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Abstract—In this paper, we consider an amplify-and-forward
wireless relay system where multiple source nodes communicate
with their corresponding destination nodes with the help of
relay nodes. Conventionally, each relay equally distributes the
available resources to its relayed sources. This approach is clearly
sub-optimal since each user1 experiences dissimilar channel
conditions, and thus, demands different amount of allocated
resources to meet its quality-of-service (QoS) request. Therefore,
this paper presents novel power allocation schemes to i) maximize
the minimum signal-to-noise ratio among all users; ii) minimize
the maximum transmit power over all sources; iii) maximize
the network throughput. Moreover, due to limited power, it may
be impossible to satisfy the QoS requirement for every user.
Consequently, an admission control algorithm should first be
carried out to maximize the number of users possibly served.
Then, optimal power allocation is performed. Although the
joint optimal admission control and power allocation problem is
combinatorially hard, we develop an effective heuristic algorithm
with significantly reduced complexity. Even though theoretically
sub-optimal, it performs remarkably well. The proposed power
allocation problems are formulated using geometric program-
ming (GP), a well-studied class of nonlinear and nonconvex
optimization. Since a GP problem is readily transformed into
an equivalent convex optimization problem, optimal solution
can be obtained efficiently. Numerical results demonstrate the
effectiveness of our proposed approach.

Index Terms—Power allocation, geometric programming, relay
networks.

I. INTRODUCTION

RECENTLY, it has been shown that the operation effi-
ciency and quality-of-service (QoS) of cellular and/or

ad-hoc networks can be increased through the use of relay(s)
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1Hereafter, the term ’user’ refers to a source-destination pair or only the

source node depending on the context.

[1], [2]. In such systems, the information from the source to
the destination is not only transmitted via a direct link but
also forwarded via relays. Although various relay models have
been studied, the simple two-hop relay model has attracted
extensive research attention due to its implementation practi-
cability [1]–[11]. The performance of a two-hop relay system
has been investigated for various channels, i.e., Rayleigh or
Nakagami-m, and relay strategies, i.e., amplify-and-forward
(AF) or decode-and-forward (DF) [1]–[5]. Note, however, that
resource allocation is assumed to be fixed in these works.

A critical issue for improving the performance of wire-
less networks is the efficient management of available radio
resources [12]. Specifically, resource allocation via power
control is commonly employed. As a result, numerous works
have been conducted to optimally allocate the radio resources,
for example power and bandwidth to improve the performance
of relay networks [6]-[11]. It is worth mentioning that a
single source-destination pair is typically considered in the
aforementioned papers. In [6], the authors derive closed-form
expressions for the optimal and near-optimal relay trans-
mission powers for the cases of single and multiple relays,
respectively. The problem of minimizing the transmit power
given an achieved target outage probability is tackled in [7].
In [8], by using either the signal-to-noise ratio (SNR) or
the outage probability as the performance criteria, different
power allocation strategies are developed for three-node AF
relay system to exploit the knowledge of channel means.
Bounds on the channel capacity are derived for a similar
model with Rayleigh fading and channel state information
(CSI) is assumed available at transmitter [9]. The bandwidth
allocation problem in three-node Gaussian orthogonal relay
system is investigated in [10] to maximize a lower bound
on the capacity. Two power allocation schemes based on
minimization of the outage probability are presented in [11]
for the case when the information of the wireless channel
responses or statistics is available at transmitter.

It should be noted that very few works have considered the
aforementioned two-hop relay model for more practical case
of multiple users.2 Therefore, the above-mentioned analysis
is applicable to only a special case of the problem under
consideration. Indeed, each relay is usually delegated to assist
more than one user, especially when the number of relays is

2Note that multi-user cooperative network employing orthogonal frequency-
division multiple-access (OFDMA) where subscribers can relay information
for each other is already considered, for example see [13], [14] and references
therein.
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(much) smaller than the number of users. A typical example
of such scenario is the deployment of few relays in a cell
at convenient locations to assist mobile users operating in
heavily scattering environment for uplink transmission. Relays
can also be used for helping the base station forwarding
information to mobile users in downlink mode. Resource
allocation in a multi-user system usually has to take into
account the fairness issue among users, their relative quality-
of-service (QoS) requirements, channel quality and so on.
Mathematically, optimizing relay networks with multiple users
is a challenging problem, especially when the number of users
and relays is large.

In this paper, we develop efficient power allocation schemes
for multi-user wireless relay systems. Specifically, we de-
rive optimal power allocation schemes to i) maximize the
minimum SNR among all users; ii) minimize the maximum
transmit power over all sources; iii) maximize the network
throughput. We show that the corresponding optimization
problems can be formulated as geometric programming (GP)
problems. Therefore, optimal power allocation can be obtained
efficiently using convex optimization techniques.3

Another issue is that due to limited power resource, achiev-
ing QoS requirements for all users may turn out to be
impossible. Therefore, some sort of admission control where
users are not automatically admitted into the network, with
pre-specified objectives should be carried out. Yet, none of
the existing works has considered this practical scenario in
the context of relay communications. Note, however, that the
methodology for joint multiuser downlink beamforming and
admission control has been recently developed in [18]. In
this paper, we also propose a joint admission control and
power allocation algorithm for multi-user relay systems. The
proposed algorithm first aims at maximizing the number of
users that can be admitted and QoS-guaranteed. Then, the
optimal power allocation is performed. Since the aforemen-
tioned joint admission control and power allocation problem
is combinatorially hard, we develop an effective heuristic
approach with significantly reduced complexity. Moreover, the
algorithm determines accurately the users to be admitted in
most of the simulation examples. As well, its complexity
in terms of running time is much smaller than that of the
original optimal admission control problem. A preliminary
version of this work has been presented in [19]. During
the review process for this paper, the authors also became
aware of the very recent contributions [20], [21]. In [20],
the joint power and admission control problem is solved in
the context of traditional cellular networks, while the same
problem is considered in [21] in the context of cognitive
underlay networks.

The rest of this paper is organized as follows. In Section
II, a multi-user wireless relay model with multiple relays
is described. Section III contains problem formulations for
three power control schemes. The proposed problems are
converted into GP problems in Section IV. The problem of

3Note that GP has been successfully applied to approximately solve the
power allocation problem in traditional cellular and ad hoc networks [15],
[16]. The exact solution for the same problem can be obtained using the
difference of two convex functions optimization at a price of high complexity
[17].

joint admission control and power allocation is presented
in Section V. The algorithm for solving the joint admission
control and power allocation problem is described in Section
VI. Numerical examples are presented in Section VII, followed
by the conclusions in Section VIII.

II. SYSTEM MODEL

Consider a multi-user relay network where M source nodes
Si, i ∈ {1, ...M} transmit data to their corresponding
destination nodes Di, i ∈ {1, ...M}.4 There are L relay nodes
Rj , j ∈ {1, ..., L} which are employed for forwarding the
information from source to destination nodes. The conven-
tional two-stage AF relaying with orthogonal transmission
through time devision [1], [2], [11] is assumed. Therefore,
to increase the throughput (or more precisely, to prohibit
decreasing of the throughput), each source Si is assisted
by one relay denoted by RSi . Single relay assignment for
each user also reduces the coordination between relays and/or
implementation complexity at the receivers.5 The set of source
nodes which use the relay Rj is denoted by S (Rj), i.e.,
S(Rj) = {Si | RSi = Rj}.

Let PSi , PRSi
denote the power transmitted by source Si

and relay RSi in the link Si-RSi-Di, respectively. Since unit
duration time slots are assumed, PSi and PRSi

correspond also
to the average energies consumed by source Si and relay RSi .
For simplicity, we present the signal model for link Si-RSi-
Di only. In the first time slot, source Si transmits the signal
xi with unit energy to the relay RSi .

6 The received signal at
relay RSi can be written as

rSiRSi
=
√

PSiaSiRSi
xi + nRSi

where aSiRSi
stands for the channel gain for link Si-RSi ,

nRSi
is the additive circularly symmetric white Gaussian noise

(AWGN) at the relay RSi with variance NRSi
. The channel

gain includes the effects of path loss, shadowing and fading.
In the subsequent time slot, assuming the relay RSi knows the
CSI for link Si-RSi , it uses the AF protocol, i.e., it normalizes
the received signal and retransmits to the destination node
Di. The received signal at the destination node Di can be
expressed as

rDi =
√

PRSi
aRSi

Di

rSiRSi√
E
{|rSiRSi

|2} + nDi

=

√
PRSi

PSi

PSi |aSiRSi
|2 + NRSi

aRSi
DiaSiRSi

xi + n̂Di

where E{·} denotes statistical expectation operator, aRSi
Di is

the channel coefficient for link RSi-Di, nDi is the AWGN
at the destination node Di with variance NDi , n̂Di is
the modified AWGN noise at Di with equivalent variance
NDi +

(
PRSi

|aRSi
Di |2NRSi

)
/
(
PSi |aSiRSi

|2 + NRSi

)
. The

4This includes the case of one destination node for all sources, for example,
a base station in cellular network, or a central processing unit in a sensor
network.

5The single relay assignment may be done during the connection setup
phase, or done by relay selection process [11].

6We consider the case in which the source-to-relay link is (much) stronger
than the source-to-destination link, that is usual scenario in practice.
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equivalent SNR of the virtual channel between source Si and
destination Di can be written as [11]

γi =
PRSi

PSi |aRSi
Di |2|aSiRSi

|2
PSi |aSiRSi

|2NDi + PRSi
|aRSi

Di |2NRSi
+ NDiNRSi

=
PSiPRSi

ηiPSi + αiPRSi
+ βi

where ηi =
NDi

|aRSi
Di

|2 , αi =
NRSi

|aSiRSi
|2 , βi =

NRSi
NDi

|aSiRSi
|2|aRSj

Di
|2 .

It can be seen that for fixed PRSi
, γi is a concave increasing

function of PSi . However, no matter how large PSi is, the
maximum achievable γi can be shown to be equal to PRSi

/ηi.
Vice versa, when PSi is fixed, γi is a concave increasing
function of PRSi

and the corresponding maximum achievable
γi is PSi/αi. Moreover, since γi is a concave increasing
function of PSi , the incremental change in γi is smaller
for large PSi , and γi is monotone. Note that monotonicity
is a useful property helping to provide some insights into
optimization problems at optimality.

In the following sections, we consider efficient power allo-
cation and admission control schemes based on a centralized
approach with assumed complete knowledge of channel gains.
This assumption involves some timely and accurate channel
estimation and feedback techniques which are beyond the
scope of this paper.

III. POWER ALLOCATION IN MULTI-USER RELAY

NETWORKS: PROBLEM FORMULATIONS

Power control for single user relay networks has been
popularly advocated [6]-[11]. In this section, we extend the
power allocation framework to multi-user networks. Different
power allocation based criteria which are suitable and distinct
for multi-user networks are investigated.

A. Max-min SNR Based Allocation

Power control in wireless networks often has to take into
account the fairness consideration since the fairness among
different users is also a major issue in a QoS policy. In
other words, the performance of the worst user(s) is also of
concern to the network operator. Note that the traditionally
used maximum sum SNR based power allocation favors users
with good channel quality. Instead, we consider max-min fair
based power allocation problem which aims at maximizing the
minimum SNR over all users.7 This can be mathematically
posed as

max
PSi

, PRSi

min
i=1,...,M

γi (1a)

subject to:
∑

Si∈S(Rj)

PRSi
≤ Pmax

Rj
, j = 1, . . . , L (1b)

M∑
i=1

PSi ≤ P (1c)

0 ≤ PSi ≤ Pmax
Si

, i = 1, . . . , M (1d)

where Pmax
Rj

is the available power at the relay Rj and P is the
maximum total power of all sources. The left-hand side of (1b)

7In this way, the minimum data rate among users is also maximized since
data rate is a monotonic increasing function of SNR.

is the total power that Rj allocates to its relayed users, and
thus, it is limited by the maximum available power of the relay.
Constraint (1c) represents the possible limit on the total power
of all sources while the constraint (1d) specifies the peak
power limit Pmax

Si
for source Si. We should emphasize here

that in applications when sources are operating independently,
it is sufficient to have only limits on the individual source
powers indicated by (1d), and (1c) can be effectively removed
by simply setting P ≥ ∑M

i=1 Pmax
Si

. In this case, sources
Si, i = 1, . . . , M would transmit with their maximum power
Pmax

Si
. However, there are applications where the total power

is of concern, e.g., when the sources share a common power
pool as in the case of a base-station (or access point, access
node) transmitter, or in an energy-aware system when energy
consumption and related emission in the system are more
related to total power than individual peak powers. In such
a case, it is possible that P <

∑M
i=1 Pmax

Si
, and both the

constraints (1c) and (1d) are applied in order to control the
total power consumed by all sources within a specified target.
In other words, the constraint (1c) is included in (1a)–(1d)
for the sake of generality. On the other hand, there is no
such limit for relay nodes since relays are usually energy-
unlimited stations. Note, however, that such constraint for the
relays can be included straightforwardly. In terms of system
implementation, the constraint (1c) requires the sources to be
coordinated in order to share the power resource.

It can be seen that the set of linear inequality constraints
with positive variables in the optimization problem (1a)–
(1d) is compact and nonempty. Hence, the problem (1a)–
(1d) is always feasible. Moreover, since the objective function
mini=1,...,M γi is an increasing function of the allocated pow-
ers PSi and PRSi

, the inequality constraints (1b), (1c) must

be met with equality at optimality when P ≤ ∑M
i=1 Pmax

Si
.

Moreover, when P >
∑M

i=1 Pmax
Si

, the inequality constraints
(1b), (1d) must be met with equality at optimality. It can be
observed that while the performance of user i depends only
on the allocated powers PSi and PRSi

, the performance of all
users interact with each other via shared and limited power
resource at the relays and the sources. Therefore, proper power
allocation among users is necessary to maximize a specific
criterion on the system performance.8

B. Power Minimization Based Allocation

In wireless networks, power allocation can help to achieve
the minimum QoS and low power consumption for users.
Commonly, to improve the link performance, the source can
transmit at its maximum available power which causes itself
to run out of energy quickly. Fortunately, by taking into
consideration the channel qualities, relative QoS requirements
of users and optimal power allocation at the relays, sources
might not always need to transmit at their largest power.
Therefore, sources save their power and prolong its lifetime.
Since the relays usually have much less severe energy con-
straints, resource allocation in relay networks can exploit the

8Resource allocation in a multi-user network is not as simple as allocating
resources for each user individually, albeit orthogonal transmissions are
assumed.
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available power at the relays to save power at the energy-
limited source nodes. One of the most reasonable design
objectives is the minimization of the maximum transmit power
over all sources. Subject to the SNR requirements for each
user, the resulting optimization problem can be posed as

min
PSi

, PRSi

max
i=1,...,M

PSi (2a)

subject to: γi ≥ γmin
i , i = 1, . . . , M (2b)

The constraints (1b), (1d) (2c)

where γmin
i is the threshold SNR for ith user.9 However, there

are applications where the total power is of concern, e.g., when
the sources share a common power pool as in the case of a
base-station (or access point, access node) transmitter, or in an
energy-aware system in which energy consumption and related
emission are more related to total power than individual peak
power. In such applications, minimizing the total power, i.e.,
minPSi

, PRSi

∑M
i=1 PSi , can be a more appropriate objective

since it is expected to provide a solution with lower sum
power. Moreover, a weighted sum of powers may be also
considered to cover the general case of non-homogeneous
users.

It can be observed that at optimality, the inequality con-
straints (2b) and (1b) in (2c) must be met with equality. This is
because γi is an increasing function of PSi and PRSi

. In order
to minimize PSi , γi and PRSi

must attain their minimum and
maximum values, respectively. Note that we have implicitly
assumed in (2a)–(2c) that none of the sources needs to transmit
more than Pmax

Si
at optimality.

C. Throughput Maximization Based Allocation

The max-min SNR based allocation improves the system
performance by improving the performance of the worst
user. On the other hand, it is well-known that the max-min
fairness among users is associated with a loss in the network
throughput, i.e., the users sum rate. For some applications
which require high data rate transmission from any user,
it is preferable to allocate power to maximize the network
throughput. Users with “good” channel quality can transmit
“faster” and users with “bad” channel quality can transmit
“slower”. Moreover, the network throughput, in the case of
perfect CSI and optimal power allocation, defines the upper
bound on the system achievable rates. Given the SNR γi of
user i, the data rate Ri can be written as a function of γi as

Ri =
1
T

log2(1 + Kγi) ≈ 1
T

log2(Kγi)

where T is the symbol period which is assumed to be equal
to 1 for brevity, K = −ζ1/ ln(ζ2BER), BER is the target
bit error rate, and ζ1, ζ2 are constants dependent on the
modulation scheme [22]. Note that we have approximated
1+Kγi as Kγi which is reasonable when Kγi is much larger
than 1. For notational simplicity in the rest of the paper, we
set K = 1. Then, the aggregate throughput for the system can

9We assume that the threshold γmin
i is not larger than the maximum

achievable SNR for user i as previously discussed.
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Fig. 1. SNR versus allocated power at the relay node (source powers are
fixed and equal).

be written as [16]

R =
M∑
i=1

Ri ≈ log2

[M∏
i=1

γi

]
.

The power allocation problem to maximize the network
throughput can be mathematically posed as

max
PSi

, PRSi

log2

[ M∏
i=1

γi

]
(3a)

subject to: The constraints (1b), (1c), (1d). (3b)

Therefore, in the high SNR region, maximizing network
throughput can be approximately replaced by maximizing
the product of SNRs.10 Here, we have assumed that there
is no lower limit constraint.11 At optimality, the inequality
constraints (1b), (1c) in (3b) of the problem (3a)–(3b) must
be met with equality when P ≤∑M

i=1 Pmax
Si

. Moreover, when
P >

∑M
i=1 Pmax

Si
, the inequality constraints (1b), (1d) must

be met with equality at optimality. Similar to the previous
problems, this can be explained using the monotonicity of the
objective function (3a).

Note that the throughput maximization based power allo-
cation (3a)–(3b) does not penalize users with “bad” channels
and favor users with “good” channels. This is different from
the scenario when network throughput maximization is used
as a criterion for power allocation in cellular networks where
some users are prevented from transmitting data [16]. However
in our case, as the SNR γi for a particular user i is con-
cave increasing function of allocated powers, the incremental
change in SNR is smaller for larger transmit power. In Fig. 1,
we plot the SNRs versus allocated power at the relays when
source powers are fixed and equal. It can be seen that instead

10Note, however, that in the low SNR region, the approximation of 1 + γi

by γi does not hold satisfactorily, and therefore, will not give accurate results.
11Such constraint for each user can be, however, easily incorporated in the

problem.
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of allocating more power to the users with “good” channel
conditions at high SNR, the proposed scheme allocates power
to the users with “bad” channel conditions at low SNR. It
results in better improvement in the sum throughput of the
network. This explains why the performance of the users with
“bad” channel conditions is not severely affected. This fact is
also confirmed in the simulation section.

IV. POWER ALLOCATION IN RELAY NETWORKS VIA GP

GP is a well-investigated class of nonlinear, nonconvex
optimization problems with attractive theoretical and com-
putational properties [15], [16]. Since equivalent convex re-
formulation is possible for a GP problem, there exist no
local optimum points but only global optimum. Moreover, the
availability of large-scale software solvers makes GP more
appealing.

A. Max-min SNR Based Allocation

Introducing a new variable t, we can equivalently rewrite
the optimization problem (1a)–(1d) as follows

min
PSi

, PRSi
, t≥0

1
t

(4a)

subject to:
PSiPRSi

ηiPSi + αiPRSi
+ βi

≥ t, i = 1, . . . , M(4b)

The constraints (1b), (1c), (1d). (4c)

The objective function in the problem (4a)–(4c) is a mono-
mial function. Moreover, the constraints in (4b) can be eas-
ily converted into posynomial constraints. The constraints
(1b), (1c), (1d) are linear on the power variables, and thus, are
posynomial constraints. Therefore, the optimization problem
(4a)–(4c) is a GP problem.

B. Power Minimization Based Allocation

In this case, by using an extra variable t, the objective can
be recast as monomial t with monomial constraints PSi ≤ t.
The constraints can be also written in the form of posynomials.
Therefore, the power minimization based allocation is a GP
problem.

C. Throughput Maximization Based Allocation

A simple manipulation of the optimization problem (3a)–
(3b) gives

min
PSi

, PRSi

1∏M
i=1 γi

(5a)

subject to: The constraints (1b), (1c), (1d). (5b)

Each of the terms 1/γi is a posynomial in PSi , PRSi
and

the product of posynomials is also a posynomial. Therefore,
the optimization problem (5a)–(5b) belongs to the class of
GP problems.12 As maximizing aggregate throughput can be
unfair to some users, a weighted sum of data rates, i.e.,

12Note that the high operating SNR region is assumed. If medium or low
SIR regions are assumed, the approximation 1+γi by γi may not be accurate.
In this case, successive convex approximation method as in [16] can be used.
However, it is outside of the scope of this paper.

∑M
i=1 wiRi where wi is a given weight coefficient for user i,

can be used as the objective function to be maximized. Using
some manipulations, the resulting optimization problem can
be reformulated as a GP problem as well.

We have shown that the three aforementioned power al-
location schemes can be reformulated as GP problems. The
proposed optimization problems with distinct features of re-
laying model are mathematically similar to the ones in [16]
for conventional cellular network. However, the numerator and
denominator of the SNR expression for each user considered
in [16] are linear functions of the power variables which is
not the case in our work.

V. JOINT ADMISSION CONTROL AND POWER ALLOCATION

It is well-known that one of the important resource man-
agement issues is the determination of which users to es-
tablish connections. Then, radio resources are allocated to
the connected users in order to ensure that each connected
user has an acceptable signal quality [23]. Since wireless
systems are usually resource-limited, they are typically unable
to meet users’ QoS requirements that need to be satisfied.
Consequently, users are not automatically admitted and only
certain users can be served. Our admission control algorithm
determines which users can be admitted concurrently. Then,
the power allocation is used to minimize the transmit power.

A. Revised Power Minimization Based Allocation

The problem formulation (2a)–(2c) can be shown to be fea-
sible as long as γmin

i , i = 1, . . . , M is less than the maximum
achievable value. This is because it has been assumed that
the sources are able to transmit as much power as possible
to increase their SNRs. This approach is impractical for some
wireless applications with strictly limited total transmit power,
for instance, power limitation of the base station in downlink
transmission. The power minimization based problem incor-
porating the power constraint can be written as

min
PSi

, PRSi

M∑
i=1

PSi (6a)

subject to:
M∑
i=1

PSi ≤ P (6b)

The constraints (2b), (2c). (6c)

Note that the objective function in the above problem is
sufficiently general13, and it aims at minimizing the overall
energy consumed by the group of sources. It requires the co-
operation among sources. Such cooperation can be organized
in different ways. The simplest example is the presence of
only one source (a base station in downlink transmission) with
multiple antennas. Also note that in some applications, the
constraint (6b) can be effectively excluded from the problem
formulation (6a)–(6c) by setting P ≥ ∑M

i=1 Pmax
Si

. Since the
objective function is a sum of powers, some sources may need
to transmit more power than the others at optimality. Note that

13A more general objective function could be the weighted sum, i.e.,∑M
i=1 wiPSi

where wi is a weight coefficient for source i.
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for some applications it can be more appropriate to consider
the following alternative problem formulation

min
PSi

, PRSi

max
i=1,...,M

PSi (7a)

subject to: The constraints (6b), (6c). (7b)

Our methodology can be straightforwardly adapted to cover
the above formulation as well. However, due to space limita-
tion, we skip the details here.

There are instances when the optimization problem (6a)–
(6c) becomes infeasible. For example, when SNR targets
γmin

i are too high, or when the number of users M is large.
However, the core reason for infeasibility is the power limits
of both the relays and/or the sources. A practical implication
of the infeasibility is that it is impossible to serve (admit) all
M users at their desired QoS requirements. Some approaches
to the infeasible problem can be however used. For instance,
some users can be dropped or the SNR targets could be
relaxed, i.e., made smaller. We investigate the former scenario
and try to maximize the number of users that can be served
at their desired QoS.

B. Mathematical Framework for Joint Admission Control and
Power Minimization Problem

Following the methodology developed in [18], the joint
admission control and power allocation problem can be
mathematically stated as a 2-stage optimization problem. All
possible sets of admitted users S0, S1, . . . (can be only one
or several sets) are found in the first stage by solving the
following optimization problem

arg max
S⊆{1,...,M}, PSi

, PRSi

|S| (8a)

subject to: γi ≥ γmin
i , i ∈ S (8b)

The constraints (6b), (2c) (8c)

where |S| denotes the cardinality of S. We should note that
although the sets S0, S1, . . . contain different users, they have
the same cardinality.

Given each set S0, S1, . . . of admitted users, the transmit
power is minimized in the second stage. The corresponding
optimization problem can be written, for example, for the set
Sk as

P opt
k = argmin

PSi
, PRSi

∑
i∈Sk

PSi (9a)

subject to: γi ≥ γmin
i , i ∈ Sk (9b)

The constraints (6b), (2c). (9c)

The optimal set of admitted users Sk is the one among the
sets S0, S1, . . . which requires minimum P opt

k . Alternatively,
the joint admission control and power minimization can be
regarded as a bilevel programming problem. The admission
control problem is combinatorially hard, and therefore, is
more difficult. This is because the number of possible sets
of admitted users grows exponentially with M . Once the sets
of admitted users are determined, the power minimization
problem is just the problem (2a)–(2c). Greedy algorithm(s)
can be used to solve the first stage. However, it is noted

that there may be many sets of admitted users with the same
maximal cardinality and deriving optimal greedy algorithm(s)
is obviously a difficult problem. Due to its combinatorial
hardness, the joint admission control and power allocation
problem admits high complexity for practical implementation.
In the following section, we propose an efficient algorithm to
sub-optimally solve (8a)–(8c) and (9a)–(9c) with significantly
reduced complexity.

VI. PROPOSED ALGORITHM

A. A Reformulation of Joint Admission Control and Power
Allocation Problem

Optimal admission control (8a)–(8c) involves exhaustively
solving all subsets of users that is NP-hard. Therefore, a better
way of solving the problem of joint admission control and
power allocation is highly desirable. The admission control
problem (8a)–(8c) can be mathematically recast as follows

max
si∈{0,1}, PSi

, PRSi

M∑
i=1

si (10a)

subject to: γi ≥ γmin
i si, i = 1, . . . , M (10b)

The constraints (6b), (2c) (10c)

where the indicator variables si, i = 1, . . . , M , i.e, si =
0, si = 1 means that user i is not admitted, or otherwise,
respectively. The following theorem is in order.

THEOREM 1: The aforementioned 2-stage optimization
problem (8a)–(8c) and (9a)–(9c) is equivalent to the following
1-stage optimization problem

max
si∈{0,1}, PSi

, PRSi

ε

M∑
i=1

si − (1 − ε)
M∑
i=1

PSi (11a)

subject to: γi ≥ γmin
i si, i = 1, . . . , M (11b)

The constraints (6b), (2c) (11c)

where ε is some constant and is chosen such that P/(P +1) <
ε < 1.

PROOF: The proof is a 2-step process. In the first step,
we prove that the solution of the one-stage problem (11a)–
(11c) and that of the admission control problem (10a)–(10c)
will both give the same maximum number of admitted users.
Suppose that S+

0 , P+
Si

, P+
RSi

is (one of) the optimal solutions
of the admission control problem (10a)–(10c) with optimal
value |S+

0 | = n+.14 Similarly, suppose that S∗
0 , P ∗

Si
, P ∗

RSi
is

the optimal solution of the problem (11a)–(11c) and |S∗
0 | =

n∗. Thus, the optimal value of (11a)–(11c) is L∗ = εn∗−(1−
ε)
∑M

i=1 P ∗
Si

. We show that n∗ = n+ by using contradiction.
Let us suppose that n∗ < n+. Since the problems (10a)–

(10c) and (11a)–(11c) have the same set of constraints, and
thus, the same feasible set, the set S+

0 , P+
Si

, P+
RSi

is also a
feasible solution to (11a)–(11c) with the objective value L+ =
εn+ − (1 − ε)

∑M
i=1 P+

Si
. We have

L+−L∗ = ε(n+ − n∗) + (1 − ε)

(
M∑
i=1

P ∗
Si

−
M∑
i=1

P+
Si

)

≥ ε − (1 − ε)P > 0. (12)

14We should note that n+ is some unknown but it is a fixed number.
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The first inequality corresponds to the assumption that n+ −
n∗ ≥ 1 and the fact that∣∣∣∣∣

M∑
i=1

P ∗
Si

−
M∑
i=1

P+
Si

∣∣∣∣∣ ≤ P.

The latter fact holds true because
∑M

i=1 P ∗
Si

≤ P and∑M
i=1 P+

Si
≤ P . The second inequality is valid due to the

choice of P/(P + 1) < ε < 1. This obviously contradicts
the assumption that S∗

0 , P ∗
Si

, P ∗
RSi

is the optimal solution of
(11a)–(11c). Therefore, we conclude that n∗ cannot be less
than n+. On the other hand, we also have S∗

0 , P ∗
Si

, P ∗
RSi

is a feasible solution of (10a)–(10c). Therefore, the optimal
value of (10a)–(10c) is at least equal to |S∗

0 | = n∗, i.e.,
n+ ≥ n∗. By the virtues of two mentioned facts, we conclude
that n∗ = n+, or equivalently, the solution of the one-stage
optimization problem (11a)–(11c) gives the same number of
admitted users as that of the solution of the admission control
problem (10a)–(10c).

In the second step, we prove that the user set obtained
by solving (11a)–(11c) is the optimal set of admitted users
with minimum transmit power. Again, suppose that S†

0, P †
Si

,
P †

RSi
is another feasible solution to (11a)–(11c) such that

|S†
0| = |S∗

0 | = n∗ with the objective value L† = εn∗ −
(1− ε)

∑M
i=1 P †

Si
. Since S∗

0 , P ∗
Si

, P ∗
RSi

is the optimal solution
of (11a)–(11c), we must have L† < L∗, or equivalently,∑M

i=1 P ∗
Si

<
∑M

i=1 P †
Si

. Therefore, among sets which have the
same maximum number of admitted users, the one obtained
by solving (11a)–(11c) requires the minimum transmit power.
This completes the proof. �

Careful observation reveals some insights into the optimiza-
tion problem (11a)–(11c) which is in rather similar form as
the one in [18]. For example, it is similar to a multi-objective
optimization problem, i.e., maximization of the number of
admitted users and minimization of the transmit power, with
ε being the priority for the former criterion. Therefore, it is
reasonable to set ε large to maximize number of admitted users
as a priority. The formulation (11a)–(11c) provides a compact
and easy-to-understand mathematical framework for the joint
optimal admission control and power allocation. However, as
well as the original 2-stage problem, the formulation (11a)–
(11c) is NP-hard to solve. Moreover, it is easy to see that the
optimization problem (11a)–(11c) is always feasible. This is
due to the fact that no users are admitted in the worst case,
i.e., si = 0, i = 1, . . . , M .

To this end, we should mention that the optimization
problem (11a)–(11c) is extremely hard, if possible, to solve.
It belongs to the class of nonconvex integer optimization
problems. Therefore, we next propose a reduced-complexity
heuristic algorithm to perform joint admission control and
power allocation. Albeit theoretically sub-optimal, its perfor-
mance is remarkably close to that of the optimal solution for
most of the testing instances (see Section VII).

B. Proposed Algorithm

The following heuristic algorithm can be used to solve
(11a)–(11c).

• Step 1. Set S := {Si | i = 1, . . . , M}.

Source 1

Source M

Relay 3

Relay 1

Y
-A

xi
s

X-Axis

200 m

200 m0 50 m 150 m

Relay 2

Source 2

Source 3

Destination M

Destination 2

Destination 3

Destination 1

Fig. 2. A wireless relay system.

• Step 2. Solve GP problem (6a)–(6c) without the con-
straint (6b) for the sources in S. Let P ∗

Si
, P ∗

RSi
denote

the resulting power allocation values.
• Step 3. If

∑
Si∈S P ∗

Si
≤ P , then stop and P ∗

Si
,

P ∗
RSi

being power allocation values. Otherwise, user
Si with largest required power value, i.e., Si =
arg maxSi∈S

{
P ∗

Si

}
is removed from S and go to step

2.

We can see that after each iteration, either the set of
admitted users and the corresponding power allocation levels
are determined or one user is removed from the list of most
possibly admitted users. Since there are M initial users,
the complexity is bounded above by that of solving M GP
problems of different dimensions. It worths mentioning that
the proposed reduced complexity algorithm always returns one
solution.

VII. SIMULATION RESULTS

Consider a wireless relay network as in Fig. 2 with 10 users
and 3 relays distributed in a two-dimensional region 200m×
200m. The relays are fixed at coordinates (100,50), (100,100),
and (100,150). The ten source nodes and their corresponding
destination nodes are deployed randomly in the area inside
the box areas [(0, 0), (50, 200)] and [(150, 0), (200, 200)], re-
spectively. In our simulations, each source is assisted by a
random (and then fixed) relay. For simulation simplicity, we
assume that there is no microscopic fading and the gain for
each transmission link is computed using the path loss model
as a = 1/d where d is the Euclidean distance between two
transmission ends.15 The noise power at the receiver ends is
assumed to be identical and equals to N0 = −50 dB. Although
each relay node may assist different number of users, they
are assumed to have the same maximum power level Pmax

Rj
.

Similarly, all users are assumed to have equal minimum SNR
thresholds γmin. We have used software package [24] for
solving convex programs in our simulations.

15If fading is present, the proposed techniques can also be straightforwardly
applied assuming that the instantaneous channel fading gains are known and
not varied during the time required to compute the solutions. In this case, the
average performance computed over a long time interval for different sets of
channel fading gains can serve as a performance measure.
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Fig. 3. Max-min SNR based allocation: data rate versus Pmax
Rj

.

A. Power Allocation without Admission Control

1) Max-min SNR based allocation: Figs. 3 and 4 show the
minimum rate of the users and the network throughput when
the maximum power levels of the relays Pmax

Rj
and sources

P are varied. The performance of the equal power allocation
(EPA) scheme is also plotted. In this case, the power is allo-
cated equally among all sources, i.e., PSi = P/10, ∀Si and
each relay distributes power equally among all relayed users.
For P = 50 (see Fig. 3), the optimal power allocation (OPA)
scheme achieves about 0.8 bits performance improvement over
the EPA scheme for the worst user data rate. The performance
improvement of both schemes is higher when Pmax

Rj
is small

(less than 30). The EPA scheme provides a slight performance
improvement for the worst user(s) for Pmax

Rj
≥ 35. However,

the OPA scheme is able to take advantage from larger Pmax
Rj

.
This demonstrates the effectiveness of OPA scheme in general
and our proposed approach in particular. In Fig. 4, we fix
Pmax

Rj
= 50. It can be seen that the OPA scheme also

outperforms the EPA scheme. The improvement is about
0.8 bits and increases when P increases. In both scenarios,
it can be seen that since our objective is to improve the
performance of the worst user(s), there is a loss in the network
throughput. This confirms the well-known fact that achieving
max-min fairness among users usually results in performance
loss for the whole system.

2) Power minimization based allocation: Figs. 5 and 6
display the total transmit power and the maximum power
of all users for two scenarios, where in the first scenario
the objective is to attain a minimum SNR γmin with fixed
Pmax

Rj
= 50, while in the second scenario it is assumed that

Pmax
Rj

is varied with fixed γmin = 10 dB. We plot the results
for both the minimization of the maximum power based power
allocation (min-max scheme) and the minimization of sum
power based power allocation (minimum sum power scheme).

For the first scenario, the OPA minimum sum power scheme
allocates less power than that of the EPA and OPA min-max
schemes. Moreover, when γmin ≥ 18 dB, the EPA scheme can
not find a feasible power allocation (in fact, suggests negative
power allocation) which is represented by the weird part in the
EPA curve. It is because the threshold γmin ≥ 18 dB exceeds

10 20 30 40 50 60 70 80 90 100
2

3

4

5

6

7

Transmit Power

W
or

st
 U

se
r D

at
a 

Ra
te

 

 

10 20 30 40 50 60 70 80 90 100
30

35

40

45

50

55

60

65

Transmit Power

N
et

w
or

k 
Th

ro
ug

hp
ut

 

 

Optimal Power Allocation
Equal Power Allocation

Optimal Power Allocation
Equal Power Allocation

Fig. 4. Max-min SNR based allocation: data rate versus P .

5 10 15 20
0

100

200

300

400

γ
i
 min

Su
m

 T
ra

ns
m

it 
Po

w
er

 

 

5 10 15 20
0

10

20

30

40

50

γ
i
 min

M
ax

im
um

 P
ow

er

 

 

Optimal Power Allocation
Max−min Power Allocation

Optimal Power Allocation
Min−max Power Allocation
Equal Power Allocation

Fig. 5. Power minimization based allocation: transmit power versus γmin
i .

the maximum value of γi for some users as discussed in Sec-
tion II. We can see that by appropriate power distribution at the
relays, OPA scheme can find power allocation to achieve larger
target SNR γmin. This further demonstrates the advantages of
our proposed approach over the EPA scheme. Moreover, the
OPA min-max scheme needs significantly larger total transmit
power than the OPA minimum sum power scheme. Therefore,
the latter scheme is preferable when applicable.

For the second scenario, the OPA minimum sum power
scheme again requires less total power than that of the EPA
and OPA min-max scheme, especially when Pmax

Rj
is small.

The transmit power required by the max-min scheme is sig-
nificantly larger than that required by the other two schemes.
It can be observed that as there is more available Pmax

Rj
, less

sum power is required to achieve a target SNR.
3) Throughput maximization based allocation: In the last

example, we use the OPA to maximize the network through-
put. Fig. 7 shows the performance of our proposed approach
versus Pmax

Rj
when P = 50. The OPA scheme outperforms the

EPA for all values of Pmax
Rj

. It is noticeable that OPA scheme
achieves better performance in terms of both worst user data
rate and network throughput. Comparing with the results in
Figs. 3 and 4, we can see the tradeoff between achieving
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.

fairness and sum throughput.

B. Joint Admission Control and Power Allocation

In this section, we provide several testing instances to
demonstrate the performance of the proposed admission con-
trol scheme. For such purpose, the performance of the optimal
admission control is used as benchmark results.16 The conve-
nient and informative method of representing results as in [18]
is used.

In Tables I and II, Pmax
Rj

are taken to be equal to 50 and
20, respectively while P is fixed at P = 50. Different values
of γmin

i are used. To gain more insights into the optimal
admission control and power allocation problem, all feasible
subsets of users which have maximum possible number of
users are also provided in Table I.17 The optimal subset of
users is the one which requires the smallest transmit power.
The running times required for the optimal exhaustive search
based algorithm and the proposed algorithm are also shown.

16Optimal admission control is done by solving the problem (8a)–(8c) for
all possible combinations of users.

17In Tables II and III, only the optimal set of users and its corresponding
transmit power are provided.

TABLE I
P = 50, Pmax

Rj
= 50, RUNNING TIME IN SECONDS

Enumeration Proposed Algorithm
SNR 17 dB 17 dB
# users served 8 8
Users served 1, 2, 4, 5, 7, 8, 9, 10 1, 2, 4, 5, 7, 8, 9, 10
Transmit power 44.8083 44.8083
Users served 1, 2, 3, 4, 5, 8, 9, 10 -
Transmit power 48.1041 -
Users served 1, 2, 3, 4, 7, 8, 9, 10 -
Transmit power 49.2948 -
Users served 1, 2, 4, 5, 6, 8, 9, 10 -
Transmit power 48.7522 -
Users served 1, 2, 4, 6, 7, 8, 9, 10 -
Transmit power 48.6768 -
Running time 231.68 11.77

SNR 18 dB 18 dB
# users served 7 7

Users served 1, 2, 4, 5, 8, 9, 10 1, 2, 4, 7, 8, 9, 10
Transmit power 47.0270 47.2129
Users served 1, 2, 3, 4, 8, 9, 10 -
Transmit power 49.9589 -
Users served 1, 2, 4, 7, 8, 9, 10 -
Transmit power 47.2129 -
Users served 1, 4, 5, 7, 8, 9, 10 -
Transmit power 48.9124 -
Running time 683.96 14.66

SNR 19 dB 19 dB
# users served 6 6
Users served 1, 2, 4, 8, 9, 10 1, 2, 4, 8, 9, 10
Transmit power 44.9402 44.9402
Users served 1, 4, 7, 8, 9, 10 -
Transmit power 49.4305 -
Running time 1411.23 17.48

SNR 20 dB 20 dB
# users served 5 5
Users served 1, 4, 8, 9, 10 1, 4, 8, 9, 10
Transmit power 44.9199 44.9199
Users served 1, 2, 4, 8, 10 -
Transmit power 46.3774 -
Users served 1, 2, 8, 9, 10 -
Transmit power 46.0823 -
Users served 2, 4, 8, 9, 10 -
Transmit power 46.0185 -
Running time 2170.6 18.95

As we can see, our proposed algorithm determines exactly the
optimal number of admitted users and the users themselves in
all cases except for the case when Pmax

Rj
= 20, γmin

i = 19 dB.
The transmit power required by our proposed algorithm is
exactly the same as that required by the optimal admission
control using exhaustive search. However, the complexity in
terms of running time of the former algorithm is much smaller
than that of the latter. This makes the proposed approach
attractive for practical implementation. Moreover, it is natural
that when γmin

i increases, less users are admitted with a fixed
amount of power. For example, when Pmax

Rj
= 50, eight users

and six users are admitted with SNR γmin
i = 17 dB and 19 dB,

respectively. Similarly, when more power is available, more
users are likely to be admitted for a particular γmin

i threshold.
For instance, when γmin

i = 19 dB, six and four users are
admitted with Pmax

Rj
= 50 and 20, respectively.

Table III displays the performance of the proposed algo-
rithm when Pmax

Rj
= 50 and P = 20. The proposed algorithm

is able to decide correctly (optimally) which users should be
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TABLE II
P = 50, Pmax

Rj
= 20

Enumeration Proposed Algorithm
SNR 17 dB 17 dB
# users served 7 7
Users served 1, 2, 4, 5, 8, 9, 10 1, 2, 4, 5, 8, 9, 10
Transmit power 42.1896 42.1896

SNR 19 dB 19 dB
# users served 4 3
Users served 1, 4, 8, 10 8, 9, 10
Transmit power 29.6160 19.7388

SNR 21 dB 21 dB
# users served 3 3
Users served 4, 8, 10 8, 9, 10
Transmit power 33.0519 46.0857

TABLE III
P = 20, Pmax

Rj
= 50

Enumeration Proposed Algorithm
SNR 17 dB 17 dB
# users served 4 4
Users served 1, 8, 9, 10 1, 8, 9, 10
Transmit power 14.7282 14.7282

SNR 19 dB 19 dB
# users served 3 3
Users served 8, 9, 10 8, 9, 10
Transmit power 14.9059 14.9059

SNR 21 dB 21 dB
# users served 2 2
Users served 8, 10 8, 10
Transmit power 10.1811 10.1811

admitted and assign an optimal amount of power for each
admitted user. As before, less users are admitted when the
required SNR threshold is larger. Moreover, as P increases,
more users can be admitted. For example, when Pmax

Rj
= 50

and γmin
i = 17 dB, four and eight users are admitted for

P = 20 and P = 50, respectively.

VIII. CONCLUSIONS

In this paper, we have proposed the power allocation
schemes for wireless multi-user AF relay networks. Partic-
ularly, we have presented three power allocation schemes to
i) maximize the minimum SNR among all users; ii) minimize
the maximum transmit power over all sources; iii) maximize
the network throughput. Although the problem formulations
are nonconvex, they were equivalently reformulated as GP
problems. Therefore, obtaining optimal power allocation can
be done efficiently via convex optimization techniques. Sim-
ulation results demonstrate the effectiveness of the proposed
approaches over the equal power allocation scheme. Moreover,
since it may not be possible to admit all users at their
desired QoS demands due to limited power resource, we
have proposed a joint admission control and power allocation
algorithm which aimed at maximizing the number of users
served and minimizing the transmit power. A highly efficient
GP heuristic algorithm is developed to solve the proposed
nonconvex and combinatorially hard problem. In this paper,
the GP problems are solved in a centralized manner using
the highly efficient interior point methods. However, whether

distributed power allocation via GP is possible is an interesting
research area.
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