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ABSTRACT __ A new exponential-type integral for the gener-
alized M-th order Marcum Q-function  is obtained 
when M is not necessarily an integer. This new representation 
includes a classical formula due to Helstrom for the special 
case of positive integer order M and an additional integral cor-
rection term that vanishes when M assumes an integer value. 
The new form has both computational utility (numerous exist-
ing computational algorithms for  are limited to 
integer M) and analytical utility (e.g., performance evaluation 
of selection diversity receiver in correlated Nakagami-m fad-
ing with arbitrary fading severity index, unified analysis of 
binary and quaternary modulations over generalized fading 
channels, and development of a Markovian threshold model for 
block errors in correlated Nakagami-m fading channels). Tight 
upper and lower bounds for  that holds for any arbi-
trary real order  are also derived. 

I. MOTIVATION
The canonical representation of the M-th order generalized 

Marcum Q-function is given by [1]

, (1)

where  and  assume non-negative real values, and  is 
the M-th order modified Bessel function of the first kind. This 
quantity relates to the complementary CDF of a noncentral 
chi-square random variable (also known as generalized Rice 
distribution). If Y is the sum of squares of N statistically inde-
pendent Gaussian random variates (RVs) with means  and 

variance , then the CDF is given by 

, (2)

where  denotes the noncentrality parameter. Since 
the above CDF (2) corresponds to a quadratic summation of 
N/2 independent sampled matched filter receiver outputs for 
nonfading signal in Gaussian noise, it arises in numerous appli-
cations such as radar detection and performance evaluation of 
partially coherent, differentially coherent and noncoherent 
communications [2]-[4]. Thus reliable and efficient algorithms 
for computing  have been an active research subject 
for a considerable time (see [5]-[9] and references therein). 
However, all of the above algorithms (with the exception of 
our recent study [9]) are restricted to even values of N in (2) (or 
equivalently, the order M in (1) is a natural number). 
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Moreover, in the performance evaluation of partially coher-
ent, differentially coherent and non-coherent communication 
systems, the statistical average of ,  or 

 over the probability density function (PDF) of 
fading signal amplitude x, where a and b are modulation spe-
cific constants, is usually needed. Several integrals of the first 
two types have been studied by Nuttall [10]-[11]. The third 
form can be expediently handled by representing QM-function 
in a desirable exponential form in [2, Appendix C] analogy 
with Craig-type representation for the Gaussian Q-function 
[12]. Simon [13] also derives an equivalent sine integral repre-
sentation when M is a positive integer. Incidentally, Proakis [3, 
pp. 885] provides a complex contour integral representation for 

. In [14], we show that both Helstrom’s and Simon’s 
representations are special cases of this contour integral. As 
readers can verify, the entire development (i.e., expanding the 
QM-function as an infinite series of Bessel functions, replacing 
these by their trigonometric integral representations and sum-
ming up the resulting series) in [2, Appendix C] and [13] pre-
sumes that M is a positive integer (because  if v
is not an integer). 

Nevertheless,  with real order M arises in a few 
practical important cases: (i) the complementary CDF of non-
central chi-square RV with odd order N takes the form of 

; (ii) the PDF of SNR at the output of a 
dual-branch selection diversity combiner (SDC) in correlated 
Nakagami-m fading channels can be expressed in terms of 

, where  denotes the fading severity index; 
and (iii) the conditional bit error probability for a number of 
binary and quaternary modulation schemes can be expressed in 
terms of [7]. Thus a natural question is to ask 
whether [2, Appendix C] can be generalized to handle both 
integer and non-integer values of M? In [9], we derived an 
exponential-type integral expression for  that is valid 

for any real , viz., 

, (3)
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where ,

, (4)

and the “correction” term  is given by 

. (5)

Unlike (1), the alternative “exponential” integral representa-
tion (3) exhibits: (i) finite-range integral with upper and lower 
integration limits that are independent of  and ; (ii) the inte-
grand whose non-exponential part is a function of /  only; 
and (iii) the argument of the exponential term contains only 2,

2 and . These features greatly facilitate the averaging prob-
lem of  over generalized fading environments 
[4][7], and thus permits unified performance evaluation of par-
tially coherent, differentially coherent and noncoherent digital 
communications. 
Note that the term  vanishes for integer M, and more 
importantly, it retains the desirable properties necessary for the 
fading averaging problems. However, (4) and (5) assume an 
indeterminate form when  while , which explains 
the restriction on the region of validity of (3) stated above. 

However, (3) converge smoothly to  as 

, where  denotes the comple-

mentary incomplete Gamma function. Therefore, (3) can still 
be used for numerical evaluation when  by replacing it 

with a small value (e.g., ).

II. EXPONENTIAL-TYPE INTEGRALS OF 
It can be shown that (1) satisfies the recurrence relation 

,(6)

by integrating (1) by parts with ,

, and using identity [15, eq. (8.486.5)]

, (7)

which holds for arbitrary real v.
Next iterating (6) in the backward and forward directions and 
noting that  and , we obtain two 

formal Neumann series expansions for , viz., 

, (8)
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where the summation in (8) and (9) is in increments of one. 
Note that (8) is identical to [2, eq. (C-23)] but (9) differs from 
[2, eq. (C-24)] in that the sign of the order for  is oppo-

site from the latter. But  if v assumes an integer 
value. Notice also that (8) and (9) are valid regardless of the 
ratio  although these two series may convergence at 
different rates depending on the value of .
A. Case 

In order to derive (3), we should use [15, eq. (8.431.5)]

, (10)

in (8). Using [15, eqs. (8.485) and (8.432.1)], it can be shown 
that (10) is still valid when  while . Hence 
the restriction  in [15, eq. (8.431.5)] is unnecessary, 
except for direct numerical evaluation of (10) itself. Note also 
that the second RHS term of (10) vanishes if v is an integer. 
Substituting (10) into (8), we obtain 

. (11)

Now summing the geometric progressions in (11), we get

, (12)

for  using the identities [15, eqs. (1.447.1), (1.353.1), 
(1.447.2) and (1.353.3)], viz., 

, (13)

. (14)

Recognizing that , the common 
factor  from the numerator and denominator of the 
third RHS term of (12) can be cancelled out. Finally, using a 
variable substitution , we obtain (3).
B. Case 

 Although the series (9) is formally correct, it is less useful 
for computational purposes. The reason is that the values of a 
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modified Bessel function of non-integer order can be 
extremely large when the order is a large negative number (i.e., 
see the second integral term of (10)). The exponential integral 
that we derive next circumvents this difficulty, which in turn 
highlights the utility of (3) for computing  for 
non-integer order M while . Substituting (10) into (9) and 
letting  and  prior 
to summing the resulting geometric progressions using (13)
and (14), we obtain

, (15)

for .

Once again, the common factor  from the numerator 
and denominator of the second RHS term of (15) can be can-
celled out by noting that . Next, 

using a variable substitution , we obtain (3).
C. Case 

When , we must proceed by first combining 
(8) and (9), and then letting  so that

. (16)

Substituting (10) into (16) and carrying out the geometric 
series summations, we arrive at 

, (17)

for  using 

and . If M is a positive integer, then 
(17) simplifies into the familiar expression in [2, pp. 528] since 
the third RHS term of (17) vanishes in this case. Finally, we 
can show that (17) is equivalent to (3) using a variable substitu-

tion . In Section IV, we discuss two examples that 
highlight the computational/analytical utility of (3) for solving 
certain communication theory problems. 

III. TIGHT BOUNDS FOR 
In this section, we first derive a new infinite series represen-

tation of  which holds for any real  and subse-

quently show that  is a monotonically increasing 

function of  when all other parameters are kept constant. 
Then we show that  can be evaluated in closed-form 
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for the special case of half-odd positive integer orders (i.e., 
). Besides facilitating efficient compu-

tation of  for this particular case, our result lends 
itself to the development of tight upper and lower bounds on 

 for any real order .

Substituting  [15, eq. (8.445)] in 

(1), we obtain 

. (18)

To the best of our knowledge, (18) is new. When , (18)

simplifies into  (since all the 
terms in the summations except  reduce to zero), while 

 (since  and ). 

Similarly if  is a positive integer, then 
reduces into a finite polynomial. Besides, we can also conclude 
that  if  since the inequality 

 holds for any arbitrary real 
 and constant . This property will be exploited in 

the derivation of upper and lower bounds for .

Fig. 1.  plotted as a function of  for several 
distinct values of .

From [15, eq. (8.467)], we know that the modified Bessel 
function  can be expressed in closed form as 

, (19)

where  is a non-negative integer. Now sub-
stituting  into (1), we get 
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. (20)

Thus a closed-form formula for  may be derived 
by applying appropriate variable substitutions, expanding the 

resulting terms of the form  binomially, and 
using identity [15, eq. (3.351.2)]. However, a more concise 
closed-form expression for  can be attained with 
the aid of the recursion relation (6), namely 

.(21)

It is also important to recognize that  in (21) can 
be evaluated in closed-form (as shown in (22)) by letting 

 in (1) and carrying-out a few 
routine algebraic manipulations, viz., 

, (22)

where  denotes the 

Gaussian probability integral and . Finally, 
substituting (22) and (19) into (21), we get the desired expres-
sion for  ( ) in closed-form: 

. (23)

Since  is a monotonically increasing function with 

respect to its order  when both  and  are fixed, we may 
also employ (23) to derive new tight upper and lower bounds 
for  (which is valid for any real ) as 

, (24)

where  denotes the smallest half-odd integer that is greater 
than its argument, while  corresponds to the largest 
half-odd integer that is less than its argument. For instance, 

 if , and so 
on. Besides, we also obtain a good closed-form approximation 
for the generalized Marcum Q-function as 

, (25)
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IV. APPLICATIONS
A. Analysis of SDC in Correlated Nakagami-m Fading

The instantaneous SNR at the SDC receiver output, 
, has the PDF [14]

, (26)

where  (i = 1, 2) denote the mean branch SNRs,  is the cor-
relation coefficient between the two signal envelopes, and 

 corresponds to the Euler Gamma function. Since 
 as represented in (3) depends on the relative values 

of its arguments, it is convenient to first define an auxiliary 
function  if ,  if  and 

, and then re-write (3) as 
, (27)

so that we do not have to consider its use in (26) separately for 
the different regions of its arguments. Substituting (27) into 
(26) and using (4) and (5), we obtain 

, (28)

where  and . Eq. (28) generalizes 
[16, eqs. (7) and (9)] since it holds for both integer and 
non-integer  values. If we can find an alternative repre-
sentation of the conditional bit or symbol error probability 
(CEP)  in a “desirable” exponential-form [4][7], then 
(28) and identity (29) [15, eq. (3.381.4)] can be utilized to 
unify the ASER performance analysis of a broad class of digi-
tal modulation schemes:

(29)

In fact, the resulting expressions are more general yet more 
concise than those derived in [16] even for the specific case of 
positive integer fading severity index m.
B. Markovian Threshold Model for Block Error Rates

To study the effects of correlation properties of the fading 
mobile radio channels on data link layer protocols, it is plausi-
ble to consider a first-order Markov process (whose transition 
probabilities are a function of channel characteristics) to model 
the success/failure of transmission of data blocks. Here we 
wish to extend the analysis presented in [17] (for a Rayleigh 
channel) to a bivariate Nakagami-m channel. 
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In this model, the received signal power threshold  for 
making the block success/failure decision is given by the recip-
rocal of the fade margin  (i.e., ) while the state 
transition probabilities of the channel transition probability 

matrix  are defined as 

, (30)

, (31)

where  and  denote the CDF and the joint 

CDF of sampled normalized fading signal powers 
and  corresponds to the duration of a single data block. Thus 
the steady-state probabilities for the block success state and the 

block failure state can be computed as  and 

 respectively. For the bivariate Nakagami-m 

fading channel, we can show that 

, (32)

where  denotes the incomplete Gamma 

function and the correlation coefficient can be related to the 
normalized Doppler bandwidth  as in [17]. The average 

block error probability is given by  while 

represents the average length of burst errors. 
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