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Abstract—Multiple-input multiple-output (MIMO) systems
achieve significant diversity and array gains by using transmit
beamforming. When complete channel state information (CSI) is
not available at the transmitter, a common set of beamformers
(codebook) is used by both the transmitter and the receiver. For
each channel realization, the best beamformer is selected at the
receiver and its index is sent back to the transmitter via a limited
feedback channel. In this paper, a codebook design method
using the genetic algorithm is proposed, which reduces the design
complexity and achieves large minimum-distance codebooks. Ex-
ploiting the specific structure of these beamformers, an order and
bound algorithm is proposed to reduce the beamformer selection
complexity at the receiver side. The exact bit error rate (BER)
of the optimal beamforming in finite-series expression is used
to facilitate the BER analysis of limited feedback beamforming.
By employing a geometrical approach, an approximate BER of
limited feedback beamforming is derived when the codebook
size is relatively large (high resolution analysis). The simulation
results show that the approximate BER is comparatively tight
even for small size codebooks.

Index Terms—Limited feedback beamforming, Grassmannian
line packing, genetic algorithm, largest eigenvalue distribution,
central Wishart matrix, high resolution analysis.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) wireless
channels, created by deploying antenna arrays at both

the transmitter and the receiver, promise high capacity and
high quality wireless communication links [1], [2]. To fully
exploit the benefits of MIMO channels, space-time modulation
and receiver algorithms are required, providing a sensible
performance and complexity tradeoff [3]. Popular MIMO
techniques commonly assume the availability of channel state
information (CSI) at the receiver, but not at the transmitter.
However, in a slow fading environment, complete [4]–[6] or
partial CSI [7]–[11] may be available at the transmitter. CSI at
the transmitter may be exploited in two ways: antenna subset
selection [12]– [14] and precoding. The optimum precoder
matrix can be obtained based on the eigen structure of the
channel matrix [4].
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In transmit beamforming, the optimal beamformer selects
the subchannel corresponding to the largest singular value of
the channel matrix by weighting the transmit signals with the
corresponding eigenvector [15]. Transmit beamforming can
achieve full diversity and array gain with a simple receiver
structure. However, the bandwidth limits on the feedback
channel [16] limits the availability of full CSI at the transmitter
and therefore limited feedback beamforming techniques are of
interest.

In limited feedback beamforming, the transmitter and re-
ceiver share a codebook of beamformers. Several methods
have been proposed in the literature for codebook design,
mainly based on vector quantization (VQ) and Lloyd algorithm
[7], [17]–[19], or based on maximization of the minimum
distance between each pair of beamformers in the codebook
[8], [10], [11]. The simulation results show that the codebooks
obtained by both methods perform identically in Rayleigh
fading channels [20], [21]. The design complexity of these
methods is large when the size of the codebook is large.

The authors in [10] map the design problem into the
Grassmannian line packing (GLP) problem [22] and use the
unitary structure presented in [23] for codebook design. This
structure, originally proposed for differential unitary space-
time modulation (DUSTM), consists of a diagonal matrix and
a rectangular sub-matrix of the Discrete Fourier Transform
(DFT) matrix. The diagonal terms are points on the unit circle
in the complex plane where their angles are defined by integers
that should be optimized offline. These angles are the only
parameters that should be saved at the transmitter and receiver.
Therefore, the implementation of the codebooks based on GLP
needs small resources (memory), whereas in other previous
design methods the whole codebook should be saved at the
transmitter and receiver.

This paper uses the same unitary structure as [23], [10]
and [11]. In these papers, the optimum rotation matrix is
obtained via exhaustive search for small dimensions (number
of antennas and/or codebook size) and random search for
large dimensions. We propose to use the genetic algorithm
[24] to find the optimum parameters. For this purpose, the
design parameters are relaxed from positive integers [11] to
positive real values. The simulation results show that the
genetic codebooks not only achieve a larger minimum distance
than those of [11], but also reduce the optimization complexity.

In limited feedback beamforming, the receiver selects the
best beamformer for each realization of the channel by exhaus-
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tive search over the codebook. However, by exploiting the spe-
cific structure of the GLP codebooks, we present an order and
bound algorithm to reduce the receiver’s search complexity. In
this algorithm, the beamformers of the codebook are ordered
based on their vicinity to the optimal beamformer. The original
beamformer selection, which is a maximization problem, is
converted to a minimization problem, allowing the use of
bounding techniques. Metric Bounding is the basic scheme
used by minimization algorithms such as sphere decoders [25]
to avoid unnecessary computations.

The performance of optimal transmit beamforming has been
analyzed in the literature previously. In [26], the cumulative
density function (cdf) and probability density function (pdf)
of the largest singular value of the channel matrix, presented
in the form of generalized hypergeometric functions, are used
to calculate the outage probability in a system with optimal
transmit beamforming. The expressions in [27] are in the
form of infinite series of averaged BER over the distribution
of the largest eigenvalue of central Wishart matrix, which
itself is in the form of a hypergeometric function with matrix
arguments. In general, hypergeometric functions are very slow
converging functions, and therefore the final result presented
in [27] is numerically hard to compute. This fact motivates
another representation for the pdf of the largest eigenvalue
of central Wishart matrix. We exploit the exact closed-form
expression for the BER performance of the optimal transmit
beamforming presented in [28] which is in finite series and
therefore appropriate for the BER analysis of limited feedback
beamforming.

The performance analysis of limited feedback beamform-
ing is complicated for general MIMO systems. However,
for multiple-input single-output (MISO) systems, the outage
probability of transmit beamforming has been studied in [8],
the symbol error rate with transmit correlation in [29] and
a lower bound on the symbol error rate in [20]. In [30], a
framework using high-resolution quantization theory is pro-
posed for distortion analysis of MIMO systems with feedback
where the distortion function is the capacity loss in a MISO
system with limited feedback. Similarly, the authors in [21],
use the SNR (signal-to-noise ratio) loss and outage capacity
for distortion analysis of MIMO systems with limited feedback
beamforming. In this paper, however, by assuming a large
size codebook as [30] and [21] (high resolution analysis), we
analyze the BER of limited feedback MIMO beamforming. By
employing a geometrical approach, we derive an approximate
BER of limited feedback MIMO beamforming in closed-form.
The simulation results show that the approximate BER is
comparatively tight even for small size codebooks.

II. SYSTEM MODEL

Consider a narrow-band, flat fading communication system
with Nt transmit and Nr receive antennas (MIMO(Nt, Nr)).
In a beamforming scenario, the linear transformation between
the transmit and receive antennas can be modeled as

x =
√

ρHfs + v (1)

where the vector x ∈ CNr is the complex received vector,
s is the transmitted signal, f ∈ CNt is the beamformer
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Fig. 1. Block diagram of a MIMO system with limited feedback transmit
beamforming.

vector, v ∈ CNr is the additive noise vector, H ∈ CNr×Nt

is the channel matrix and ρ is the total transmit power at
each signaling interval. Entries of H and v are independent
and identically distributed (i.i.d.) complex Gaussian random
variables with zero mean and unit variance, CN (0, 1). For
each transmission, according to the input information, s is
chosen from a signal constellation (e.g. PAM or QAM) with
unit average energy. The transmit signal is weighted and
parallelized by the beamformer f to be sent over Nt transmit
antennas. To ensure that the transmit power on each signaling
interval is ρ, the beamformer vector should satisfy the power
constraint: |f∗f | = 1 where (·)∗ and | · | denote the Hermitian
(transpose conjugate) and absolute value, respectively.

To obtain the equivalent single-input single-output (SISO)
system model of transmit beamforming, we combine the
received signals by multiplying (1) with w∗. The optimum
combiner vector w, which maximizes the received SNR for
each transmitted symbol, is w = Hf [3]. Therefore, the
equivalent SISO model of transmit beamforming will be

s̃ =
√

ρ ‖Hf‖2 s + z (2)

where z is the additive white noise with CN (0, ‖Hf‖2)
distribution and ‖ · ‖ denotes the Frobenius norm. Based
on (2), the received SNR (γ) for each transmitted symbol
is γ = ρ ‖Hf‖2. Considering the ordered singular value
decomposition (SVD) of the channel matrix as H = UΣV∗

where U ∈ UNr×Nr and V ∈ UNt×Nt are unitary matrices,
i.e. U∗U = I, and Σ ∈ RNr×Nt

+ is a diagonal matrix with
decreasing order, i.e. σi � σi+1 , i = 1, ..., m, we have:

‖Hf‖2 = ‖ΣV∗f‖2

= σ2
1 |v∗1f |2 +

m∑
i=2

σ2
i |v∗i f |2 (3)

where m = min(Nt, Nr) and vi , i = 1, ..., Nt , is the ith right
eigenvector of the channel matrix corresponding to the ith
largest singular value. Clearly, the optimal beamformer (which
maximizes the received SNR) is fopt = v1 and consequently
γopt = ρ σ2

1 . The optimal beamforming is applicable in very
slow fading environments or when the system uses time
division duplex (TDD) technique for transmission where the
transmitter and receiver use the same bandwidth.
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In limited feedback systems where fopt is not available at
the transmitter, we use a pre-designed set (codebook) F of
L = 2Nb beamformers (Fig. 1) where Nb is the number of
feedback bits. For a given H, the only feedback parameter is I
which is the index of fI ∈ F that maximizes ‖Hfk‖2 , ∀ fk ∈
F .

This paper will investigate the following issues:

• How the codebook F should be designed?
• How the appropriate beamformer fI should be selected

from F for each realization of the channel?
• How well a given codebook F with L beamformers will

perform?

III. CODEBOOK DESIGN

In suboptimal beamforming, a vector f is used instead of
the optimal v1 and the received SNR per symbol is related to
‖Hf‖2. Thus, it is convenient to define the following distortion
minimization problem [11] as a figure of merit for codebook
F :

EH

{
min
f∈F
(‖Hv1‖2 − ‖Hf‖2)} . (4)

It has been shown [11] that the minimization in (4) leads to
the maximization of the chordal distance between any pairs
of precoders in F . The chordal distance is defined as

dc(fi, fj) =
1√
2
‖fif∗i − fjf∗j ‖

=
√

1− λ2(f∗i fj)

=
√

1− |f∗i fj |2 � sin(θij) (5)

where 0 � i �= j < L and θij denotes the angle between pair
vectors (fi, fj) ∈ F . The optimum codebook is the one with
the maximum θmin defined as

θmin � min
∀fi �=fj∈F

arcsin
(√

1− |f∗i fj |2
)

(6)

� arcsin

(√
L

L− 1
× Nt − 1

Nt

)
(7)

where the inequality (7) is called the Welch bound [31] or
Rankin bound [22] for L � Nt.

Finding a codebook (a pack) F of L vectors in Nt

dimensional complex space with maximum possible θmin

(6), is called Grassmannian line packing problem in applied
mathematics and information theory [10], [22]. For arbitrary
L and Nt, line packings that achieve equality in (7) are
often impossible to design. The most practical method for
generating packings is to use the unitary matrix structure
proposed in [23] for non-coherent space-time modulation.
Similar to the codebook structure proposed in [23] that can be
easily implemented and yields codebooks with large minimum
distances, the authors in [10] construct the codebook F as
follows

F =
{
fk
∣∣ fk =

1√
Nt

[
ej 2π

L ku1 , ej 2π
L ku2 , . . . , ej 2π

L kuNt

]T
, k = 0, . . . , L− 1

}

where 0 � ui < L are the integer design parameters and
should be optimized as follows

u = argmax
{ui}

min
1�k<L

dc(f0, fk)

where u = [u1, u2, . . . , uNt ]T .
In previous works [23], [11], the design parameters, {ui},

are restricted to integers. Exhaustive computer search or
random search for their optimum values is employed since
analytical determination of the optimum appears impossible.
Moreover, because the computational complexity increases
exponentially with dimensions (Nt and L), it is impossible
to find the optimum parameters for large dimensions with
exhaustive search.

To overcome these problems, we propose to employ the
genetic algorithm [24]. Although it does not guarantee the
global optimality, we find that genetic solutions have larger
θmin than the optimum values from exhaustive search. This
seemingly contradictory result is obtained by relaxing the
design parameters to be real rather than integer numbers, i.e.
the codebook F is constructed as follows

F =
{
fk
∣∣ fk =

1√
Nt

[
ejkα1 , ejkα2 , . . . , ejkαNt

]T
, k = 0, . . . , L− 1

}
(8)

where 0 � αi < 2π are the design parameters and should be
optimized as follows

α = argmax
{αi}

min
1�k<L

dc(f0, fk) (9)

where α = [α1, α2, . . . , αNt ]T . This relaxation increases the
search space of the design parameters, thereby improving the
chance to obtain codebooks with larger θmin.

Genetic algorithm is an adaptive heuristic search algorithm
based on the evolutionary ideas of natural selection and genet-
ics. It represents an intelligent exploitation of a random search
used to solve optimization problems. Although randomized,
genetic algorithm is by no means random, instead it exploits
historical information to direct the search into the region of
better performance within the search space. Genetic algorithm
simulates the survival of the fittest among individuals over
consecutive generations for solving a problem. In our prob-
lem, fitness of a solution is determined by θmin (6). Each
generation consists of a population of bit (gene) strings that
are analogous to the chromosome that we see in our DNA.
Each individual represents a point in the search space and
a possible solution. By assuming Ng bits (genes) for each
αi in (9), we define a string of Ng × Nt bits for each
solution (individual in the population). The individuals in the
population are first generated randomly, and then are made
to go through a process of evolution. A fitness score (θmin)
is assigned to each solution representing the ability of an
individual to compete. Individuals with higher fitness scores
are selected as parents for the next generation with higher
probability.

In a basic genetic algorithm, the next generation is com-
posed of three types of children as follow:
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Fig. 2. Multi-point crossover.

Fig. 3. Scattered crossover.

• Elite Children: Children in the current generation are
selected for the next generation based on their fitness
values. Since the selection rule here is probabilistic not
deterministic, fitter solutions (larger θmin) are typically
more likely to be selected.

• Crossover Children: These children are created by com-
bining pairs of parents in the current population. Gen-
erally, the crossover operation recombines selected solu-
tions (parents) by swapping parts of them for producing
divergent solutions to explore the search space. Many
crossover techniques exist to produce a child of a pair
parents. However, all of them are surprisingly simple
to implement, involving random number generation and
some partial string exchange. Fig. 2 and Fig. 3 illustrate
two different techniques used in crossover generation.
Scattered crossover is a popular technique used for
crossover generation. This method first creates a random
binary vector with the same size of parents. Then if the
ith bit is 0, corresponding gene is selected from the first
parent, otherwise it is selected from the second parent.
Ultimately, all selected genes are combined to form the
child.

• Mutation Children: The algorithm generates mutation
children by randomly changing the bits of individual
parent in the current population. This process can be done
by adding a random vector from a Gaussian distribution
to the parent. The aim of mutation in the algorithm is
to avoid local optima by preventing the population from
becoming too similar to each other, thus slowing or even
stopping the evolution.

As a result, new mutated members along with new crossed
over members and the rest of those selected from the previous
population form the new generation. The genetic algorithm
terminates when there is no improvement in the objective
function for a specific number of successive iterations. In-
terested readers are referred to [24] and [32] for sophisticated
genetic algorithms and more information about the algorithm
such as robustness, marginal and large dimensional behavior,
comparisons and benefits over other optimization techniques,
etc.

TABLE I
θmin (IN DEGREES) OF BEAMFORMERS OBTAINED BY GENETIC

ALGORITHM AND EXHAUSTIVE SEARCH AND THEIR CORRESPONDING
WELCH BOUND.

Nt Nb L θmin(exhaustive) θmin(genetic) θmin(Welch)

4 3 8 60.00 64.67 81.78
4 4 16 54.43 57.32 78.46
4 5 32 45.00 47.68 76.95
4 6 64 37.12 38.93 76.22
4 7 128 29.92 31.33 75.87
6 3 8 72.06 75.76 87.27
6 4 16 64.18 67.27 83.62
6 5 32 61.87 64.11 81.96
6 6 64 55.92 57.65 81.17
6 7 128 50.75 51.97 80.78

Table I shows the θmin obtained by using exhaustive search
and by the genetic algorithm. For comparison, the Welch
bound for θmin is also included. Our simulations show that
using Ng = 8 bits for each αi is enough to obtain the results in
Table I. The genetic solutions, not only have a larger θmin than
those from exhaustive search, but also are obtained much faster
than exhaustive search due to the computational complexity of
exhaustive search in large dimensions (Nt and L). Genetic
optimization can also be used for other applications such
as precoder design for multiplexing and code design for
differential unitary space-time modulation [33].

Although there are other methods proposed in the literature
for codebook design, particularly based on vector quantization
(VQ) and Lloyd algorithm [7], [17]–[19], the simulation results
show that the codebooks obtained by other methods perform
the same as GLP codebooks in the Rayleigh fading channels
[20], [21], and the design complexity of all previous methods
is large when the size of the codebook is high. But codebook
design using the structure proposed in (8) and by exploiting
the genetic algorithm has the following benefits:

• Genetic solutions have larger θmin.
• Genetic algorithm reduces the design complexity effec-

tively, especially in large dimensions.
• The only parameters that should be saved at the trans-

mitter and receiver are {α1, α2, ..., αNt}, and thus this
method is easy to implement, while in other methods,
the whole codebook should be saved at the transmitter
and receiver.

• The structure proposed in (8) allows us to propose a
faster algorithm than exhaustive search to reduce the
beamformer selection complexity at the receiver side.
This algorithm is presented in the next section.

IV. BEAMFORMER SELECTION

For every realization of the channel matrix H, the best
beamformer fI ∈ F is selected and only the index I is fed
back to the transmitter. Since the codebook F is known to
the transmitter, it uses fI to beamform the signals. Since the
received SNR for each symbol is γ = ρ ‖HfI‖2, I must be
selected from the following optimization problem:

I = arg max
0�k<L

‖Hfk‖2 (10)
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where fk is defined in (8).
The maximization problem in (10) is simply an exhaustive

search over all members of F , which can be computationally
complex for large dimensions (L, Nt and also Nr). Moreover,
the beamformers in F should be stored at the receiver and
transmitter which needs dedicated memory, specially for large
dimensions. Therefore, it is expedient to find an intelligent
algorithm to solve (10) efficiently with reasonable memory,
particularly when the structure of the beamformers is known.

According to the Rayleigh-Ritz inequality [34] ‖Ha‖2 �
σ2

max(H) when ‖a‖2 = 1, or equivalently σ2
max(H) −

‖Ha‖2 � 0 when ‖a‖2 = 1. Thus, the maximization problem
(10) can be changed to the following minimization problem:

I = arg min
0�k<L

σ2
max(H)− ‖Hfk‖2

= arg min
0�k<L

σ2
max(H)f∗k I∗Ifk − f∗kH∗Hfk

= arg min
0�k<L

f∗kGfk

where I is the identity matrix and G = λmax(H∗H)I−H∗H.
Finally by Cholesky decomposition of G as G = R∗R where
R is an upper triangular matrix, we have

I = arg min
0�k<L

‖Rfk‖2. (11)

Due to the upper triangularity of R and by expanding ‖Rfk‖2
to its scaler form

‖Rfk‖2 =
1∑

q=Nt

∣∣∣∣∣
Nt∑
t=q

rq,t fk,t

∣∣∣∣∣
2

, (12)

it can be seen that (12) consists of an outer sum of non-
negative real terms where the computational load of each term
is increased when the index of the outer sum (q) is decreased.
Thus, if we know that ‖RfI‖2 � B where B is a bound,
we can compare the outer sum value in (12), index by index,
to the bound B and if it is greater than the bound, the rest
of the computations (for the given fk) are discarded. By this
bounding technique, the computational complexity of (11) is
reduced efficiently.

Clearly, the bound B plays a critical role on the complexity
reduction. Initially, B is set to infinity for the first fk, i.e.
f0, but for the rest of fk’s, k = 1, 2, . . . , L − 1, B is set to
the minimum ‖Rfk‖2 obtained thus far during the algorithm.
Consequently, it is expedient to run the proposed algorithm
in a rational ordering for k (not simply k from 0 to L − 1)
so that the probability of obtaining as small B as possible in
primary k’s, is as high as possible.

We resort to the geometry of Nt dimensional vectors in
F . We define fk0 as the reference vector for any arbitrary
0 � k0 < L, and the reference set Θ = {θ0, θ1, . . . , θL−1}
where θi � arcsin

(√
1− |f∗k0

fi|2
)

is the angle between pair

vectors (fk0 , fi). For a realization of the channel matrix H,

we calculate θH � arcsin
(√

1− |f∗k0
v1|2
)

where v1 is the
right eigenvector corresponding to the largest singular value
of H. Then an ordered set K of the angle indexes in Θ is
constructed based on their vicinity to θH, or equivalently

Algorithm 1: The order and bound algorithm
Data : H, Θ, f0
Result: I
[U,Σ,V]← svd(H) ; λmax ← max( diag(Σ) )2 ;
v1 ← V(:, 1) ; θH ← arcsin

(√
1− | f∗0 v1 |2

)
;

K ← Index {Sort { |Θ− θH| }} ;
R← chol(λmaxI−H∗H) ;
L← size(Θ) ; N ← size(R) ;
B ← ∞ ; d0 = |R(N, N) |2;
for i = 1 : L , do

k ← K(i) ; fk ← fk
0 ; d← d0 ;

for q = N − 1 : −1 : 1 , do
d← d + |R(q, q : N) fk(q : N) |2 ;
if d > B then

break;
else

if q == 1 then
B ← d ;
I ← k ;

end
end

end
end

K = Index
{

Sort
{ |Θ− θH|

}}
(13)

where Index{|θk − θH| } = k and the operator Sort{·} sorts
its argument set from minimum to maximum. Thus, search for
the minimum in (11) is re-ordered as follows:

I = argmin
k∈K
‖Rfk‖2 (14)

In summary, for a given codebook, the angle set Θ is
calculated and stored at the receiver. For a given channel
matrix H, θH is computed and the ordered set K (13) is
constructed. Then the minimization in (14) is executed with
respect to the structure of ‖Rfk‖2 (12) and the bound B.
This algorithm is referred to as order and bound algorithm.
Algorithm 1 presents the semi-code of the algorithm where f0
is adopted as the reference vector.

V. PERFORMANCE ANALYSIS OF OPTIMAL TRANSMIT

BEAMFORMING

In order to perform the BER analysis of limited feedback
beamforming, we first present the exact BER of optimal
transmit beamforming. Although the performance of optimal
transmit beamforming has been analyzed in the literature
before, those expressions are infinite series and therefore
are not suitable for our BER analysis of limited feedback
beamforming presented in Section VI.

Since in optimal beamforming the right eigenvector corre-
sponding to the largest singular value of the channel matrix
(v1) is used for beamforming, by substituting (3) into (2), the
system model for optimal beamforming becomes
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s̃ =
√

ρ σ2
1 s + z (15)

where z is the additive white noise sample with CN (0, σ2
1

)
distribution.

A. Exact BER expression for PAM and QAM

Assume the transmitted signal s in (15) is selected from a
I×J rectangular QAM constellation with unit average energy
and a Gray code mapping [35]. I and J denote the number of
in-phase and quadrature amplitudes respectively. We define

PI|σ2
1
(k) =

(1−2−k)I−1∑
i=0

βI(k, i)Q
(√

η(i)σ2
1

)
(16)

where

βI(k, i) = (−1)�
i 2k−1

I �
(

2
I

)(
2k−1 −

⌊
i 2k−1

I
+

1
2

⌋)
,

(17)

Q(x) =
1√
2π

∫ ∞

x

e−
u2
2 du , (18)

η(i) =
6(2i + 1)2ρ
I2 + J2 − 2

(19)

and 	x
 denotes the largest integer to x. Now the average BER
of the I×J rectangular QAM conditioned on σ2

1 is expressed
as [36]

Pb|σ2
1

=
1

log2(I · J)

⎛
⎝log2 I∑

k=1

PI|σ2
1
(k) +

log2 J∑
l=1

PJ|σ2
1
(l)

⎞
⎠ .

(20)
Note that (20) reduces to the BER of BPSK for I = 2 and
J = 1, I-array PAM for J = 1, and M -array square QAM for
I = J =

√
M . Thus, the exact BER is obtained by averaging

(20) over the distribution of σ2
1 . Interested readers may refer

to [36] for more details on the derivation of (16) and (20).

B. Distribution of the largest singular value of H

Assume m = min(Nt, Nr), n = max(Nt, Nr) and the
Hermitian matrix W ∈ Cm×m defined as

W =

{
H∗H if Nt � Nr

HH∗ if Nt > Nr

.

The nonzero singular values of H correspond to the eigen-
values of W by λi = σ2

i , i = 1, . . . , m. Therefore, λ1 =
λmax(W) and σ2

1 have the same distribution. When H is
a complex random matrix of i.i.d. elements with CN (0, 1)
distribution, W is a central complex Wishart matrix.

The distribution of λ1 for the central complex Wishart
matrix was originally calculated in general form by Khatri
[37] in the form of hypergeometric functions with matrix
arguments [38]. This result has been used in [26] to cal-
culate the outage probability ( Pr[γ = ρλ1 � γth] ) of a
system with optimal transmit beamforming. The result has
also been used in [27] for BER analysis of BPSK and
BFSK modulations in optimal beamforming. Consequently,

the final BER expressions presented in [27] are infinite series.
Since the hypergeometric functions with matrix argument are
numerically hard to compute [39], averaging (16) over this
representation of the distribution of λ1, makes the final results
infinite series that are numerically hard to compute [27] and
makes the BER analysis of limited feedback beamforming
complicated.

On the other hand, it is easy to verify [40] that the pdf of
λ1 can also be represented by

fλ1(λ1) =
m∑

t=1

e−tλ1Gt(λ1) (21)

where

Gt(λ1) =
Dt∑
j=0

at,j λj
1 (22)

denotes the corresponding polynomial coefficient of e−tλ1 ,
Dt is the degree of Gt(λ1) and the coefficients at,j can be
tabulated by simple integrations [28].

By averaging (16) over the pdf of λ1 (21), we obtain

PI(k) =
(1−2−k)I−1∑

i=0

βI(k, i)
m∑

t=1

Dt∑
j=0

at,j

tj+1
φ
(
j + 1, t, η(i)

)
(23)

where

φ(N, t, α) = Γ(N)
(

1− μ

2

)N N−1∑
r=0

(
N − 1 + r

r

)(
1 + μ

2

)r
(24)

and

μ =
√

α

2t + α
.

Consequently, the average BER of the I × J rectangular
QAM signal transmitted through the system model in (15)
is expressed as

Pb =
1

log2(I · J)

⎛
⎝log2 I∑

k=1

PI(k) +
log2 J∑
l=1

PJ (l)

⎞
⎠ . (25)

VI. PERFORMANCE ANALYSIS OF LIMITED FEEDBACK

BEAMFORMING

The performance analysis of limited feedback beamforming
has been studied in [29] for MISO systems with transmit
antenna correlations. The analysis involves an L−tuple inte-
gration with infinite limits, which is computationally difficult
even for small L (codebook size). On the other hand, a
geometric approach has been proposed in [8] for the outage
probability analysis and used in [20] for a lower bound on the
symbol error rate of transmit beamforming, both for MISO
systems. By using high-resolution quantization theory, the
capacity loss in a MISO system with limited feedback has been
derived in [30]. Similarly, the SNR loss and outage capacity
of MIMO systems with limited feedback beamforming have
been approximated in [21]. In this section, however, without
distortion analysis, we analyze the BER of limited feedback
beamforming for general MIMO systems.
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Assume that codebook F with L beamformers is obtained
by maximizing the minimum distance (6) where each vector
in F represents a point on the Nt-dimensional complex unit
hypersphere. For a large size codebook, the vector points are
uniformly distributed over the surface of the unit hypersphere.
On the other hand, the optimal beamformer v1 uniformly
rotates on the unit hypersphere when channel gains are i.i.d
distributed. Therefore, for a large size codebook we have:

lim
L→∞

|v∗
1fI | = 1 , lim

L→∞
|v∗

i fI | = 0 , i = 2, . . . , Nt (26)

where fI is selected from (10) and vi is the right eigenvector
corresponding to the ith largest singular value of the channel.
Considering (26) and the fact that σ1 � σ2 � · · · � σm, we
assume the following approximation to simplify the analysis:

m∑
i=2

σ2
i |v∗

i fI |2 ≈ 0 (27)

With this approximation, from (2) and (3) the equivalent
channel model for limited feedback transmit beamforming will
be

s̃ =
√

ρ λ1(1−X) s + z (28)

where
X � 1− |v∗

1fI |2 = d2
c(v1, fI) , (29)

z ∼ CN (0, λ1(1 − X)) and λ1 = λmax(W). Assuming the
transmitted signal s in (28) is selected from a I×J rectangular
QAM constellation with unit average energy and a Gray code
mapping, the average BER of the system conditioned on λ1

and X is expressed as

Pb|λ1, X =
1

log2(I · J)

⎛
⎝log2 I∑

k=1

PI|λ1, X(k) +
log2 J∑
l=1

PJ|λ1, X(l)

⎞
⎠

(30)
where

PI|λ1, X(k) =
(1−2−k)I−1∑

i=0

βI(k, i)Q
(√

η(i)λ1(1 −X)
)

,

(31)
and βI(k, i) and η(i) are defined in (17) and (19).

Since eigenvalues and eigenvectors of the central Wishart
matrix are independent [40], therefore λ1 and X are in-
dependent for i.i.d. channel matrix. Thus, we first average
PI|λ1, X(k) over λ1 using the distribution of λ1 presented in
(21) to obtain

PI|X(k) =
(1−2−k)I−1∑

i=0

βI(k, i)

×
m∑

t=1

Dt∑
j=0

at,j

tj+1
φ
(
j + 1, t, (1−X)η(i)

)
(32)

where φ
(
j + 1, t, (1 − X)η(i)

)
, defined in (24), should be

averaged over the distribution of X .

To obtain the distribution of X , we use the geometri-
cal method presented in [8]. For each vector fk ∈ F , a
spherical cap is defined on the surface of the hypersphere
Sk(x) =

{
v1 | d2

c(v1, fk) � x
}

where 0 � x � 1. By defining
A{Sk(x)} as the area of the cap Sk(x), it is shown [8] that

A{Sk(x)} =
2πNtxNt−1

(Nt − 1)!
. (33)

Equation (33) shows that the surface of the unit hypersphere
grows exponentially with Nt. Therefore, when Nt is increased,
L should be increased accordingly so that the limits in (26)
and the approximation in (27) hold tightly.

According to the definition of X in (29), we have

FX(x) = Pr

{ [
d2

c(v1, f0) � x
]

or
[
d2

c(v1, f1) � x
]

or

· · · or
[
d2

c(v1, fL−1) � x
]}

where FX(x) denotes the cdf of X . When the channel matrix
entries are i.i.d., the optimal vector v1 is uniformly distributed
on the surface of the unit hypersphere. Therefore, we have

FX(x) =
A
{∪L−1

k=0 Sk(x)
}

A {Sk(1)}
where ∪L−1

k=0 Sk(x) denotes the union of the regions
{Sk(x)} , k = 0, . . . , L− 1. Using (33) and the fact that

A
{∪L−1

k=0 Sk(x)
}

�
L−1∑
k=0

A {Sk(x)} ,

we obtain

FX(x) �
∑L−1

k=0 A {Sk(x)}
A {Sk(1)} = L xNt−1 . (34)

Finally, by taking into account that FX(x) � 1, the following
approximate cdf and pdf for X can be defined:

FX(x) ≈

{
L xNt−1 , 0 � x � X0

1 , x > X0

(35)

fX(x) = L (Nt − 1)xNt−2 , 0 � x � X0 (36)

where X0 =
(

1
L

) 1
Nt−1 .

Now by using the pdf of X (36), we can calculate the
average of PI|X(k) over the distribution of X . By defining

φL(N, t, α) = Γ(N)
N−1∑
r=0

(
N − 1 + r

r

)
L(Nt − 1)

2N+r

×
∫ X0

0

xNt−2
[
1 + μ(x)

]r[1− μ(x)
]N

dx (37)

where

μ(x) =

√
α(1 − x)

2t + α(1 − x)
,
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Fig. 4. Average flops of beamformer selection with exhaustive search and
order and bound algorithm for MIMO(4,5) versus codebook size.

we conclude that

PI(k, L)=
(1−2−k)I−1∑

i=0

βI(k, i)
m∑

t=1

Dt∑
j=0

at,j

tj+1
φL

(
j + 1, t, η(i)

)
(38)

and consequently the approximate BER of a MIMO system
with L beamformers is expressed as

Pb(L) ≈

1
log2(I · J)

⎛
⎝log2 I∑

k=1

PI(k, L) +
log2 J∑
l=1

PJ (l, L)

⎞
⎠ .

(39)
The accuracy of this approximate BER is verified in the next
section.

VII. SIMULATION RESULTS

We first verify the computational performance of the order
and bound algorithm, presented in Section IV for beamformer
selection at the receiver side. Fig. 4 shows the average
flops (floating point operations) of beamformer selection with
exhaustive search and with the order and bound algorithm. By
exploiting the proposed ordering and bounding method, the
beamformer selection complexity is reduced 68% for Nb = 7
and 80% for Nb = 12, in a MIMO system with Nt = 4
transmit antennas and Nr = 5 receive antennas. The flops of
the order and bound algorithm includes the flops consumed
by the singular value decomposition and Cholesky decompo-
sition. Since the complexity order of both decompositions is
O(N3

t ), for small size codebooks, specifically Nb = 3 in Fig.
4, the order and bound algorithm is more complex than the
exhaustive search.

The complexity of exhaustive search mostly depends on
the number of receive antennas, Nr, and codebook size, L,
while the complexity of the order and bound algorithm mostly
depends on the number of transmit antennas, Nt, and code-
book size, L, and almost independent of the number of receive
antennas, Nr. Therefore, due to the dependency of the order
and bound algorithm on SVD and Cholesky decomposition

2 3 4 5 6 7 8 9 10
103

104

105

N
t

Fl
op

s

Exhaustive Search
Order&Bound Algorithm

Fig. 5. Average flops of beamformer selection with exhaustive search and
order and bound algorithm for MIMO with Nr = 5 receive antennas and
Nb = 7 bits of feedback versus number of transmit antennas.

with O(N3
t ) order of complexity, when the number of transmit

antennas is higher than the number of receive antennas, the
complexity of proposed algorithm exceeds the complexity of
exhaustive search (Fig. 5). Clearly, this issue depends on the
codebook size since the sensitivity of exhaustive search to
codebook size is significant.

Next, the approximate BER expression of limited feedback
transmit beamforming (39) is evaluated. The approximate BER
of MIMO(4,2) and MIMO(4,3) systems with L = 8, 32 and
128 beamformers are illustrated for 4-QAM and 16-QAM
in Fig. 6 and Fig. 7 (On the figures, SNR represents ρ
in (1)). For comparison, the exact simulated BER and the
BER of the optimal transmit beamforming are included. GLP
Codebooks have been used for the simulations. Although
our approximate analysis was for large size codebooks, the
simulation results show that the approximate BER expression
in (39) is satisfactory tight even for small size codebooks.

For small size codebooks, the approximation made in (27)
is not tight and consequently the effective SNR used in the
equivalent system model (28) is less than the actual SNR
used by the system. Therefore, we expect the approximate
BER curves for small L to be an upper bound for the curves
obtained by simulations. On the other hand, for large size
codebooks, the approximation in (27) is tight enough, but since
we used an upper bound approximation for FX(x), going from
(34) to (35), the effective SNR used in the equivalent system
model (28) is larger than the actual SNR used by the system.
Therefore, we expect the approximate BER curves for large
L to be a lower bound for the curves obtained by simulations.
These behaviors are clearly observable in Fig. 6 and Fig. 7.

VIII. CONCLUSIONS

This paper develops the genetic GLP beamformer code-
books. The design parameters are relaxed from positive in-
tegers to positive real values (angles). The simulation results
show that the genetic GLP codebooks achieve a larger mini-
mum distance than those of [10] and reduce the optimization
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Fig. 6. BER of MIMO(4,2) system obtained from simulation and closed-
form approximation for 4-QAM and 16-QAM signalings. Pair curves from
left to right are for Nb = 7, 5 and 3 feedback bits, respectively.

complexity. By exploiting the specific structure of the GLP
codebooks, the order and bound algorithm has been proposed
to reduce the beamformer selection complexity at the receiver.
This algorithm uses bounding techniques and avoids unneces-
sary computations.

By employing the singular value distribution of the chan-
nel matrix, the exact closed-form expression for the BER
performance of the optimal beamforming was presented in
finite summations for PAM and QAM constellations. The
resulting expression was used to simplify the BER analysis
of limited feedback transmit beamforming. By assuming a
large size codebook (high resolution analysis) and employing a
geometrical approach, an approximate BER performance for
limited feedback beamforming was derived. The simulation
results show that the approximate BER is satisfactorily tight
even for small size codebooks.
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