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New Series Representation for the
Trivariate Non-Central Chi-Squared Distribution
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Abstract—This paper derives a new infinite series representa-
tion for the trivariate Non-central chi-squared distribution when
the underlying correlated Gaussian variables have a tridiagonal
form of an inverse covariance matrix. The joint probability
density function is derived using Miller’s approach and Dougall’s
identity. Moreover, the trivariate cumulative distribution function
(cdf) and characteristic function (chf) are also derived. Finally,
the bivariate non-central chi-squared distribution and some
known forms are shown to be special cases of the more general
distribution. However, the derivation of non-central chi-squared
distribution for an arbitrary covariance matrix seems intractable
via Miller’s approach. Two applications of the newly derived
results are provided for performance analysis of multiple input
multiple output (MIMO) systems with transmit antenna selection
over a correlated Rician fading environment. Some numerical
results are also presented to verify the accuracy of the analytical
expressions.

Index Terms—Antenna selection, characteristic function (chf),
MIMO systems, non-central chi-squared density, Rician fading,
trivariate density.

I. INTRODUCTION

THE χ2 and non-central χ2 distributions play a major role
in the performance analysis of communication systems

[1]- [5]. The generalized chi-squared distribution is analyzed
in detail in [6]- [9]. Khaled and Williams [10] derive a relation-
ship between non-central χ2 distribution and the distribution
of a generalized Hermite quadratic form. The diagonal ele-
ments of a Wishart matrix are well known to have chi-squared
distribution [11]. The joint probability density function (pdf)
of the diagonal elements of a real central Wishart matrix
(i.e., multivariate central χ2 distribution) is analyzed in [12]-
[14]. The multivariate generalized Rayleigh pdf studied in [15]
is also another form of multivariate central χ2 distribution.
Nevertheless, the authors in [15], [16] assume a tridiagonal
form of inverse correlation matrix for the underlying Gaussian
variables to derive a closed-form solution for the generalized
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Rayleigh pdf. The trivariate generalized Rayleigh pdf for an
arbitrary correlation matrix is given in [16]. In [17], Mallik
derives multivariate Rayleigh and exponential distributions
from correlated Gaussian random variables. Hagedorn et al.
[11] derive a trivariate central chi square distribution from the
diagonal elements of a complex Wishart matrix.

Miller’s assumption of the tridiagonal form of inverse
correlation matrix is significant since it leads to a closed-form
solution for the multivariate Rayleigh pdf. Karagiannidis et
al. [18], [19] extend Miller’s result to n variate Nakagami-m
distribution, which is also a form of a multivariate central χ2

pdf. We further derive quadrivariate Nakagami-m distribution
in [20] using Miller’s method with the most general correlation
matrix.

The Rice pdf is obviously closely coupled with non-
central χ2 distribution [21]. The multivariate non-central χ2

distribution can be thought of as a generalization of the
multivariate Rician distribution. The bivariate Rician pdf is
given in [22], [23] and [24]. In [25] the authors propose
an infinite series representation involving modified Bessel
functions of the first kind for the trivariate Rician distribution
when the underlying Gaussian components have a tridiagonal
form of inverse covariance matrix. The non-central Wishart
distribution derived in [26] can be thought of as a more
generalized version of the non-central distribution. Miller in
[16] proposes an infinite series representation involving a
modified Bessel function of the first kind for the pdf of
the bivariate generalized Rician distribution. A search of the
previous work related to multivariate distributions reveals that
no joint pdf exists for trivariate non-central χ2 distribution.

For this reason, we propose a novel expression for the non-
central chi-squared pdf when the underlying Gaussian com-
ponents have tridiagonal form of inverse covariance matrix.
Our main derivation is inspired by Miller’s approach [16]
and by Dougall’s theorem for a product of two ultraspheri-
cal polynomials [27]. Dougall’s theorem which linearizes a
product of two ultraspherical polynomials plays a major role
in the density derivation. However, the derivation of non-
central trivariate pdf for an arbitrary covariance matrix seems
intractable via Miller’s approach. Finally, as applications of
the newly derived pdf, we analyze the performance of multiple
input multiple output (MIMO) systems with transmit antenna
selection (TAS) by using orthogonal space-time block codes
(OSTBC) in a correlated Rician fading environment.

This paper is organized as follows. Section II derives the
generalized Rician distribution and trivariate non-central chi-
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squared distribution. Several simplifications related to previ-
ously known results are also discussed there. Section III deals
with the derivation of cdf and chf with some simplifications.
Applications of the pdf for MIMO systems with TAS are
discussed in section IV. Section V concludes the paper.

II. DERIVATION OF TRIVARIATE NON-CENTRAL χ2

DISTRIBUTION

Let {X1,X2,X3} be three nonzero mean Gaussian vectors
with E (Xi) = a and Xi = (x1i x2i . . . . . . xni)

T for all
1 ≤ i ≤ 3. Here, a = (a1 a2 . . . an)T , E(·) represents the
mathematical expectation, and (·)T denotes the transpose of a
matrix. Let Vj = (xj1 xj2 xj3), 1 ≤ j ≤ n be independent
four-dimensional nonzero mean Gaussian vectors composed
of the jth components of Xi. In this display, the columns are
the n-dimensional Gaussian vectors

X1 X2 X3

V1 x11 x12 x13

V2 x21 x22 x23

. . . . . . . . .
Vn xn,1 xn,2 xn,3

(1)

and the rows Vj are independent from each other and have an
identical covariance matrix M3. The inverse covariance matrix
of Vj is

W3 = M−1
3 =

⎛⎝w11 w12 w13

w12 w22 w23

w13 w23 w33

⎞⎠ . (2)

The derivation of the joint pdf is analytically resolvable
with Miller’s approach if one or more off-diagonal elements
of W3 are zero. The most general such realization is the
tridiagonal form of a matrix or in other words, w13 = 0.
The exponential type covariance matrix is well known to give
a tridiagonal form of inverse matrix [28]. This assumption is
common for all the multivariate derivations given in [15], [18],
[19].

The amplitudes si = |Xi| (1 ≤ i ≤ 3), being the square
root of the sum of the squares of n nonzero mean independent
Gaussian random variables, are generalized Rician random
variables. Here, | · | denotes the norm of a column vector.
The joint pdf of {X1,X2,X3} is clearly given by

f(X1,X2,X3) =
n∏

j=1

f(Vj)

=
W

n
2

3

(2π)
3n
2

exp
{
−1

2

n∑
j=1

(Vj − aj13)W3 (Vj − aj13)
T

}
(3)

where 13 = (1 1 1) and W3 denotes the determinant of square
matrix W. Expanding the quadratic form in (3) and replacing
the Vj’s by Xi (see the display in (1)), we find that

f(X1,X2,X3) =
W

n
2

3

(2π)
3n
2

exp
{
−1

2

( 3∑
i=0

wiis
2
i + w4a

2

)}
× exp

{
XT

1 (w1a − w12X2)
}

exp
(
w2XT

2 a
)

× exp
{
XT

3 (w3a − w23X2)
}

(4)

where a2 = |a|2, w1 = w11 + w12, w2 = w12 + w23 +
w22, w3 = w23 + w33, and w4 = w1 + w2 + w3. From this
pdf (4), we need to integrate out Xi, 1 ≤ i ≤ 3, subject
to the constraints si = |Xi|, which will yield the joint pdf of
correlated generalized Rician variables {s1, s2, s3} [16]. Now,
the joint pdf can be written as

f(s1, s2, s3) =
W

n
2

3

(2π)
3n
2

exp
{
−1

2

( 3∑
i=1

wiis
2
i + w4a

2

)}
×

∫
|X1|=s1

exp
{
XT

1 (w1a− w12X2)
}
dσx1

×
∫
|X3|=s3

exp
{
XT

3 (w3a− w23X2)
}
dσx3

×
∫
|X2|=s2

exp
(
w2XT

2 a
)
dσx2 ,

(5)

where dσxi , 1 ≤ i ≤ 3 are the elements of surface area. The
first integral in (5) can be evaluated as [16, eq.2.2.9]∫

|X1|=s1

exp
{
XT

1 (w1a− w12X2)
}
dσx1

= (2πs1)
n
2 |w1a − w12X2| 2−n

2

× In−2
2

(s1|w1a − w12X2|) ,
(6)

where In(z) is the nth order modified Bessel function of the
first kind [29], and the second integral follows the same form.
Furthermore, the right side of (6) can be written by using the
generalized Neumann addition formula [29] when n > 2 as

(2πs1)
n
2 |w1a − w12X2| 2−n

2 In−2
2

(s1|w1a − w12X2)

=
(2πs1)

n
2 2

n−2
2 Γ

(
n−2

2

)
s1

(w1w12as2)
n−2

2

∞∑
k=0

(−1)kνk

× Iνk
(aw1s1) Iνk

(w12s1s2)C
n−2

2
k (cos θ)

(7)

where νk = n
2 + k − 1, Γ (z) =

∫ ∞
0
tz−1 exp(−t), z > 0 is

the Gamma function [30], Cλ
n(z) denotes the ultraspherical

polynomials [30] defined as

(1 − 2zr + r2)−λ =
∞∑

n=0

Cλ
n(z)rn, λ > −1

2

f (s1, s2, s3) =
W

n
2

3 2n−2Γ2
(

n−2
2

)
s1s3

(2π)
n
2 (w1w12w23w3)

n−2
2 (as2)

n−2
exp

{
−1

2

( 3∑
i=1

wiis
2
i + w4a

2

)} ∞∑
k=0

∞∑
l=0

(−1)k+lνkνlIνk
(aw1s1)

Iνk
(w12s1s2) Iνl

(aw3s3) Iνl
(w23s2s3)

∫
|X2|=s2

exp
(
w2XT

2 a
)
C

n−2
2

k (cos θ)C
n−2

2
l (cos θ) dσx2 .

(8)
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and θ is the angle between the vectors a and X2. Following
(7), (5) can be written as given at the bottom of the previous
page. The product of two ultraspherical polynomials can be
written by using the Dougall’s identity, given in [27, eq.6.8.4]
as

Cλ
p (z)Cλ

q (z) =
min(p,q)∑

m=0

A(m, p, q)Cλ
p+q−2n(z), (9)

where A(m, p, q) is given by

A(m, p, q) =
(μλ −m)(λ)m(λ)p−m(λ)q−m(2λ)μ0(μ0−m)!

μλm!(p−m)!(q −m)!(λ)μ0 (2λ)μ0−m

with μk = p + q + k − m, (λ)n = Γ(λ+n)
Γ(λ) denoting the

Pochhammer symbol, and min(p, q) selecting the minimum
of p, q. We use Dougall’s identity, given in (9), to yield (10).
The integral in (10) can be solved by using [16, eq.2.2.26] to
give∫

|X2|=s2

exp
(
w2XT

2 a
)
C

n−2
2

ηkl (cos θ) dσx2

=
(2π)

n
2 sn−1

2

(
n+ηkl−3

n−3

)
(aw2s2)

n−2
2

Iνηkl
(aw2s2)

where ηkl = k + l − 2m and (n
r ) = n!

r!(n−r)! . Substituting the
above integral in (10) and after some algebraic manipulations,
the joint pdf of the multivariate generalized Rician distribution
for n > 2 can be written as shown in (11). The case when
n = 2 is given in [25, eq.3].

In order to derive the trivariate non-central χ2 pdf, the
following variable transformations are introduced in (11),
r1 = s21, r2 = s22, r3 = s23. Now, it is clear that {r1, r2, r3}
represent the correlated non-central χ2 variables. After some
algebraic manipulation, the trivariate non-central χ2 pdf can be
written as given in (12). To the best of the authors’ knowledge,
(12) is a novel result. Even though (12) is not valid for n = 2,
the degenerated cases of (12) are valid for all n ≥ 2 as shown
below. Moreover, if a given covariance matrix does not match
with the criteria mentioned above, we can use Green’s matrix

approach, given in [19], to approximately find a matrix with
a tridiagonal form of inverse. Next, several simplifications of
(12) are given.

A. Independent non-central χ2 case

W3 is obviously a diagonal matrix with the elements
{w11, w22, w33} under this scenario. Since all the off-diagonal
elements are zero, the following important limit involving the
Bessel functions is obtained:

lim
wii+1→0

In
2 +k−1

(
wii+1

√
riri+1

)
w

n−2
2

ii+1

=

(√
riri+1

2

)n
2 −1

Γ
(

n
2

) (13)

which is valid for i = 1, 2 if k = 0. Using (13) in (12) and
after algebraic rearrangements, the joint pdf is obtained as

g (r1, r2, r3) =
3∏

i=1

wii

2

( ri
a2

)n−2
4

exp
{
−wii

2
(
ri + a2

)}
× In

2 −1 (awii
√
ri) . (14)

The extension for central χ2 distribution follows from (14).

B. Bivariate non-central χ2 distribution

If {r1, r2} are independent from r3, the trivariate pdf can be
written as a product of bivariate and univariate pdf’s. Equating
w23 to zero and using the limit (13) with l = 0 followed by
some manipulations, the bivariate pdf is obtained as

g (r1, r2) =
W

n
2

2 2
n
2 Γ

(
n−2

2

)
8 (w1w2w12)

n−2
2 (a)n−2

e
− 1

2

(∑ 2
i=1 wiiri+wia

2

)

×
∞∑

k=0

(−1)k

(
n+ k − 3
n− 3

)
νkIνk

(aw1
√
r1)

× Iνk
(w12

√
r1r2) Iνk

(aw2
√
r2) ,

(15)

f (s1, s2, s3) =
W

n
2

3 2n−2Γ2
(

n−2
2

)
s1s3

(2π)
n
2 (w1w12w23w3)

n−2
2 (as2)

n−2
exp

{
−1

2

( 3∑
i=1

wiis
2
i + w4a

2

)} ∞∑
k=0

∞∑
l=0

min(k,l)∑
m=0

(−1)k+lνkνlA(m, k, l)

× Iνk
(aw1s1) Iνk

(w12s1s2) Iνl
(aw3s3) Iνl

(w23s2s3)
∫
|X2|=s2

exp
(
w2XT

2 a
)
C

n−2
2

k+l−2m (cos θ) dσx2 .

(10)

f (s1, s2, s3) =
W

n
2

3 2n−2Γ2
(

n−2
2

)
s1s2s3

(w1w2w3w12w23as2)
n−2

2 (a)n−2
exp

{
−1

2

( 3∑
i=1

wiis
2
i + w4a

2

)} ∞∑
k=0

∞∑
l=0

min(k,l)∑
m=0

(−1)k+lνkνl

(
n+ ηkl − 3
n− 3

)
×A(m, k, l)Iνk

(aw1s1) Iνk
(w12s1s2) Iνl

(aw3s3) Iνl
(w23s2s3) Iνηkl

(aw2s2) .
(11)

g (r1, r2, r3) =
W

n
2

3 2nΓ2
(

n−2
2

)
32 (w1w2w3w12w23)

n−2
2 (a)

3n
2 −3 (√

r2
)n−2

2

exp
{
−1

2

( 3∑
i=1

wiiri + w4a
2

)} ∞∑
k=0

∞∑
l=0

min(k,l)∑
m=0

(−1)k+lνkνl

×A(m, k, l)
(
n+ ηkl − 3
n− 3

)
Iνk

(aw1
√
r1) Iνk

(w12
√
r1r2) Iνl

(aw3
√
r3) Iνl

(w23
√
r2r3) Iνηkl

(aw2
√
r2) .

(12)
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TABLE I
NUMBER OF TERMS NEEDED IN (12) TO ACHIEVE FIVE SIGNIFICANT FIGURE ACCURACY.

a ρ r1 = 1.5, r2 = 2.3, r3 = 3.4 r1 = 3.7, r2 = 4.2, r3 = 3.8 r1 = 2.8, r2 = 5.1, r3 = 4.6
1 K = 3, L = 3 K = 3, L = 3 K = 3, L = 3
3

0.1
K = 4, L = 4 K = 5, L = 4 K = 5, L = 5

1 K = 4, L = 3 K = 4, L = 4 K = 4, L = 4
3

0.4
K = 4, L = 4 K = 5, L = 5 K = 6, L = 6

1 K = 4, L = 4 K = 4, L = 4 K = 4, L = 4
3

0.8
K = 5, L = 5 K = 6, L = 6 K = 6, L = 6

TABLE II
NUMBER OF TERMS NEEDED IN (12) TO ACHIEVE FIVE SIGNIFICANT

FIGURE ACCURACY WHEN r1 = r2 = r3 = r.

a ρ r = 1 r = 2 r = 5
1 K = 2, L = 2 K = 3, L = 3 K = 3, L = 3
3

0.1
K = 3, L = 3 K = 4, L = 4 K = 4, L = 4

1 K = 3, L = 3 K = 4, L = 4 K = 4, L = 4
3

0.4
K = 3, L = 3 K = 5, L = 5 K = 6, L = 6

1 K = 3, L = 3 K = 4, L = 4 K = 5, L = 5
3

0.8
K = 4, L = 4 K = 6, L = 6 K = 6, L = 6

where W2 denotes the determinant of 2×2 inverse covariance
matrix W2. Equation (15) is equivalent to Miller’s previously
published result [16, eq.2.2.18].

Now let us consider the truncation of the series (12)
because for all practical numerical calculations the infinite
series are truncated to limited number of terms. This operation
introduces a truncation error. Suppose that the series (12) is
limited to K and L terms in the variables k and l respectively.
Hence the truncation error can be expressed as

ETR(pdf) =
K−1∑
k=0

∞∑
l=L

min(k,l)∑
m=0

Rε +
∞∑

k=K

∞∑
l=0

min(k,l)∑
m=0

Rε

where

Rε =(−1)k+l W
n
2

3 2nΓ2
(

n−2
2

)
e−

1
2 (

∑ 3
i=1 wiiri+w4a2)

32 (w1w2w3w12w23)
n−2

2 a
3n
2 −3

(√
r2

)n−2
2

×A(m, k, l)
(
n+ ηkl − 3
n− 2

)
νkνlIνk

(aw1
√
r1)

× Iνk
(w12

√
r1r2) Iνl

(aw3
√
r3) Iνl

(w23
√
r2r3)

× Iνηkl
(aw2

√
r2) .

Furthermore, to shed some light on the convergence of (12),
the number of terms needed in (12) to achieve five significant
figure accuracy is given in Table 1 and Table II. The expo-
nential covariance model proposed by Aalo [28] is used in the
calculations.

III. CDF AND CHF OF THE TRIVARIATE DISTRIBUTION

A. Cumulative Distribution Function

The trivariate cdf is, by definition [31],

G (r1, r2, r3) =
∫ r1

0

∫ r2

0

∫ r3

0

g (y1, y2, y3) dy1dy2dy3.

(16)
Substituting (12) in (16) and expanding each Bessel function
term with its infinite series representation, followed by term-
by-term integration, the cdf of trivariate non-central χ2 dis-
tribution is obtained as given in (17), where λ1 = 2i1 + k,
λ2 = 2i5+k+l−2m, λ3 = 2i3+l, λ4 = 2i2+k, λ5 = 2i4+l,
δ1 = i1 + i2 + k + n

2 , δ2 = i2 + i4 + i5 + k + n
2 − m,

δ3 = i3 + i4 + l+ n
2 , and γ(a, z) =

∫ z

0
ta−1 exp(−t)dt is the

incomplete gamma function.
Moreover, if n > 2 is an even integer, the alternative closed

form expression given in [21] can be used instead of the
incomplete gamma function. The simplifications for special
cases are straightforward with (17).

B. Characteristic Function

The joint chf is defined as [31]

ψ (v1, v2, v3) = E {exp (v1r1j + v2r2j + v3r3j)} , (18)

where j =
√−1. As with the cdf derivation, we encounter

integrals of the form∫ ∞

0

zν−1 exp (−[p+ jq]z) dz,

which can be solved by using [31, eq.3.381.5] to yield the chf
as shown in (19).

The bivariate generalization is straightforward with (19). If
all {r1, r2, r3} are independent (i.e., w12 = w23 = 0, i2 =
i4 = k = l = 0 in (19)), then the joint chf can be written as
a product of the individual chfs. Thus, we arrive at a product

G (r1, r2, r3) = W
n
2

3 Γ2

(
n− 2

2

)
exp

(
−a

2w4

2

) ∞∑
k,l=0

min(k,l)∑
m=0

(−1)k+lA(m, k, l)νkνl

(
n+ ηkl − 3
n− 3

)

×
∞∑

i1,i2,i3,i4,i5=0

γ
(
δ1,

w11
2 r1

)
γ
(
δ2,

w22
2 r2

)
γ
(
δ3,

w33
2 r3

)
2

1
2 (λ1+λ2+λ3)i1!i2!i3!i4!i5!Γ

(
i1 + n

2 + k
)
Γ
(
i2 + n

2 + k
)
Γ
(
i3 + n

2 + l
)

× aλ1+λ2+λ3wλ1
1 wλ2

2 wλ3
3 wλ4

12w
λ5
23

Γ
(
i4 + n

2 + l
)
Γ
(
i5 + n

2 + k + l − 2m
)
wδ1

11w
δ2
22w

δ3
33

(17)
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TABLE III
NUMBER OF TERMS NEEDED IN EACH INDEX K,L, I1, I2, I3, I4 AND I5 IN (17) TO ACHIEVE THREE SIGNIFICANT FIGURE ACCURACY WHEN

r1 = r2 = r3 = r.

a ρ r = 1 r = 2 r = 5
1 2, 2, 2, 2, 2, 2, 3 2, 2, 3, 3, 3, 3, 3 2, 2, 4, 4, 4, 4, 4
3

0.1
3, 2, 4, 4, 4, 4, 4 3, 3, 5, 5, 5, 5, 5 4, 4, 6, 6, 6, 6, 6

1 2, 2, 3, 3, 3, 3, 3 2, 2, 3, 3, 3, 3, 3 3, 3, 4, 4, 4, 4, 4
3

0.3
3, 3, 4, 4, 4, 4, 4 4, 4, 7, 7, 7, 7, 7 4, 4, 7, 7, 7, 7, 7

1 4, 4, 4, 4, 4, 4, 4 5, 5, 6, 6, 6, 6, 6 6, 6, 11, 11, 11, 11, 11
3

0.6
5, 5, 6, 6, 6, 6, 6 9, 9, 7, 7, 7, 7, 7 11, 11, 13, 13, 13, 13, 13

of three infinite series of the form

ψ (vi) =
∞∑

ki=0

w
2ki+

n
2

ii a2ki

22ki+
n
2 ki!

(
w2

ii

4 + v2
i

)ki+
n
2

× exp
{
j
(
ki +

n

2

)
arctan

(
2vi

wii

)}
, i = 1, 2, 3.

However, the closed-form solution for the chf is not immedi-
ately obvious. Nevertheless, it is easy to see that the individual
infinite summation is in the form of an exponential series,
and with some algebraic manipulation, one can show that the
individual chf series reduces to [21, eq.2.1.117].

Before discussing the applications, the truncation error
upper bound of (17) is briefly introduced. Let us assume that
the infinite series (17) is limited to K,L, I1, I2, I3, I4 and I5
in the variables k, l, i1, i2, i3, i4 and i5 respectively. Then the
rest of the terms denote the truncation error which can easily

be upper bounded using the fact that γ(a, z) < Γ(z) as shown
at the bottom. Further simplification of the upper bound is an
arduous task. In fact the former gamma function bound for
the incomplete gamma function is not that tight for the most
practical purposes. To this end another form of tighter upper
bound can be derived following the approach given in Tan
and Beaulieu [32] at the expense of more mathematical rigor.
Next we shed some light to convergence of the cdf series using
numerical figures. For brevity, the number of terms needed in
each index in (17) is calculated to achieve three significant
figure accuracy, as can be seen from Table III.

IV. APPLICATIONS

The new results developed in Section III enable the perfor-
mance analysis of MIMO systems with antenna selection by
using space-time block codes in a correlated Rician fading
environment. This section presents a bit error rate (BER)

ψ (v1, v2, v3) = W
n
2

3 Γ2

(
n− 2

2

)
exp

(
−a

2w4

2

) ∞∑
k,l=0

min(k,l)∑
m=0

(−1)k+lA(m, k, l)νkνl

(
n+ ηkl − 3
n− 3

)

×
∞∑

i1,i2,i3,i4,i5=0

exp
{
jδ1 arctan

(
2v1
w11

)
+ jδ2 arctan

(
2v2
w22

)
+ jδ3 arctan

(
2v3
w33

)}
2
∑5

j=1 λj− 3n
2 i1!i2!i3!i4!i5!Γ

(
i1 + n

2 + k
)
Γ
(
i2 + n

2 + k
)
Γ
(
i3 + n

2 + l
)

× a
∑ 3

j=1 λjwλ1
1 wλ2

2 wλ3
3 wλ4

12w
λ5
23Γ (δ1) Γ (δ2) Γ (δ3)

Γ
(
i4 + n

2 + l
)
Γ
(
i5 + n

2 + k + l− 2m
) (w2

11
4 + v2

1

) δ1
2
(

w2
22
4 + v2

2

) δ2
2
(

w2
33
4 + v2

3

) δ3
2

(19)

ETR(cdf) <

K−1∑
k=0

L−1∑
l=0

min(k,l)∑
m=0

I1−1∑
i1=0

I2−1∑
i2=0

I3−1∑
i3=0

I4−1∑
i4=0

∞∑
i5=I5

Sε +
K−1∑
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L−1∑
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I1−1∑
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I2−1∑
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∞∑
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∞∑
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+
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∞∑
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∞∑
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expression for a Gray coded M -ary amplitude modulation
scheme with OSTBC and transmit antenna selection. A ca-
pacity expression is also derived for the same scenario.

The MIMO technology is well known to mitigate the
adversary effects of fading and to enhance the capacity of
wireless links. The full-diversity order promised by MIMO
technology can be exploited by using OSTBC, which utilizes
low-complexity maximum-likelihood detection [5]. Neverthe-
less, full-rate OSTBC do not exist for all transmit antenna
configurations. The most celebrated and the only full-rate
complex designed OSTBC scheme is known as the Alamouti
scheme [33], which employs two transmit antennas. Transmit
antenna selection (TAS) [3] is another scheme where a subset
of transmit antennas is selected at a particular time. This
scheme reduces the amount of hardware, yet retains the diver-
sity benefit. The performance of TAS with OSTBC is analyzed
in many papers [34]- [37]. However, no fading correlation
is considered in them. In the following, the performance of
TAS with OSTBC in the presence of transmit correlation is
analyzed.

We consider a MIMO system in a correlated Rician fading
environment with 3 transmit and 2 receive antennas. Two
transmit antennas out of 3 are selected and activated for
the transmission of the Alamouti code, while the remaining
transmit antenna is inactive. Let H̃ ∈ C

2×2 be a sub-
matrix of the channel matrix H ∈ C2×3. The elements of
H = [hij ], which represent the channel gain between jth
transmit and ith receive antenna can be modeled as complex
Gaussian variables each having a mean b/

√
2 and variance

σ2/2 per dimension. Moreover, without loss of generality,
b2 + σ2 = 1 for normalizing the average channel gains.
Now, it is clear that H̃ consists of the channel gains for the
selected two transmit and two receive antennas. Suppose that
hj(j = 1, 2, 3) are the columns of the channel matrix H.
The columns are sorted according to their norms such that
||h3|| ≥ ||h2|| ≥ ||h1|| [34]. Since only transmit correlation
is considered, the covariance matrix of vec (H), CH can be
written as

CH = σ2

⎛⎝ 1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1

⎞⎠⊗ I2×2 = RT ⊗ I2×2, (20)

where ρ|j−k| = E(hijh∗
ik)−b2

σ2 (i = 1, 2, 3), RT denotes the
transmit correlation matrix, I2×2 is the 2 × 2 identity matrix,
vec (.) is the vectorization operation, ⊗ denotes the Kronecker
product, and ∗ denotes the complex conjugate operation. When
the Alamouti code is used, the MIMO system can be replaced
with equivalent single input single output (SISO) systems

defined as in [5], [34], [35]:

s̃q =

√
Es

2

(
||H̃||2F

)
sq + ν̃q, q = 1, 2, (21)

where
√

Es

2 ensures that the total transmitted power in each
channel use is Es and is independent of the number of transmit
antennas, s̃q, sq denote the received and transmitted symbols,
|| · ||F is the Frobenius norm, and ν̃q is the circular symmetric
additive complex Gaussian noise having a zero mean and

variance ||H̃||2F N0
2 per dimension.

A. BER Analysis of M -ary PAM Scheme

The achievable SNR per bit in a M-ary PAM constellation
with TAS and the Alamouti scheme can be written as [34]

γb =
γ

2 log2M
||H̃||2F = cγ||H̃||2F , (22)

where γ = Es

N0
and c = 1

2 log2 M . Now, it is clear that the
antenna-selection criterion mentioned above maximizes the
instantaneous SNR.

Let γk = cγ||hk||2, k = 1, 2, 3 be the scaled norms of
the columns of H. Alternatively, if the lth element of hk

is rewritten as (�[hlk] 	[hlk])T , then the original H can be
written as a 4 × 3 matrix, Heq defined as

Heq =

⎛⎜⎜⎝
�[h11] �[h12] �[h13]
	[h11] 	[h12] 	[h13]
�[h21] �[h22] �[h23]
	[h21] 	[h22] 	[h23]

⎞⎟⎟⎠ ,

where �(.) and 	(.) denote the real and imaginary part
of a complex number. Since only the transmit correlation is
considered, the rows of Heq will be independent and the
columns will have the covariance of 1

2RT . Then, it is clear that
γk are correlated non-central chi-squared random variables
having underlying Gaussian variables with a tridiagonal form
of inverse covariance matrix. Then the achievable SNR (22)
can be written as

γb = γ2 + γ3. (23)

Since this SNR is a sum of order statistics, we may follow
the approach given in [38] to obtain the joint pdf of γ2, γ3

as (see Appendix A) shown at the bottom, where y ≥ x > 0,
dk = wkk

2cγ , AΣ is given at the top of the next page, with 2b2 =

a2,W3 = 8
σ6(1−ρ2)2

, w11 = w33 = 2
σ2(1−ρ2) , w22 =

2(1+ρ2)
σ2(1−ρ2) ,

and w12 = w23 = −2ρ
σ2(1−ρ2) . Using the definition for the

Laplace transform, the moment generating function (mgf) of

fγ2,γ3 (x, y) = AΣ

3∑
u,v,w=1
u�=v �=w

dδu
u dδv

v x
δu−1yδv−1 exp {− (dux+ dvy)}

[
(δw − 1)! − exp (−dwx)

δw−1∑
q=0

(δw − 1)!
q!

dq
wx

q

]
, (24)

δ1 = i1 + i2 + k + 2 δ2 = i2 + i4 + i5 + k + 2 −m δ3 = i3 + i4 + l + 2 λ1 = 2i1 + k
λ2 = 2i5 + k + l − 2m λ3 = 2i3 + l λ4 = 2i2 + k λ5 = 2i4 + l.
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AΣ =W 2
3 exp

(−b2w4

) ∞∑
k,l=0

min(k,l)∑
m=0

∞∑
i1,i2,i3,i4,i5=0

(−1)k+lA(m, k, l)
(
k + l + 1 − 2m

1

)

× (k + 1)(l + 1)bλ1+λ2+λ3wλ1
1 wλ2

2 wλ3
3 wλ4

12w
λ5
23

wδ1
11w

δ2
22w

δ3
33i1!i2!i3!i4!i5 (i1 + k + 1)! (i2 + k + 1)! (i3 + l+ 1)! (i4 + l + 1)! (i5 + k + l + 1 − 2m)!

γb can be written as shown in (25). The average BER of an
OSTBC with M -PAM is given by [34]

PM (γ) =
1

log2M

log2 M∑
n=1

PM (n; γ), (26)

where

PM (n; γ) =
2
M

kn∑
i=0

Bi(n)
1
π

∫ ∞

0

Φγb

(
D2

i (1+t2)
2

)
1 + t2

dt (27)

with

kn =
(

1 − 1
2n

)
M − 1

Bi(n) = (−1)�
i2n−1

M �
(

2n−1 − 
 i2
n−1

M
+

1
2
�
)

Di = (2i+ 1)

√
6 log2M

M2 − 1
.

Substituting (25) in (27) and subsequent integration yields the
integrals of the form

I(α1, α2,m, n) =
∫ ∞

0

1
(1 + z2) (α2

1 + z2)m (α2
2 + z2)n︸ ︷︷ ︸

f(z)

dz.

These integrals can be solved by evaluating the residues of
f(z) in the complex plane as

I(α, β,m, n) = πj

[
2∑

i=1

Resz=jαif(z) +Resz=jf(z)

]
,

where Resz=z0f(z) is the residue of function f(z) evaluated
at z = z0. Then the BER can be written as shown in (28) at
the bottom.

Since (28) has seven fold infinite summations, the numerical
evaluation of it would definitely be an arduous task. Hence it is
natural to truncate the infinite summations, thereby introducing
truncation error in the numerical calculations. Let us assume
that the index values k, l, i1, i2, i3, i4 and i5 are limited to
K,L, I1, I2, I3, I4 and I5 terms respectively. Then the trunca-
tion error can be written as shown at the bottom. Furthermore,
the number of terms needed in (28) to achieve three significant
figure accuracy is given in Table IV. It should be noted that

the Rician factor K and b are related as b =
√

K
K+1 .

B. Capacity Analysis

Since equal power allocation is assumed, the average ca-
pacity in nats/s/Hz is given by [35], [39]:

C = E {log (1 + γs)} =
∫ ∞

0

log (1 + λ) fγs(λ)dλ, (29)

Φγb
(s) =

∫ ∞

0

∫ ∞

x

exp {−s(x+ y)} fγ2γ3(x, y)dydx

=AΣ

3∑
u,v,w=1
u�=v �=w

dδu
u dδv

v (δw − 1)! (δv − 1)!

{
δv−1∑
p=0

(p+ δu − 1)!

p! (dv + s)p+δv (du + dv + 2s)p+δu

−
δv−1∑
p=0

δw−1∑
q=0

dq
w (p+ q + δu − 1)!

p!q! (dv + s)p+δv (du + dv + dw + 2s)p+q+δu

}
.

(25)

P (γ) =
2

Mπ log2M

log2 M∑
n=1

kn∑
i=0

AΣBi(n)
3∑

u,v,w=1
u�=v �=w

2δvdδu
u dδv

v (δw − 1)! (δv − 1)!

×
{

δv−1∑
p=0

2p (p+ δu − 1)!

p!D2(δu+δv+2p)
i

I

(√
2dv

D2
i

+ 1,

√
du + dv

D2
i

+ 1, δv + p, δu + p

)

−
δv−1∑
p=0

δw−1∑
q=0

2pdq
w (p+ q + δu − 1)!

p!q!D2(δu+δv+2p+q)
i

I

(√
2dv

D2
i

+ 1,

√
du + dv + dw

D2
i

+ 1, δv + p, δu + p+ q

)}
.

(28)
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where the achievable SNR per symbol for an M-ary constel-
lation, γs, is defined as

γs = cγ||H̃||2F (30)

with c = 1/2. Following analogous steps as in (22)-(25) and
inverting Φγs(γs)(see Appendix B) and subsequent integration
of (29) with Ĉm−1(θ) yields (31). Note that Ĉm−1(θ) is

defined as [39, App. B] (for m = 1, 2... and θ > 0)

Ĉm−1(θ) =
∫ ∞

0

log(1 + λ)λm−1 exp(−θλ)dλ,

= (m− 1)! exp(θ)
m∑

k=1

Γ(−m+ k, θ)
θk

,
(32)

ETR(P (γ)) =
2

Mπ log2M

log2 M∑
n=1

kn∑
i=0

K−1∑
k=0

L−1∑
l=0

min(k,l)∑
m=0

I1−1∑
i1=0

I2−1∑
i2=0

I3−1∑
i3=0

I4−1∑
i4=0

∞∑
i5=I5

TεBi(n)

+
2

Mπ log2M

log2 M∑
n=1

kn∑
i=0

K−1∑
k=0

L−1∑
l=0
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m=0

I1−1∑
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I3−1∑
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∞∑
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∞∑
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Mπ log2M
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+
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Mπ log2M

log2 M∑
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TεBi(n)

+
2

Mπ log2M

log2 M∑
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L−1∑
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∞∑
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2

Mπ log2M
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∞∑
l=L
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m=0

∞∑
i1=0
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i2=0

∞∑
i3=0

∞∑
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∞∑
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+
2

Mπ log2M

log2 M∑
n=1
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∞∑
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∞∑
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∞∑
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Tε =(−1)k+lW 2
3 exp

(−b2w4

)
A(m, k, l)

(
k + l + 1 − 2m

1

)
× (k + 1)(l + 1)bλ1+λ2+λ3wλ1

1 wλ2
2 wλ3

3 wλ4
12w

λ5
23

wδ1
11w

δ2
22w
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33i1!i2!i3!i4!i5 (i1 + k + 1)! (i2 + k + 1)! (i3 + l + 1)! (i4 + l + 1)! (i5 + k + l + 1 − 2m)!

×
3∑

u,v,w=1
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2δvdδu
u dδv

v (δw − 1)! (δv − 1)!
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δv−1∑
p=0

2p (p+ δu − 1)!

p!D2(δu+δv+2p)
i

I
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dv

D2
i

+ 1,

√
du + dv

D2
i

+ 1, δv + p, δu + p

)

−
δv−1∑
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δw−1∑
q=0
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i

I
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D2
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.

C =AΣ

3∑
u,v,w=1
u�=v �=w

dδu
u dδv

v (δw − 1)! (δv − 1)!

{
δv−1∑
p=0

(p+ δu − 1)!
p!2p+δu

[
δv+p∑
r1=1

Ar1

(r1 − 1)!
Ĉr1−1 (dv)

δu+p∑
r2=1

Br2

(r2 − 1)!
Ĉr2−1

(
du + dv

2

)]
−

δv−1∑
p=0

δw−1∑
q=0

dq
w (p+ q + δu − 1)!
p!q!2p+q+δu

[
δv+p∑
r1=1

Cr1

(r1−)!
Ĉr1−1 (dv)

+
δu+p+q∑

r2=1

Dr2

(r2 − 1)!
Ĉr2−1

(
du + dv + dw

2

)]}
,

(31)
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TABLE IV
NUMBER OF TERMS NEEDED IN EACH INDEX K, L, I1, I2, I3, I4 AND I5 IN (28) TO ACHIEVE THREE SIGNIFICANT FIGURE ACCURACY FOR BPSK

SIGNALING.

K ρ γ = 1(dB) γ = 5(dB) γ = 8(dB)
1 3, 3, 3, 3, 3, 2, 2 4, 4, 4, 4, 5, 5, 4 4, 4, 5, 5, 5, 5, 5
10

0.1
3, 4, 4, 4, 4, 4, 4 5, 5, 4, 4, 5, 5, 5 4, 4, 6, 6, 6, 6, 6

1 4, 4, 4, 4, 4, 3, 3 5, 5, 6, 6, 6, 5, 5 6, 6, 7, 7, 7, 6, 6
10

0.3
4, 4, 5, 5, 5, 4, 4 6, 6, 7, 7, 7, 6, 6 7, 7, 9, 9, 9, 7, 9

1 4, 4, 6, 6, 5, 6, 5 6, 6, 8, 8, 7, 7, 6 7, 7, 11, 11, 11, 11, 10
10

0.6
5, 5, 7, 7, 7, 6, 6 9, 9, 11, 11, 11, 7, 10 11, 11, 15, 15, 15, 13, 13

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 2 4 6 8 10

SNR (dB)

B
E

R

K=1
K= 5
K=10
Simulation

ρ = 0.1, 0.5, 0.9

Fig. 1. BER of MIMO with TAS employing Alamouti code and BPSK
signaling for different Rician factors (K values).

Γ(a, z) =
∫∞

z
exp(−t)ta−1dt is the incomplete complemen-

tary gamma function,

Ar1 =
1

(δv + p− r1)!
∂δv+p−r1

∂sδv+p−r1
[f1(s)] |s=−dv ,

Br2 =
1

(δu + p− r2)!
∂δu+p−r2

∂sδu+p−r2
[f1(s)] |s=−(du+dv),

Cr1 =
1

(δv + p− r1)!
∂δv+p−r1

∂sδv+p−r1
[f2(s)] |s=−dv ,

Dr2 =
∂δu+p+q−r2

∂sδu+p+q−r2 [f2(s)] |s=−(du+dv+dw)

(δu + p+ q − r2)!
,

and

f1(s) =
1

(dv + s)δv+p (
du+dv

2 + s
)δu+p

,

f2(s) =
1

(dv + s)δv+p (
du+dv+dw

2 + s
)δu+p+q

.

Figure 1 depicts the BER performance of MIMO with TAS
by using the Alamouti scheme and binary phase shift keying
(BPSK) signaling over correlated Rician fading channels. The
BPSK signaling is used to reduce the complexity of the
evaluation of (28) numerically for different SNR values. As
the graph reveals, the fading correlation among the transmit
antennas generally downgrades the performance. However, a
strong line of sight path between the transmitter and receiver
improves the performance.

Figure 2 shows the capacity of MIMO with TAS by using
the Alamouti scheme and BPSK signaling over Rician fading
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Fig. 2. Capacity of MIMO with TAS employing Alamouti code and BPSK
signaling for different Rican factors (K values).

channels having different Rician factors (K values). The
results are analogous to those given in [40 Fig. 3] for Rician
channels with a fixed gain. Since the Rician fading scenario
is an intermediate state between the Rayleigh fading (i.e.
K = 0) and the deterministic channel (i.e. K = ∞), a fixed
channel gain increase in the K value decreases the amount of
scattering. This result is highly undesirable in a MIMO system
[40]. The effect of the correlation is not shown here because
the curves cannot be distinguished in the figure. Nevertheless,
a performance degradation can be observed with the increased
correlation even in this scenario.

V. CONCLUSION

A new infinite series representation for the trivariate non-
central χ2 pdf has been derived for the case when the
underlying Gaussian components have the tridiagonal form
of an inverse covariance matrix. An identity for a product of
two ultraspherical polynomials, based on Dougall’s identity
and Miller’s approach, is used in the derivation. Moreover,
the chf and cdf series are also derived. Some special cases of
the joint pdf are also discussed. However, the derivation for an
arbitrary covariance matrix seems intractable when using this
approach. Furthermore, two applications, namely the analysis
of the BER and the capacity of MIMO with TAS and Alamouti
coding over correlated Rician fading channels, are considered.
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APPENDIX A
DERIVATION OF (24)

Since γ1 ≤ γ2 ≤ γ3, following [38] we can write the cdf
of γ2 and γ3 using the first principles as

Fγ2,γ3(α, β) =Pr (γ1 ≤ β, γ2 ≤ α, γ3 ≤ α)
+ Pr (γ1 ≤ α, γ2 ≤ β, γ3 ≤ α)
+ Pr (γ1 ≤ α, γ2 ≤ α, γ3 ≤ β)
− 2Pr (γ1 ≤ α, γ2 ≤ α, γ3 ≤ α)

(33)

where β ≥ α > 0. Now it can easily be rewritten using (17)
as

Fγ2,γ3(α, β) = G

(
β

cγ
,
α

cγ
,
α

cγ

)
+G

(
α

cγ
,
β

cγ
,
α

cγ

)
(34)

+G

(
α

cγ
,
α

cγ
,
β

cγ

)
− 2G

(
α

cγ
,
α

cγ
,
α

cγ

)
.

Successive differentiation of (34) with respect to α and β
yields the joint pdf as

∂2Fγ2,γ3(α, β)
∂α∂β

= fγ2,γ3(α, β) (35)

= A

3∑
u,v,w=1
u�=v �=w

dδu
u dδv

v α
δu−1βδv−1

× exp {− (duα+ dvβ)} γ (δw, dwα) .

Since δw is an integer, we can express the incomplete gamma
function term with the following finite series representation

γ (δw, dwα)

= (δw − 1)! − exp (−dwα)
δw−1∑
k=0

(δw − 1)! (dwα)k

k!
.

(36)

Substitution of (36) in (35) gives (24).

APPENDIX B
DERIVATION OF (31)

Before we start with the derivation of (31) the following
Laplace transform pair is worth of mentioning

1
(s+ a)m(s+ b)n

−→
m∑

r1=1

Ar1

exp(−at)tr1−1

(r1 − 1)!

+
n∑

r2=1

Br2

exp(−bt)tr2−1

(r2 − 1)!

(37)

where

Ar1 =
1

(m− r1)!
∂m−r1 [F (s)]
∂sm−r1

|s=−a,

Br2 =
1

(n− r2)!
∂n−r2 [F (s)]
∂sn−r2

|s=−b .

Now we can make use of (37) in (25) (of course now c = 1
2 )

to obtain the inverse Laplace transform to yield the pdf of
fγs(λ) as shown in (38). Then we substitute (38) in (29) and
subsequent integration using (32) gives (31).
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