμ−1

e
λz
2

(1− z)zu−2μ
(
z − 1

1+c2

)μ

]∣∣∣∣∣
z= 1

1+c1

(13)

and

Res
(
g;

1
1 + c2

)
=

1
(μ− 1)!

·
[ dμ−1

dzμ−1

e
λz
2

(1− z)zu−2μ
(
z − 1

1+c1

)μ

]∣∣∣∣∣
z= 1

1+c2

.

(14)

2) When u ≤ 2μ: There are μ poles at 1
1+c1

and μ poles
at 1

1+c2
in radius r ∈ [0, 1). Therefore, Pd can be derived as

Pd =e−
λ
2

(
K

(1 + c1)(1 + c2)

)μ

·
(

Res
(
g;

1
1 + c1

)
+ Res

(
g;

1
1 + c2

))
.

(15)

Res
(
g; 1

1+ci

)
for i = 1, 2 can be calculated as (13) and (14).

IV. DIVERSITY RECEPTION

A. Maximal Ratio Combining (MRC)

We consider an L branches MRC. Each diversity branch
is multiplied by the weighting factor which is proportional to
its complex fading coefficient. The instantaneous SNR at the
output of the L-branch combiner is

γMRC =
L∑

i=1

γi

where γi is the instantaneous SNR of ith branch. Since
square-and-integrate operation of the energy detector is done
after combining, the probabilities of false alarm and detection
can be derived after replacing γ by γMRC in (6) and (7),
respectively. Further, for independent and identical diversity
branches, MGF of γMRC , MγMRC(s), can be written as

MγMRC(s) =
[
Mγ(s)

]L

.

Therefore, average detection probability under MRC reception,
PMRC

d , can be evaluated after replacing μ by Lμ in (10).

B. Square-Law Combining (SLC)

We consider an L branches SLC. Each diversity branch
undergoes square-and-integrate operation before combining.
Therefore, decision is based on L independent statistics.
Further, the instantaneous SNR at the output of the L-branch
combiner is γSLC =

∑L
i=1 γi. The corresponding probabilities

of false alarm and detection in (6) and (7) can be written as

Pf =
Γ(Lu, λ

2 )
Γ(Lu)

and Pd = QLu(
√

2γSLC,
√

λ),

respectively. For independent and identical diversity branches,

MGF of γSLC can be written as MγSLC(s) =
[
Mγ(s)

]L

which has similar form as MγMRC(s). The average detection
probability under SLC reception, PSLC

d , can be evaluated after
replacing μ by Lμ and u by Lu in (10).
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Fig. 1. Pd versus Pf for Format 1 with different η and μ values.

V. NUMERICAL AND SIMULATION RESULTS

This section provides analytical and Monte-Carlo simulation
results. Fig. 1 and Fig. 2 show the ROC performance (Pd

versus Pf ) under Format 1 and Format 2 of the η − μ fading
model, respectively. Average SNR of the fading channel is
γ̄ = 5 dB. Note that in the figures, numerical results are
represented by lines, while simulation results are represented
by discrete marks on the curves. It is clear that the numerical
results match well with their simulation counterparts, confirm-
ing the accuracy of the analysis.

In Fig. 1, the energy detector shows better detection ca-
pability for higher η (with fixed μ) because the receiver
receives more power through in-phase component. In Fig.
2, the energy detector shows better detection capability for
lower η (with fixed η) because of low interference between in-
phase and quadrature components. When μ increases, energy
detector shows better performance for both formats due to the
advantage of multipath effect.

Since our theoretical analysis is verified by simulation
results in Fig. 1 and Fig. 2, no further simulation results are
presented in the following figures.

Fig. 3 shows the ROC curves for different u values with
η = 0.5, μ = 1 and γ̄ = 5 dB. It can be seen that when
u increases, the performance of the energy detector degrades.
This is because the false alarm probability increases faster
than the detection probability, thus leading to a lower overall
detection capability. Fig. 4 shows the impact of the average
SNR of the fading channel on the energy detector. As we
expect, higher average SNR of the fading channel leads to
better detection capability at the energy detector.

Fig. 5 shows the effect of two diversity techniques such
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Fig. 2. Pd versus Pf for Format 2 with different η and μ values.
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Fig. 3. Pd versus Pf for different u values

as MRC and SLC for energy detection. The average SNR
of fading channel is set as γ̄ = 5 dB. When the number of
diversity branches is increased, ROC curves moves rapidly to
the upper left corner of the ROC plot. Thus, diversity combin-
ing has major impact on detection capability. Further, MRC
always outperforms SLC. The test statistics under MRC and
SLC follow chi-square distributions with u and Lu degrees of
freedom, respectively. The energy detector has lower detection
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Fig. 4. Pd versus Pf for different average channel SNR (γ̄) values.

capability at higher degrees of freedom as shown in Fig. 3.

VI. CONCLUSION

We analyze the performance of an energy detector over the
η − μ fading channel model. The analysis derives the aver-
age detection probabilities in closed-form for cases without
diversity reception and with diversity reception (MRC and
SLC). It is shown that the detection probability increases
when the power ratio between independent in-phase and
quadrature components of the fading coefficient increases, or
when the correlation coefficient between correlated in-phase
and quadrature components of the fading coefficient decreases.
Diversity advantage has major impact on ROC performance.
MRC always outperforms SLC. The results can be used to
discuss the performance of Rayleigh, Nakagami-m and Hoyt
fading models as special cases of the η − μ fading model.
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