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Abstract— A lower bound on the minimum required code
length of binary codes is obtained. The bound is obtained based
on observing a close relation between the Ulam’s liar game and
channel coding. In fact, Spencer’s optimal solution to the game
is used to derive this new bound which improves the famous
Sphere-Packing Bound.

Index Terms— Sphere-Packing Bound, Maximum size of
binary codes, Ulam’s liar game.

I. INTRODUCTION

In 1950 Hamming [1] introduced the Sphere-Packing

Bound (SPB), which gives an upper bound on the number of

codewords (i.e., code size) of a block error correcting code

of length n and minimum distance d. In particular, for a

binary block code, we have

Sbin(n) ≤
2n

∑t

i=0

(

n
i

) , (1)

where Sbin(n) is the size of the code, and

t =

⌊

d − 1

2

⌋

(2)

denotes the error correction capability of the block code. Of

course (2) holds only for the ML decoder [2].For perfect

codes [2],the inequality (1) changes to equality. It has been

shown that the only known perfect binary block codes are:

Hamming code [1] for t = 1, m = 2i − 1 for i ≥ 3, and the

(23,12) Golay code [3] with t = 7. Different constructions

have also been introduced for nonlinear perfect binary codes

in the case of t = 1, m = 2i − 1, i ≥ 3 [4], [5]. Perfect

codes have attracted much interest because of their optimal

minimum distance.

Using SPB, one can easily obtain a curve, which for every

pair of integers m and d, assigns a lower bound on the

required length n of the codewords of a block code of size

m and minimum distance d. Fig. 1 shows such a curve for

m = 1, . . . , 105,and d = 3, 5, 7, 9 (i.e., t = 1, 2, 3, 4).

Using the SPB, for a cannel which does not introduce

more than t errors into a codeword, we can find a lower

bound on the code length for error-free communication.

Unlike this approach, in 1959 Shannon studied a bound on
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Fig. 1. Sphere-Packing Bound for binary codes of size 1, . . . , 105 and
minimum distance of 3, 5, 7, 9 (from bottom to top) corresponding to error
correction capabilities of 1, 2, 3, 4 bits.

the error probability of a Gaussian channel, where more

than t errors could be introduces into a codeword [6]. This

approach is referred to as improved Sphere-Packing Bound

(ISPB) in the literature. Consequently, in 1967 Shannon et

al. provided another ISPB for discrete memoryless channels

[7], [8]. Valembois and Fossorier improved the latter ISPB

in 2004 [9]. They also extended the result to the binary-input

AWGN channel. Recently, in 2008 Wiechman and Sason [10]

improved the bounding techniques in [7], [8] and [9] and

derived a new ISPB for all symmetric memoryless channels.

In this article, we would be more faithful to the Ham-

ming’s original line and introduce a new improvement in the

SPB for binary codes. In other words, instead of being inter-

ested about the error probability, we focus on guaranteeing

t–bit error correction capability.

Since our work is based on Ulam’s liar game [11] and its

solution, section II briefly reviews this game and Spencer’s
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optimal solution [12]. In section III, the close relation be-

tween Ulam’s game and binary channel coding is discussed.

Thereafter, in section IV, using this relation and Spenser’s

optimal solution, a new upper bound for the maximum size

of binary codes is obtained. Comparing this new bound with

the famous SPB, it is observed that for some special cases,

the new bound is tighter.

II. ULAM’S GAME AND SPENCER STATE

A. Ulam’s liar game

Ulam’s liar game, which will be referred to as “U-Game”

in the rest of this work, is a two players game with three

parameters (m, t, n). The game starts with Player 1 selecting

a symbol among a set S of m different symbols. In order to

win, Player 2 must guess the selected symbol with at most n

Yes/No questions of the form “Is the selected symbol among

the set A?” where A is a subset of S. We will refer to such a

question as “U-Question(A)”. Throughout the game, Player

1 can give at most t wrong answers. If the Player 2 fails

to correctly guess the selected symbol, Player 1 is declared

winner.

Hence, Player 2 has to design a series of n U-Questions to

deduce the selected symbol. It is important to determine the

minimum number of required questions through which one

can guarantee that Player 2 wins. If the minimum required

number of U-Questions is less than or equal to n, Player 2

has a strategy to win the game.

Other variations of the game are also considered in the lit-

erature, e.g., [13], and various solutions have been presented

to different versions of the game [12], [14], [15].

B. Spencer State Space and Spencer Weight

Spencer has analyzed the U-Game [11], where he proposes

a state model for the game. Whenever the questioner receives

a new answer, this state is updated in a way that it contains all

the information which has been received about every symbol

up to now. The Spencer’s model for an (m, t, n)–game,

consists of t + 1 bins in a row and m chips, c1, c2, . . . , cm

corresponding to m symbols. As a result of this one-to-

one correspondence, from now on, we use terms “chip” and

“symbol” interchangeably.

In the initial state of the game, all the chips are in the

left most bin and the chips are moved to the righter bins

according to the received answers. After receiving the jth

answer, the state is denoted by a vector vj = (V0, . . . , Vt),
where Vi is the subset of the chips in the ith bin. Notice

that the most left bin is indexed zero and the bin index

increases to the right. Then the initial state of the game is

v0 = (S, ∅, . . . , ∅), where S is the set of all chips (symbols).

Now suppose we are at state vj and the questioner asks the

U-Question(A), where A is a subset of {1, . . . , m}. Notice

that chips corresponding to the elements of A can be in

different bins. If the answer to this question is a “No” we

update the state by moving all the chips corresponding to

the elements of A one bin to the right. A chip moving to the

right of the right-most bin is considered “lost”. If the answer

is a “Yes” we can view it as a “No” to U-Question(Ac) and

use the mentioned update rule.

With the initial state v0 and this updating process, it

is evident that a chip ci will be lost if and only if the

questioner receives more than t answers stating that ci is

not corresponding to the selected symbol. Thus, ci cannot be

the selected symbol by Player 1. Obviously, Player 2 wins

the game if within n questions he observes a state where all

chips except one are lost.

To simplify the analysis of the game, we define notations

to present the above discussion. To this end, we denote the

set of symbols belonging to A in the ith bin by Ui. We now

view A, which is the matter of question at step j + 1, by

vector uj+1 = (U0, . . . , Ut). Then, according to the above

mentioned update rules, we can represent the updated state

in the case of receiving a “No” as

vj+1 = No{vj , uj+1} (3)

, ((V0 \ U0), (V1 \ U1) ∪ U0, . . . , (Vt \ Ut) ∪ Ut−1),

and in the case of “Yes” as

vj+1 = Yes{vj , uj+1} (4)

, ((U0, U1 ∪ (V0 \ U0), . . . , Ut ∪ (Vt−1 \ Ut−1)).

Spencer has also introduced a weight for every state of the

game. The weight of a state vj = (V0, . . . , Vt), is defined as

W (vj) ,

t
∑

i=0

[

|Vi|

t−i
∑

ℓ=0

(

n − j

ℓ

)

]

. (5)

We would refer to this weight function as “Spencer

weight”. Spencer showed that if in any step i through the

game, the state weight is greater than 2(n−i), then there is

surely a strategy for Player 1 to win [12].

III. THE RELATION BETWEEN CHANNEL CODES AND

THE ULAM’S GAME

The main problem in binary error correction coding is very

similar to a U-Game. To transmit log2 m information bits,

the transmitter selects a symbol from a set of cardinality

m, and then sends a series of n bits (0 or 1) through the

channel in order to inform the receiver what symbol has

been selected The channel then flips some of the bits and the

receiver should use the received bits to deduce the selected

symbol.

The aim of a t-bit error correcting code is to guarantee

correct decoding if the channel has flipped at most t bits.

The main problem here is again to design a code with min-

imum possible length to guarantee the t-bit error correction

capability. In a well designed decoder, the parameter t is

related with the minimum distance of the codewords as in

(2).

According to the ith bit of the codewords, the codebook

can be partitioned into two sets. The set A of all codewords

whose ith bit is ‘1’, and Ac of all codewords whose ith bit is

‘0’. Thus, a block code of length n can be viewed as a series
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of n U-Questions1. The channel can give incorrect answers

to some of these n questions.

There exists, however, a few differences between the two

problems. The first and the most important one is that in

the coding case, the questions are preset, i.e., the codebook

is designed before transmission. In the case of the U-Game,

however, Player 2 can use the answers received up to now to

design the future questions. The second difference is that in

Ulam’s game, Player 1 can choose a lying strategy to make

deduction of the selected symbol harder, while channel errors

occur randomly. In other words, errors are not planned by

the channel.

Since the goal of the coding problem is to guarantee an

error correction capability of t bits, one should consider

the worst case errors. Thus, without loss of generality, we

can assume that the channel errors are planned to make the

decoding harder. Therefore, channel coding can be viewed as

a U-Game where Player 1 (channel) is still playing based on

its best strategy, while Player 2 (code designer) must design

all his questions at the beginning of the game. Thus, the

minimum number of questions, required in an (m, t, n)–
game is a lower bound on the minimum required length

of a code of size m with error correction capability t. For

channels with real-time feedback, code designer can use the

best strategy available to Player 2 in U-Game making both

problems identical from this point of view.

Another minor difference between the two problems is

that the channel does not care about the maximum allowed

number of incorrect answers. That is, it may introduce more

than t errors. In such cases, the decoder fails. This failure,

however, does not have any effect on the code design because

our code is only concerned about guaranteeing successful

decoding when the number of errors is no more than t. Thus,

in the sequel, we limit our discussions to the cases that no

more than t errors are occurred.

The following theorem relates failure of channel decoding

to the Spencer weight of the last state of the equivalent U-

Game.

Theorem 1: In a communication system, equipped by a

t–bit error correcting code of length n and size m, if at

the end of the equivalent (m, t, n)–game the Spencer weight

is greater than one, there is no guarantee of successful

decoding.

Proof: To proof this theorem, we get advantage of the

optimality of Spencer’s solution, in the means of minimum

required questions. From the definition of the Spencer weight

in (5) we have the Spencer weight of a Spencer state vn =
(V0, . . . , Vt) at the end of the equivalent (m, t, n)–game as

W (vn) =
t

∑

i=0

[

|Vi|
t−i
∑

ℓ=0

(

n − n

ℓ

)

]

> 1, (6)

1Here, a block code of length n is considered. The discussions, however,
are valid for the case of variable-length codes.

and since

t−i
∑

ℓ=0

(

n − n

ℓ

)

= 1, ∀ t − i, n ∈ N, (7)

then

W (vn) =

t
∑

i=0

|Vi| > 1. (8)

Where in (8), the left side of the inequality is the number

of the chips remained in the state at the end of the equivalent

game supposing we have used Spencer’s method to solve

it. This situation means that the information received by the

transmitted bits, is not enough to deduce which message have

been selected in the transmitter. In such cases, although the

receiver may select one of the possible blocks, but there will

be no guarantee on the correctness of this decoding.

IV. THE NEW BOUND

In this section, based on the relation between U-Game

and the channel coding problem, we use Spencer’s optimal

solution in order to obtain a lower bound on the codeword

length. In other words, we find a bound on the required

number of bits to describe a selected symbol from a set of m

predefined symbols, when at most t bits could be received

incorrectly. We then observe that this bound is slightly tighter

than the well known SPB.

Let us first go through a simple example, where the lower

bound obtained by SPB could be improved using Spencer’s

solution.

Example 1: For a set of three symbols to be transmitted

through a channel using binary error correcting codes and

guaranteeing the correction of every error of hamming weight

one, the Sphere-Packing Bound gives us a lower bound of

four on the minimum required length of codewords as

4 = min
x∈N

{

x

∣

∣

∣

∣

3 ≤
2x

∑1
i=0

(

x
i

)

}

. (9)

But now, let c = [b0b1b2b3] be a codeword. To be able to

correct every error of Hamming weight one, we need then

to have a Hamming distance of at least three between every

pair of codewords. It is, however, easy to check that there

exists no pair of vectors with Hamming distance three or

more among all vectors of distance at least three from c,

i.e., [b̄0b̄1b̄2b3], [b̄0b̄1b2b̄3], [b̄0b1b̄2b̄3], and [b̄0b̄1b̄2b̄3]. Thus,

the lower bound provided by SPB cannot be achieved by any

error correcting code of size three and length four. On the

other hand, if we think of the equivalent (3, 1, n)–game, as

shown in Fig. 2, for n = 4 the game is not conclusive. In

other words, after the fourth question, we still have two chips

left in the game. One can easily check that these U-Questions

are the bests, and the received answers are the worst. Thus, a

bound on minimum codeword length n for m = 3, t = 1 can

be obtained from this U-Game to be n ≥ 5. Interestingly, a

code with n = 5 can in fact be constructed for example with

codewords c1 = [00000], c2 = [11100], c3 = [11011]. ⋄
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c1

c1

c1

c1

c1

c1

c2

c2

c2

c2

c2

c3

c3

c3

c3

A1 = {c1, c2} x1 = 1

A2 = {c1, c3} x2 = 0

A3 = {c1} x3 = 0

A4 = {c1, c2} x4 = 1

A5 = {c1} x5 = 1

Fig. 2. The selected symbol c1 is deduced through five U–Questions while
a wrong answer (at step three) has made the state of the game inconclusive
after the fourth answer. In this figure Ai, i = 1, . . . , 5 represents the subset
under question in U–Questions 1, . . . , 5, and xi, i = 1, . . . , 5 represents
the received answer (or bit) where ‘1’ means “Yes” and ‘0’ means “No”

Through the rest of this section, we introduce a mathemat-

ical framework to obtain a new lower bound on the codeword

length, using its equivalent U-Game. Before going through

more details and formulating the new improved bound, we

introduce some definitions.

For an error correcting code with length n and size m and

error correcting capability t, let

An−s , gcd

{(

n − s

t

)

, . . . ,

(

n − s

t − s + 1

)}

, (10)

and

K0 , m ×

t
∑

ℓ=0

(

n

ℓ

)

. (11)

Then we calculate Ki recursively from Ki−1 using the

following rule: Ki should be the least integer satisfying

Ki ≥
Ki−1

2
, (12)

and

Ki ≡ m ×
t

∑

ℓ=0

(

n − i

ℓ

)

(mod An−i). (13)

Now we introduce a new bound through the next theorem.

Theorem 2: A code of length n, size m, and error correc-

tion capability t exists if for all 1 ≤ i ≤ n,

Ki ≤ 2n−i. (14)

Proof: To prove this theorem, we show that Ki is less

than or equal to the Spencer weight of the equivalent U-

Game after the ith U-Question is answered. Thus, if Kn > 1,

the Spencer weight after the nth answer is also greater than 1.

Therefore, according to Theorem 1, the game is inconclusive.

To show that W (vi) ≤ Ki, we notice that initially the

Spencer weight of the equivalent U-Game is exactly equal

to the K0 by the definition. Then after each update the new

Spencer weight should have three conditions. First, it should

be an integer, since as defined in (5) the Spencer weight

is a summation in which every term is the product of the

number of chips in a bin and a combination term, which are

both integers. The second condition as we will show is that

after each update, the maximum guaranteed reduction in the

Spencer weight is half of the weight. In other words, if we

consider the worst case by the means of the least possible

reduction in the Spencer weight, then we have

W (vi) ≥
W (vi−1)

2
. (15)

In order to show this condition holds, suppose we are

in an arbitrary Spencer state, vi = (V0, . . . , Vt) in the

equivalent (m, t, n) U-Game, and we are going to ask the

U-Question(A) where A could be described by the vector

ui+1 = (U0, . . . , Ut). Regardless of the question, the updated

Spencer state is either Yes{vi, ui+1} or No{vi, ui+1}. Then

Using (4), (3), and (5), the sum of the Spencer weight of the

two possible results is

W (Yes{vi, ui+1}) + W (No{vi, ui+1}) = W (vi). (16)

Hence we have,

max
ui+1

{min{W (Yes{vi, ui+1}), W (No{vi, ui+1})}} (17)

=
W (vi)

2
.

Here maximization is taken over all possible questions.

The third condition is that regardless of what the answer

of a question is, the Spencer weight of the new states must

satisfy the following condition:

∀i ≤ n, m ×

t
∑

ℓ=0

(

n − i

ℓ

)

≡ W (vi) (mod An−i) (18)

which is proved in [12].

As a result, Ki ≤ W (vi) and (14) can be used to obtain

a lower bound on n.

The following theorem states that the new bound is at least

as good as the famous SPB.

Theorem 3: For any m and t, the lower bound on n

obtained based on Theorem 2 is at least as tight as the

Hamming bound.
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Fig. 3. The Sphere-Packing Bound versus the new bound for binary codes
of size 1, . . . , 105 and error correction capability of 1, 2, 3, 4 bits. The
solid black lines are the famous SPB introduced by Hamming, which are
the same as in Fig. 1. The dashed red lines are the new bound with respect
to Theorem 2.

Proof: Assume that for some m and t, a bound n looser

than the Hamming bound is obtained through Theorem 2.

Then, using the pigeon-hole principle, at least two of the

m spheres with radius t, centered at m codewords, will

intersect.

Recall that any point in this space can be viewed as a

sequence of answers in the equivalent U-Game. Now, if

Player 1 picks one of the centers of these two intersecting

spheres and answers the questions according to one intersect-

ing point, Player 2 will be left with more that one choice

at the end of the game. This is because both centers of

the intersecting spheres are less that t apart from the given

sequence of answers. Thus, Player 1 with at most t wrong

answers can win the game.

Since Theorem 2 guarantees existence of a winning strat-

egy for Player 2 [12], the assumption that the new bound

can be looser than the Hamming bound is contradicted.

Fig. 3 shows a comparison between the famous SPB and

the bound achieved by Theorem 2. It contains four pairs of

curves for t = 1, 2, 3, 4 from bottom to top, respectively. As

we can see, the two bounds are usually the same. However, in

some particular cases, which are shown by solid circles, the

new bound describes a tighter lower bound on the minimum

number of required bits. As predicted by Theorem 3, the new

bound is never looser than SPB. Indeed, the fact that the new

bound is at least as tight as SPB can be used to reduce the

computational complexity of finding the new bound. To this

end, one can use SPB as a starting point to search for the

smallest n satisfying Theorem 2.

V. CONCLUSION

In this paper we first discussed the relation between the

error correcting codes and the Ulam’s game. Then we dis-

cussed that any binary error correcting code has an equivalent

U-Game. Finally, using Spencer’s solution to U-Game, we

derived a new lower bound on the minimum length of the

codewords of an error correcting code of size m and error

correction capability t. The new bound was proved to be at

least as tight as SPB and was shown to be better than the

famous Sphere-Packing Bound is some cases.
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