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Envelope and Phase Distribution of Two Correlated Gaussian Variables
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Abstract—Probability density functions (pdf’s) are derived for
the phase and amplitude (envelope) of the complex gain X + jY
(j =

√−1), where X and Y are two correlated non zero-mean
Gaussian random variables. The pdf of the amplitude is derived
as an infinite series, but reduces to a closed-form expression when
the means are zero. The classical Rayleigh and Rician pdf’s turn
out to be special cases of the derived pdf. This pdf is used to
analyze the error performance of non-coherent binary frequency
shift keying (BFSK) with in-phase/quadrature(I/Q) imbalance
over an additive white Gaussian noise (AWGN) channel. The
resulting bit error rate (BER) expression is derived as an infinite
series. The analytical expressions are validated by simulation, and
the I/Q imbalance related performance degradation is quantified.
Convergence of the PDF series and the BER series is established.

Index Terms—Characteristic function (chf), correlated Gaus-
sian, frequency shift keying, in-phase/quadrature imbalance,
probability density function (pdf), Rayleigh density.

I. INTRODUCTION

WHAT is the probability density function (pdf) of the
amplitude (envelope) of the complex gain X + jY

(j =
√−1), where X and Y are two correlated non zero

mean Gaussian random variables? Most wireless engineers are
familiar with the answer to a special case of this question; i.e,
when X and Y have zero correlation, one obtains the classical
Rayleigh pdf or the Rician pdf, which are of fundamental
importance not only in wireless communications, but also in
many other fields of research. The pdf of the phase of the
complex gain is of interest too.

Moreover, the pdf of
√
X2 + Y 2 is of interest as a gen-

eralization of the classical Rayleigh and Rician pdfs. It has
application in in-phase/quadrature(I/Q) imbalance problems,
which commonly occur in radio frequency receivers that
employ analog quadrature down mixing, when there is a loss
of orthogonality between the inphase and quadrature phase
signals generated by the local oscillator. The effects of I/Q
imbalance and the compensation methods are addressed in
[1]–[3].
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Beckmann [4] has addressed the derivation of this pdf. He
notes that a pair of correlated variables can be transformed into
a pair of independent ones by rotating through an angle. Based
on this fact, he derives the pdf for the case of an independent
but not identically distributed X and Y . As a result, the pdf [4,
4.6-28] does not include the correlation coefficient explicitly.
In [5] Pawla et al. introduced the distribution of phase angle
between two vectors perturbed by correlated Gaussian noise.
The Pawla F function has been used to analyze the error
performance of coherent M-ary phase shift keying (MPSK).
Reference [6] derived a finite range integral expression for
the symbol error rate (SER) of MPSK impaired with I/Q
imbalance. The pdf expressions of the difference of phase
angles in [5] were further modified to give new forms of
expressions in [7]. A more compact set of equations involving
Craig form of finite range integrals were derived in [8] for
the SER performance of coherent MPSK modulation with I/Q
imbalance. Vitthaladevuni and Alouini [9] introduced exact
analytical bit error rate expressions of generalized hierarchical
PSK constellations with imperfect phase or timing synchro-
nization over an AWGN channel using Pawla F functions.
More general Nakagami-m distribution results are given in
[10], [11].

The error performance of non-coherent detection of binary
orthogonal, nonorthogonal signals is analyzed in [12], partially
coherent detection in [13] and M-ary FSK in [14]. However,
references [12]–[14] assume ideal I/Q balance. The conven-
tional analysis of envelope detection of M-ary orthogonal
signaling also assume an ideal I/Q balance. More realistic
analysis of such systems requires that I/Q imbalance is fully
accounted for. The pdf expressions derived in this paper may
be useful in those problems.

Therefore, this letter derives the pdf’s of the phase and
amplitude (envelope) of the complex gain X + jY , where X
and Y are a pair of correlated Gaussian random variables.
The pdf of the amplitude is derived as an infinite series,
but reduces to a closed-form expression when the means are
zero. The classical Rayleigh and Rician pdf’s turn out to
be special cases of the derived pdf. The results are applied
to analyze the error performance of binary frequency shift
keying (BFSK) with in-phase/quadrature(I/Q) imbalance over
an additive white Gaussian noise (AWGN) channel. The
resulting bit error rate (BER) expression is derived as an
infinite series. The analytical expressions are validated by
simulation, and the performance degradation due to the I/Q
imbalance is quantified. Convergence of the PDF series and
the BER series is established.

The paper is organized as follows. Section II derives the
infinite series representations for the phase and amplitude
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(envelope) of the complex gain X + jY , where X and Y
are two correlated non zero-mean Gaussian random variables.
Special cases of the general results are identified. In Section
III, the BER performance of non-coherent BFSK in AWGN
is analyzed. Section IV summarizes the main results of the
paper. The derivation of the infinite series and convergence
results are presented in the appendices.

II. PDF’S OF THE AMPLITUDE AND PHASE OF A PAIR OF

CORRELATED GAUSSIAN RANDOM VARIABLES

The key results on the distributions of the envelope and
phase are now presented.

Theorem 1: Let X and Y be two real Gaussian random
variables with VAR[X ] = σ2

X ,VAR[Y ] = σ2
Y and mean values

E[X ] = μX and E[Y ] = μY . The correlation coefficient
between X and Y is ρ. The pdf of R =

√
X2 + Y 2 is given

by (1) and the distribution of Θ = tan−1
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,

erfc(z) = 2√
π

∫ ∞
z

exp
(−t2) dt is the complementary error

function, εn is the Neumann factor [15] (i.e., ε0 = 1 and

εn = 2 for all n = 1, 2, .....) and In(z) is the n-th order
modified Bessel function of the first kind.

Proof: See Appendix A.

The above envelope density function can easily be reduced
to [4, eq.4.6-28] when ρ = 0. Furthermore, the distribution
of phase generalizes most of the results given in the litera-
ture including [16, eq. D.105] (which can easily be derived
assuming ρ = 0 and μY = 0).

Corollary 1: Let X and Y be two real Gaussian random
variables with VAR[X ] = VAR[Y ] = σ2 and mean values
E[X ] = μX and E[Y ] = μY . The correlation coefficient
between X and Y is ρ. The pdf of R =

√
X2 + Y 2 is given

by
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.

Proof: Substituting σX = σY = σ in (1) and (2) gives
ψ = π/2, and (3) and (4) follow.

Corollary 2: Let X and Y be two real identical Gaussian
random variables with VAR[X ] = VAR[Y ] = σ2 and mean
values E[X ] = E[Y ] = μ. The correlation coefficient between
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X and Y is ρ. The pdf of R =
√
X2 + Y 2 is given by
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Proof: According to (3) φ = π
4 when μX = μY = μ.

Hence by substituting them in (3) gives (5).
Corollary 3: Let X and Y be two real identical Gaussian

random variables with VAR[X ] = VAR[Y ] = σ2 and mean
values E[X ] = E[Y ] = 0. The correlation coefficient between
X and Y is ρ. The pdf of R =

√
X2 + Y 2 is given by

hR(r)=
r exp
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√
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Proof: By substituting zero for μ in (5) and using I0(0) =
1, the result follows.

The cumulative distribution function (cdf) of R for the
case described in Theorem 1 can easily be derived with the
series expansion of each of the Bessel function terms in (1)
followed by term by term integration. Thus, the cdf of R is
obtained as given at the top of the page, where γ(a, z) =∫ z
0
ta−1 exp(−t)dt is the incomplete gamma function.

Note that the classical results for Rayleigh (i.e., when μX =
μY = 0, σX = σY = σ and ρ = 0) and Rician densities
(i.e., when ρ = 0 and σX = σY = σ with the Rician factor
K = μ2

X+μ2
Y

2σ2 ) are some special cases of (1).
Figure 1 depicts the theoretical pdf, gR(r) calculated with

(5) and the simulated values for different values of α (here,
without loss of generality, ρ = sinα) with μ = 1, σ2 = 1.

III. THE BER PERFORMANCE OF NON-COHERENT BFSK
WITH I/Q IMBALANCE

This section presents an illustrative application of the pre-
ceding results. Although only one application is considered
for brevity, potential others include performance analysis of
M -ary FSK under I/Q imbalance.

Consider a noncoherent BFSK system which employs two
carrier frequencies f1, f2 with f2 − f1 = 1

T , where T is
the bit duration. This minimum frequency difference criterion
ensures that the carriers are orthogonal [17]. Let us consider
the simplified block diagram of the BFSK receiver shown
in Fig. 2, where α represents the I/Q imbalance phase. For
simplicity, the I/Q imbalance phase angles are assumed to be
identical for both the carrier frequencies. The received signal
can be written as

r(t) =

√
2Eb
T

cos (2πfit+ ϕ) + n(t), i = 1, 2 (7)
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Fig. 1. The pdf of gR(r) for different values of ρ = sinα when μ = 1
and σ2 = 1.
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Fig. 2. Block diagram of the non-coherent BFSK receiver.

where ϕ is a random phase angle uniformly distributed over
[0, 2π), Eb denotes the energy per BFSK symbol and n(t)
denotes a white Gaussian noise process having the autocorre-
lation function Rn(τ) = N0

2 δ(τ). Without loss of generality,
we assume that f1 and f2 are equiprobable and that f1 is
transmitted. The sample values at the input to the envelope de-
tector as r11 =

√
Eb cosϕ+n11, r12 =

√
Eb sin (ϕ+ α)+n12

and r21 = n21, r22 = n22 where (n11, n12) and (n21, n22)
are independent Gaussian random pairs while the random
variables in each pair are jointly Gaussian with variance N0

2
and correlation coefficient ρ = sinα. An error occurs if√
r211 + r212 <

√
r221 + r222 or the normalized variables satisfy√

r211+r212√
N0/2

(= R1) <
√
r221+r

2
22√

N0/2
(= R2) [17]. Following [17],

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 17, 2009 at 13:45 from IEEE Xplore.  Restrictions apply. 



918 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 4, APRIL 2009

the conditional BER of BFSK can be expressed as

P (ε|ϕ) =
∫ ∞

0

∫ ∞

r1
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where fR1 (r1) can be written using (3) as (here μX =√
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where γb = Eb
N0

. Since a closed-form solution does not exist
for the inner integral in (8), an infinite series solution is sought.
Using the equivalent infinite series representation of modified
Bessel functions and [18, eq.3.351.2], the inner integral can
be written as
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By substituting (11) and (9) in (8) followed by the expansion
of Bessel function terms with equivalent infinite series and
term-by-term integration, the conditional BER is obtained as

P (ε|ϕ) =
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where η1 = 2k + 2p + n, η2 = 2p + 2n + l + q. The form
of conditional BER given in (12) is important in the sense
of obtaining the error rate expression in the absence of I/Q
imbalance. When the inphase and quadrature components are
phase shifted by π/2 (i.e., α = 0) the nested summations in
(12) degenerate into the following simple form
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2
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which can easily be integrated with respect to ϕ to obtain
the classical expression for BER of the noncoherent BFSK
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phase, (12) yields the BER as
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Now let us consider the integral in (14) which can be expressed
using (10) as
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with u, v = 0, 1, 2, .. and
(
m
n

)
denotes the binomial coefficient.

Here, the cos 2nβ and sin 2nβ terms have been expanded
using cosine and sine terms. The integral given in (16) can
further be decomposed using the binomial theorem into simple
integrals involving sine and cosine terms. However, this would
increase the number of summations and hence affect the
computational complexity. Taking this difficulty into account,
(15) and (16) in (14) and numerical integration techniques can
be used to find the exact BER values. This allows a tradeoff
between analytical tractability and numerical efficiency.

Next, our theoretical results are validated by using the
simulation results (Fig. 3). A noncoherent BFSK in AWGN
is simulated, and the numerical results based on (14) are
compared with the simulation results. A span of 10 dB is
selected along SNR axis and α = 0, π/10, π/8 for calculating
the theoretical results with (14). The degree of accuracy
depends on the number of terms used to truncate the infinite
series. Since the increase in either of the quantities γ or
α would increase the terms to be summed with (14), we
have selected SNR and α values mentioned above. We use a
minimum of 7, 13, 7, 7 and a maximum of 23, 13, 23, 23 terms
in each index of k, n, p, q respectively. Mathematica is used
to perform the numerical integrations given in (15). Fig. 3
shows that our analytical results agree well with the simulation
results. The performance degradation due to the I/Q imbalance
increases with the increase of mismatch, as to be expected.

IV. CONCLUSION

This letter has derived pdf expressions for the phase and
amplitude (envelope) of the complex gain X + jY , where X
and Y are two correlated non zero mean Gaussian random
variables. The classical Rayleigh and Rician pdf’s are special
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Fig. 3. BER performance of the non-coherent BFSK receiver with I/Q
imbalance.

cases of the derived pdf. Convergence results have been estab-
lished. The pdf has been used to analyze the error performance
of BFSK with I/Q imbalance over an AWGN channel. This
analysis can also be extended to M -ary FSK (M > 2).
The analytical expressions were validated by simulation. The
pdf expressions may also be useful for other I/Q imbalance
problems and/or correlated Gaussian noise problems.

APPENDIX A
PROOF OF THEOREM 1

Using the classical rectangular-to-polar coordinate transfor-
mation (i.e., x = r cos θ, y = r sin θ) the joint pdf of two
correlated Gaussian random variables X,Y having parameters
μX , μY , σ

2
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2
Y , ρ with |ρ| < 1 can be written as
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fined in Section II. To find the marginal pdf of R, (17) must
be integrated with respect to θ ∈ [0, 2π). By observing the
periodicity of the composite trigonometric expression within
the exponential term in (17) and using the following identity
[19]

exp (z cos θ) =
∞∑
n=0

εnIn(z) cosnθ, (18)

R can be written as

pR(r) =
r

2πσXσY
√

1 − ρ2
e

{
− (μ2

Xσ
2
Y +μ2

Y σ
2
X−2ρμXμY σXσY )

2σ2
X
σ2
Y (1−ρ2)

}

× e

{
− (σ2

X+σ2
Y )

4σ2
X
σ2
Y (1−ρ2)

r2

}
∞∑
n=0

εnIn

[√
A2(r) +B2(r)

]

×
∫ 2π

0

cos 2n
(
θ + β − ψ

2

)
e

[√
C2(r)+D2(r) cos θ

]
dθ.

Next, the cos 2n
(
θ + β − ψ

2

)
term is expanded as a sum of

product of cosine and sine terms and observing the fact that
the sine is an odd function followed by the integration using
[19, eq.7.34] gives the desired result(1).

Next we prove (2) starting with (17). By rearranging the
terms in (17), the joint pdf becomes

pR,Θ(r, θ) =
e

{
− (μ2

Xσ
2
Y +μ2

Y σ
2
X−2ρμXμY σXσY )

2σ2
X
σ2
Y (1−ρ2)

}

2πσXσY
√

1 − ρ2

× re(−R(θ)r2+S(θ)r) (19)

where R(θ) = Δψ(θ)

4σ2
Xσ

2
Y (1−ρ2)

and S(θ) =
√

ΔX,Y

σ2
Xσ

2
Y (1−ρ2) cos(θ −

β). Now it is obvious that (19) has to be integrated with
respect to r to obtain the marginal of Θ. Completing the square
of the quadratic expression in the exponent and subsequent
integration with respect to r yields the marginal of Θ as (2).

APPENDIX B
CONVERGENCE OF INFINITE SERIES

A. Convergence of (1)

Before proving the convergence, we establish the following
inequality.

In(z) < I0(z), n = 1, 2, .... (20)

From the definition of In(z), it follows that

In(z) =
1
π

∫ π

0

exp (z cos θ) cosnθdθ

<
1
π

∫ π

0

exp (z cos θ) | cosnθ|dθ.

Since | cosnθ| < 1, the inequality (20) follows immediately.
Next we show that the infinite series (1) converges absolutely.
To this end, (1) is transformed as

|pR(r)| <re
− (μ2

Xσ
2
Y +μ2

Y σ
2
X−2ρμXμY σXσY )

2σ2
X
σ2
Y (1−ρ2)

− (σ2
X+σ2

Y )
4σ2
X
σ2
Y (1−ρ2)

r2

σXσY
√

1 − ρ2

×
∞∑
n=0

εnIn

⎡
⎣
√

(σ2
X − σ2

Y )2 + 4ρ2σ2
Xσ

2
Y

4σ2
Xσ

2
Y (1 − ρ2)

r2

⎤
⎦

× I2n

[ √
ΔX,Y

σ2
Xσ

2
Y (1 − ρ2)

r

]
,

(21)
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and applying (20) it becomes

|pR(r)| <re
− (μ2

Xσ
2
Y +μ2

Y σ
2
X−2ρμXμY σXσY )

2σ2
X
σ2
Y (1−ρ2)

− (σ2
X+σ2

Y )
4σ2
X
σ2
Y (1−ρ2)

r2

σXσY
√

1 − ρ2

× I0

[ √
ΔX,Y

σ2
Xσ

2
Y (1 − ρ2)

r

]

×
∞∑
n=0

εnIn

⎡
⎣
√

(σ2
X − σ2

Y )2 + 4ρ2σ2
Xσ

2
Y

4σ2
Xσ

2
Y (1 − ρ2)

r2

⎤
⎦ .

Now using the relation (20) it is easy to see that the infinite

summation converges to exp

{√
(σ2
X−σ2

Y )2
+4ρ2σ2

Xσ
2
Y

4σ2
Xσ

2
Y (1−ρ2)

r2

}
and

hence we have

|pR(r)| <re
− (μ2

Xσ
2
Y +μ2

Y σ
2
X−2ρμXμY σXσY )

2σ2
X
σ2
Y (1−ρ2)

− (σ2
X+σ2

Y )
4σ2
X
σ2
Y (1−ρ2) r

2

σXσY
√

1 − ρ2

× e
− Δ0(0)

4σ4
X
σ4
Y (1−ρ2)2

r2

I0

[ √
ΔX,Y

σ2
Xσ

2
Y (1 − ρ2)

r

]

(22)

which completes our proof. Since we proved that the absolute
sum is upper bounded with a continuous function, the uniform
convergence of infinite series (1) can be assumed without loss
of generality.

B. Convergence of (14)

The following result is worth of mentioning before a
detailed discussion on the convergence of (14).

For L = 0, 1, 2... we can write

∞∑
n=0

(n+ L)!
n!2n

= L!1F0

(
L+ 1;−;

1
2

)
= L!2L+1 (23)

where pFq(a1, a2, · · · , ap; c1, c2, · · · , cq;x) is the generalized
hypergeometric function [19]. In what follows we show that
the series (14) converges absolutely. It is easy to see that (14)
can easily be written as

|P (ε|ϕ) | <
∞∑
k=0

2k∑
l=0

∞∑
n,p,q=0

εn(2k)!η2!| sinη1 α| cos2 α
(k!)2l!p!q!(p+n)!(q+2n)!

γq+n exp(−γ)
2η1+η2+1

[
sin2 ϕ+ cos2 (α+ ϕ)

]q+n
.

The right side of above inequality can be upper bounded as

|P (ε|ϕ) | <
∞∑
k=0

∞∑
l=0

∞∑
n,p,q=0

εn(2k)!η2!| sinη1 α| cos2 α
(k!)2l!p!q!(p+n)!(q+2n)!

γq+n exp(−γ)
2η1+η2+1

[
sin2 ϕ+ cos2 (α+ ϕ)

]q+n

and the rearrangement of terms yields

|P (ε|ϕ) | < cos2 α exp (−γ)
∞∑
k=0

Γ
(
k + 1

2

)
√
πk!

sin2k α

×
∞∑

n,p,q=0

εnη2!| sin2p+n α|γq+n
p!q!(p+n)!(q + 2n)!24p+3n+q+1

× [
sin2 ϕ+ cos2 (α+ ϕ)

]q+n
×

∞∑
l=0

(2p+ 2n+ q + l)!
l!2l

(24)

where we have used the identity (2n)! = 22nn!√
π

Γ
(
n+ 1

2

)
, n =

0, 1, .... A careful inspection yields the summation of first
infinite series as 1F0

(
1
2 ;−; sin2 α

)
(= secα) and an appli-

cation of (23) gives the last infinite summation as (2p +
2n+q)!22p+2n+q+1. Upon substitution of those values in (24)
results in

|P (ε|ϕ) | < | cosα| exp (−γ)
∞∑

n,p,q=0

εn(2p+ 2n+ q)!
p!q!(p+n)!(q + 2n)!

| sin2p+n α|γq+n
24p+3n+q+1

[
sin2 ϕ+ cos2 (α+ ϕ)

]q+n
(25)

which is the result we get if term by term integration is
performed on |fuR1

(r1) | over the span [0,∞). One should note
that |fuR1

(r1) | stands for the right side of (21) corresponding
to our case of interest. Following (22) we can upper bound
|fuR1

(r1) | as

|fuR1
(r1) | < | secα| exp(−γ)r1

× exp
{
− (1 − | sinα|) sec2 α

2
r21

}

× I0

[
secα

√
2γ

(
sin2 ϕ+ cos2 (ϕ+ α)

)
r1

]
(26)

and now (25) becomes

|P (ε|ϕ) | <
∫ ∞

0

|fuR1
(r1) |dr1. (27)

The term by term integration is justified here, since that series
also converges uniformly. Thereafter with the help of (26) and
[20, Appendix 1, eq. 2.4.13]∫ ∞

0

z exp
(−λz2

)
Iμ(αz)dz =

1
2λ

exp
(
α2

4λ

)
we can upper bound the inequality (27) as

|P (ε|ϕ) | < | cosα| exp(−γ)
(1 − | sinα|) e

[sin2 ϕ+cos2(ϕ+α)]
1−| sinα| γ

which completes our proof.
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