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Abstract—Can conventional differential unitary space time
modulation (DUSTM) be applied when there is an unknown
carrier frequency offset (CFO)? This paper answers this question
affirmatively and derives the necessary maximum likelihood
(ML) detection rule. The asymptotic performance of the proposed
ML rule is analyzed, leading to a code design criterion for
DUSTM by using the modified diversity product. The resulting
proposed decision rule is a new differential modulation scheme
in both the temporal and spatial domains. Two sub-optimal
multiple-symbol decision rules with improved performance are
also proposed. For the efficient implementation of these, we
derive a modified bound intersection detector (BID), a general-
ization of the previously derived optimal BID for the conventional
DUSTM. The simulation results show that the proposed differ-
ential modulation scheme is more robust against CFO drifting
than the existing double temporal differential modulation.

Index Terms—Carrier frequency offset, differential unitary
space time code, maximum likelihood, MIMO, bound intersec-
tion, wireless communications.

I. INTRODUCTION

W IRELESS multiple-input multiple-output (MIMO) sys-
tems and space time coding (STC) techniques have

received much attention due to their potential to increase
the transmission rate and to combat fading [1]. Reliable
symbol detection in traditional STC requires accurate channel
estimation at the receiver and is a difficult task as the fading
rate and/or the number of transmit antennas increases. Con-
sequently, single differential STC (DSTC) schemes have been
proposed in [2]- [4], and the full diversity gain is achieved
without requiring the channel state information (CSI).

However, the performance of DSTC degrades greatly if
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the carrier frequency offset (CFO)1 is not compensated for
at the receiver before symbol detection. To the best of our
knowledge, most DSTC papers [2]- [11], however, focus on
either the code design or the receiver design based on the
assumption of perfect synchronization. Conventionally popular
CFO-compensation methods involve training-sequence based
estimation [12], [13]. However, this approach clearly con-
tradicts the original motivation for using DSTC. Recently,
Liu, Giannakis and Hughes [14] and Ma [15] proposed a
new modulation scheme2 that can handle both unknown CSI
and CFO. This method is based on unitary matrix group
[3], [4] and uses time-domain double differential modulation,
where the first(second) differentiation removes the unknown
CSI(CFO).

Although DDUSTM successfully deals with CFO, it is of
interest to investigate whether the conventional DUSTM itself
can handle the unknown CFO, which was believed to be
impossible for single antenna transmission [14]. This paper
investigates this issue and provides an affirmative answer to
the following question: Can conventional DUSTM thus be
applied in the presence of an unknown CFO? We show that
by sacrificing one degree of freedom in transmit antennas,
the ML single-symbol detector (SSD), which processes two
consecutive blocks, can be derived for DUSTM even in the
presence of an unknown CFO. This loss of degree of freedom
can be viewed as the result of applying spatial differential
modulation across transmit antennas, which helps mitigating
the impact of the unknown CFO. The proposed modulation
scheme is named as modified DUSTM (MDUSTM) in this
paper. A multiple-symbol detector (MSD), which performs
better than the SSD, for MDUSTM is developed. However,
since a simple decision rule for this case appears to be
impossible, two suboptimal MSD rules are derived instead
(they have the advantage of the ease of implementation).
The asymptotic performance of MDUSTM with SSD is an-
alyzed, and the modified diversity product instead of the
conventional diversity product for DUSTM [3] is defined.
The modified diversity product enables the derivation of an

1In wireless communications, CFO arises due to the transceiver oscillator
mismatch or the Doppler shift caused by the relative motion between the
transmitter and the receiver.

2Throughout this paper, the original differential scheme proposed in [3],
[4] is named as differential unitary space time modulation (DUSTM) and
the double differential scheme in [14], [15] is named as double differential
unitary space time modulation (DDUSTM).
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asymptotically-optimal code design criterion. Although the
asymptotic design is predicated on a large number of antennas,
the simulation results show that it is nevertheless effective in
practical scenarios where the number of antennas is finite.
To avoid the naive exhaustive search for the SSD and MSD,
we generalize the bound intersection detector (BID) [16] to
optimally detect MDUSTM, resulting in the reduction of the
detection complexity. Since MDUSTM requires constant CFO
and channel for two consecutive blocks, the simulation results
show that MDUSTM is more robust to the CFO drifting than
DDUSTM, which requires a constant CFO and channel for
three consecutive blocks.

This paper is organized as follows. Section II presents the
DUSTM system model. Section III provides the proposed ML
decision rules of the DUSTM in the presence of an unknown
CFO, i.e., the MDUSTM algorithm, including both the SSD
and MSD cases. In Section IV, we analyze the pairwise
symbol error rate (SER) and derive the asymptotically optimal
code design criterion. Section V develops the fast decoding
algorithm for MDUSTM, i.e., the modified BID algorithm.
Section VI displays various simulation results and finally,
conclusions are drawn in Section VII. The related proofs are
given in the appendices.

Notation: Vectors and matrices are represented in boldface
small and capital letters; the transpose, complex conjugate,
Hermitian, inverse, and pseudo-inverse of matrix A are de-
noted by AT , A∗, AH , A−1 and A†, respectively; tr(A)
and ‖A‖F are the trace and the Frobenius norm of A;
diag{a} denotes a diagonal matrix with the diagonal element
constructed from a; �{A} and �{A} represent the real and
imaginary part of a matrix; δ(·) denotes the Kronecker Delta
function; gcd(a, b) is the greatest common divisor of a and b; I
is the identity matrix; E{·} denotes the statistical expectation;
|x| is the absolute value of a scalar x; �x� denotes the closest
integer to x to minus infinity, and the imaginary unit j =

√−1.

II. SYSTEM MODEL

Consider a MIMO system with Nt transmit and Nr receive
antennas over a Rayleigh flat fading environment. Each time
slot occupies an interval of Ts seconds, and each transmit-
signal block consists of Nt time slots. The transmit signals
are generated by choosing a unitary matrix from a finite group
V = {Vl, l = 0, 1, . . . , L − 1}, where L = 2NtR, and
R denotes the data rate. As in [14] and [15], we consider
diagonal constellations based on the cyclic group whose
unitary matrices Vl are written as

Vl = diag
{
ej2πu1l/L, ej2πu2l/L, . . . , ej2πuNt l/L

}
, (1)

where ui (i = 1, . . . , Nt) are integers and can be optimized,
for instance, to minimize the upper bound of the pairwise error
probability (PEP) [3]. The transmitted symbol during the kth
block is denoted by the Nt ×Nt matrix

S[k] = V[k]S[k − 1], (2)

and the (t, i)th element of S[k] is transmitted from the ith
antenna in the t+(k−1)Nt time slot. The initial transmission
matrix S[0] can be chosen as an arbitrary matrix from V .

The received signals from all Nr antennas through time slot
1+(k−1)Nt to kNt may be expressed in an Nt×Nr matrix
form

X[k] =
√
ρS[k]H[k] + W[k], (3)

where ρ is the received signal-to-noise ratio (SNR) and W[k]
is the Nt ×Nr noise matrix whose entries are complex Gaus-
sian random variables with unit variance and are independent
across the receiver and time indices. The (i, j)th entry of
H[k], denoted by hi,j [k], is the channel gain from the ith
transmit antenna to the jth receive antenna, which remains
constant during one block interval. All path gains, with unit
variances, are statistically independent (E{hi,j[k]h∗i′,j′ [k]} =
δ(i− i′)δ(j − j′)) and have the same autocorrelation function
ϕh[n] = E{(hi,j [k+n]hi,j [k]∗}. Typically, when Jakes’ model
[17] is used, ϕh[n] is given by

ϕh[n] = J0 (2πfDNtTsn) , (4)

where fD is the Doppler spread due to user mobility, and J0(·)
is the zeroth-order Bessel function of the first kind.

Suppose the CFO is constant in one block but may vary
from block to block due to the CFO drifting [15]. Let εk

denote the normalized CFO by the sampling period Ts during
the kth block. Then, the phase distortion on the i+(k−1)Nt

time slot is

θi,k = 2πεk, i = 1, ..., Nt, k = 0, 1, . . . . (5)

Therefore, the overall phase rotation before the i+(k− 1)Nt

time slot, denoted as ϑi,k, is that accumulated from all the
previous time slots:

ϑi,k =
∑
τ<i

∑
c<k

θτ,c = 2πNt

k−1∑
c=0

εc + 2π(i− 1)εk. (6)

If CFO does not vary, as is usually the case, the accumulated
phase ϑi,k becomes 2π(Ntk + i − 1)ε0. The receive signal
block X[k] with the unknown CFO is then modelled as

X[k] =
√
ρejϑ1,kΓ(εk)S[k]H[k] + W[k], (7)

where Γ(εk) is the diagonal matrix with the form

Γ(εk) = diag
{
1, ej2πεk , . . . , ej2π(Nt−1)εk

}
. (8)

III. ML DETECTION OF DUSTM WITH CFO

A. Single Symbol Detection

For the ease of exposition, we assume that both the CFO and
the channel remain constant over two blocks, say the (k−1)th
block and the kth block. Hence, the indices k − 1 and k are
dropped in both the channel matrix and the CFO. The received
signal blocks may be rewritten as

X[k − 1] =
√
ρejϑ1,k−1Γ(ε)S[k − 1]H + W[k − 1], (9)

X[k] =
√
ρej(ϑ1,k−1+2πNtε)Γ(ε)S[k]H + W[k],

=
(
ej2πNtεV[k]

) (√
ρejϑ1,k−1Γ(ε)S[k − 1]H

)
+ W[k]. (10)
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{ε̂, ˆ̄V[k]} = arg max
ε,V̄[k]

N−1∑
i=0

N∑
j=i+1

bi,j�
{
ej2πNt(j−i)εtr

((
j+k−1∏
m=i+k

V[m]

)
X[i+ k − 1]XH [j + k − 1]

)}
. (16)

ˆ̄V[k] = arg max
V̄[k]

N−1∑
i=0

N∑
j=i+1

bi,j

∣∣∣∣∣tr
((

j+k−1∏
m=i+k

V[m]

)
X[i+ k − 1]XH [j + k − 1]

)∣∣∣∣∣ . (18)

ˆ̄V[k] = arg max
V̄[k]

N−1∑
i=0

N∑
j=i+1

bi,j

∣∣∣∣∣tr
((

j+k−1∏
m=i+k

V[m]

)
X[i+ k − 1]XH [j + k − 1]

)∣∣∣∣∣
2

. (19)

The probability density function (PDF) of X̄[k] � [XT [k −
1],XT [k]]T is expressed as

f(X̄[k]
∣∣V[k], ε, ϑ1,k−1) =

exp
(−tr (Λ−1X̄[k]X̄H [k]

))
π2NtNrdetNr{Λ} ,

(11)
where

Λ = I2Nt + ρ

[
INt e−j2πNtεVH [k]

ej2πNtεV[k] INt

]
. (12)

Since f(X̄[k]
∣∣V[k], ε, ϑ1,k−1) does not depend on ϑ1,k−1, it

may be rewritten as f(X̄[k]
∣∣V[k], ε). Furthermore, it can be

easily shown that det{Λ} is a constant by applying the formula
det(I + AB) = det(I + BA). Using the matrix inversion
formula [18], the ML estimate can be obtained as{

ε̂, V̂[k]
}

= arg max
ε,V[k]

f(X̄[k]
∣∣V[k], ε) (13)

= arg max
ε,V[k]

K exp
[�{ej2πNtεtr(V[k]X[k − 1]XH [k])

}]
= arg max

ε,V[k]
K exp

[∣∣tr(V[k]X[k − 1]XH [k])
∣∣]

× exp [cos(ψk + 2πNtε)] ,

where ψk is the phase of tr(V[k]X[k − 1]XH [k]), and K
contains all the factors of f(X̄[k]

∣∣V[k], ε) that are independent
of both V[k] and ε. Obviously, the maximization of the
argument in (13) occurs when cos(ψk + 2πNtε) = 1, which
requires ε̂ to be

ε̂ = − ψk

2πNt
+

n

Nt
, n = 0, ..., Nt − 1, (14)

and n is the integer ambiguity related to the estimation of ε.
Substituting (14) back into (13), the ML3 detection (MLD) for
V[k] is obtained as

V̂[k] = arg max
V[k]

∣∣tr(V[k]X[k − 1]XH [k])
∣∣ . (15)

Clearly, the ambiguity n does not affect the MLD of V[k].
Remarks:

• If Nt = 1, then |tr(V[k]X[k − 1]XH [k])| = |tr(X[k −
1]XH [k])|. Therefore, for single-input single-output
(SISO) or single-input multiple-output (SIMO) DPSK
with unknown CFO, MLD (15) fails. Unlike a matrix
noncoherent channel, where an unknown unitary matrix

3The more precise terminology is ”generalized likelihood testing” (GLRT)
[19] but the ML terminology is used in [20].

prevents any detection without further (i.e., double) dif-
ferential encoding, the problem at hand involves only
a scalar unknown phase (i.e., the unknown frequency
offset), and thus, only one degree of freedom is lost.

• Since DDUSTM in [14] is derived for relatively slow
fading or for the channels static over three blocks, we
expect that our method is more robust to CFO drifting
than that in [14], as confirmed by the simulation results.

B. Multiple Symbol Detection

If CFO remains constant across more than two blocks or
varies very slowly among several blocks, multiple symbol
detection (MSD) can also be applied for DUSTM as in [10],
[16]. In MSD, the transmitted symbols in N consecutive
intervals are estimated using N + 1 received blocks. Let us
define V̄[k] = [VH [k], . . . ,VH [k +N − 1]]H . By using the
same approach as in [10], [16], the joint ML estimates of V̄[k]
and ε can be derived as in (16), where bi,j is the (i, j)-th entry
of B = (Ch + σ2

nIN+1)−1, and

Ch =

⎡
⎢⎢⎢⎢⎣

ϕh[0] ϕh[1] · · · ϕh[N ]

ϕh[−1] ϕh[0]
...

...
...

...
. . .

...
ϕh[−N ] . . . . . . ϕh[0]

⎤
⎥⎥⎥⎥⎦ (17)

is the channel covariance matrix. Since the phase (j − i)ε
varies for different terms in (16), obtaining a closed-form
solution of ε by solving (16) with fixed V̄[k], as we did in
(13), is impossible. Therefore, we propose a suboptimal MSD
algorithm instead. Clearly, without the noise, the true CFO ε
maximizes each summand in (16). We thus consider that ε in
each summand of (16) is different. Specifically, we replace
ε with εi,j in the (i, j)-th summand of (16). Given V̄[k],
each summand in (16) is maximized individually in εi,j , and
the resulting εi,j is substituted into (16). Similar to (15), the
suboptimal MSD rule is obtained as (18)

We denote (18) as MSD1 in the following. However, it
is difficult to design efficient detection algorithms for (18)
directly because the sum of absolute terms is difficult to handle
in practice. As an approximation of (18), we propose a new
estimation criterion as shown in (19) for designing efficient
MSD algorithms. We denote (19) as MSD2. The validity of
this approximation is also justified by our simulation results
in Section VI, where MSD1 and MSD2 are shown to perform
similarly.
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Remarks:
• Note that (18) reduces to (15) and is the true MLD when
N = 1. Moreover, since the derivation of (18) does not
assume a constant channel, (15) works even for time-
varying channels.

• One must resort to the suboptimal rule (18) because
the exact multiple-symbol MLD appears intractable. For
the same reason, only a suboptimal MLD algorithm is
derived in [14].

IV. PERFORMANCE ANALYSIS AND CODE DESIGN

The performance analysis and code design are derived for
the case of SSD. The application of the codes to MSD will
be numerically verified in our simulations.

A. Pairwise Error Probability Analysis

Assuming the codeword Vl ∈ V was transmitted, the
probability that the MLD (15) decides Vl′ ∈ V rather than
Vl, when only these two codewords are possible, is given by

Pe (Vl → Vl′ ) = P

{ ∣∣tr (VlX[k − 1]XH [k]
)∣∣

<
∣∣tr (Vl′X[k − 1]XH [k]

)∣∣ ∣∣∣∣Vl transmitted
}
.(20)

A similar definition holds for Pe (Vl′ → Vl). It is proved in
Appendix I that Pe (Vl′ → Vl) = Pe (Vl → Vl′ ). Therefore,
the PEP is denoted as Pe for brevity. The high SNR approxi-
mation of Pe is proved to be

Pe = EH

{
Pe|H

}
= EH

{
1
2

[
1 +Q(

√
a,
√
b) −Q(

√
b,
√
a)
]}

, (21)

where

Q(α, β) =
∫ ∞

β

exp
(
−α

2 + x2

2

)
I0(αx)xdx (22)

is the Marcum Q function, and a, b are defined in Appendix I.
The Pe derived from high SNR approximation is sufficient for
the later code design based on optimizing the coding gain and
the diversity gain (which are defined at a high SNR only).
The expression (21) is, in fact, related to the fourth order
Gaussian statistics and currently has no solution. The Marcum
Q function can be approximated in several ways, as it has
been, for example, in [21] and [22]. However, we will adopt
a more general way by utilizing the following bounds of the
Marcum Q function. From [23], we know⎧⎪⎪⎨
⎪⎪⎩
Q(α, β) ≤ exp

(
− (β−α)2

2

)
, β > α ≥ 0,

Q(α, β) ≥ 1 − 1
2

[
exp
(
− (α−β)2

2

)
− exp

(
− (α+β)2

2

)]
,

α > β ≥ 0.

Then

Pe|H ≤ 1
4

[
3 exp

(
− (

√
b−√

a)2

2

)
− exp

(
− (

√
a+

√
b)2

2

)]

≤ 3
4

exp

(
− (

√
b−√

a)2

2

)
. (23)

Substituting the specific forms of a, b into (23) results in

Pe|H ≤ 3
4

exp
(
−ρ

4
(‖H‖2

F − |tr(HHQH)|)) , (24)

where Q � VH
l Vl′ . The unfriendly factor |tr(HHQH)|

forbids the further derivation of the conditional PEP bound
(24). To simplify the analysis, we use the same asymptotic
performance as that used in [24], [25]. The following two
cases are considered:

1) Nr → ∞ andNt is finite: As in [24], we assume that the
variance of hij is 1/Nr, because the normalizing factor 1/Nr

ensures that the total power received by Nr antennas from
each transmit antenna remains constant as Nr approaches ∞.
By the strong law of large numbers, we have HHH ≈ INt

and |tr(HHQH)| ≈ |tr(Q)|. Then

Pe|H ≤ 3
4

exp
(
−ρ

4
(Nt − |tr(Q)|)

)
. (25)

Now that Pe|H is independent from H, the upper bound of
Pe is

Pe ≤ 3
4

exp
(
−ρ

4
(Nt − |tr(Q)|)

)
. (26)

2) Nt → ∞ and Nr is finite: It is noted that

‖H‖2
F − |tr(HHQH)| =

Nr∑
j=1

Nt∑
i=1

|hij |2 −
∣∣∣∣∣∣

Nr∑
j=1

Nt∑
i=1

qi|hij |2
∣∣∣∣∣∣

≥
Nr∑
j=1

(
Nt∑
i=1

|hij |2 −
∣∣∣∣∣

Nt∑
i=1

qi|hij |2
∣∣∣∣∣
)
. (27)

Since hij are independent and identically distributed random
variables over (i, j), the upperbound on Pe may be expressed
as

Pe = E{Pe|H}

≤ 3
4
ENr

{
exp

(
−ρ

4

(
Nt∑
i=1

|hi1|2−
∣∣∣∣∣

Nt∑
i=1

qi|hi1|2
∣∣∣∣∣
))}

. (28)

From the free probability theory [24, Fact A.2 or Eq. (24)],
we know

Nt∑
i=1

qi|hi1|2 −→ 1
Nt
tr(Q)

Nt∑
i=1

|hi1|2. (29)

Then, Pe can be asymptotically bounded by

Pe ≤ 3
4
ENr

{
exp

(
−ρ

4

(
Nt∑
i=1

(
1 − 1

Nt
|tr(Q)|

)
|hi1|2

))}

=
3
4
ENtNr

{
exp
(
−ρ

4

(
1 − 1

Nt
|tr(Q)|

)
|h11|2

)}

=
3
4

⎛
⎝ 1

1 + ρ
4

(
1 − 1

Nt
|tr(Q)|

)
⎞
⎠NtNr

. (30)

B. Code Design

To minimize Pe in both cases, it is clear from (26) and
(30) that |tr(Q)| should be minimized. As in [3], we define
the modified diversity product ζ as

ζ = max
0≤l<l′≤L−1

∣∣tr (VH
l Vl′

)∣∣ . (31)

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 17, 2009 at 15:03 from IEEE Xplore.  Restrictions apply. 



GAO et al.: MAXIMUM LIKELIHOOD DETECTION FOR DIFFERENTIAL UNITARY SPACE-TIME MODULATION WITH CARRIER FREQUENCY OFFSET 1885

TABLE I
CYCLIC GROUP CODE DESIGN FOR MDUSTM WITH L = 2RNt .

Nt R L [u1, u2, ..., uNt ] Nt R L [u1, u2, ..., uNt ]
2 1 4 [0, 3] 2 1.5 8 [0, 5]
3 1 8 [0, 1, 3] 4 1.5 64 [0, 11, 55, 59]
4 1 16 [0, 2, 11, 15] 2 2 16 [0, 13]
5 1 32 [0, 15, 25, 26, 28] 4 2 256 [0, 131, 135, 186]

TABLE II
CYCLIC GROUP CODE DESIGN FOR MDUSTM BY USING ODD/PRIME L.

Nt L R [u1, u2, ..., uNt ] Nt L R [u1, u2, ..., uNt ]
2 3 0.7925 [0, 1] 3 11 1.1531 [0, 7, 10]
2 5 1.1610 [0, 4] 4 13 0.9251 [0, 1, 3, 9]
3 7 0.9358 [0, 2, 3] 4 15 0.9767 [0, 1, 3, 7]
3 9 1.0566 [0, 3, 8] 4 17 1.0219 [0, 2, 7, 16]

Therefore, the design criterion is to minimize the modified
diversity product. For cyclic group codes, the unitary matrices
Vl are chosen as in (1), and ui for i = 1, . . . , Nt has to be
optimized to achieve the minimum modified diversity product
(31). Denote l − l

′
as Δl. The modified diversity product ζ

can be simplified as

ζ = max
0<Δl≤L−1

∣∣∣∣∣
Nt∑
i=1

ej2πuiΔl/L

∣∣∣∣∣ . (32)

As in [3], we consider only the integer choices of ui

and use an exhaustive computer search for the best set of
u1, . . . , uNt ∈ {0, ..., L−1}. The search space can be reduced
by using the following rules:

1) Since |tr(Q)| = |e−j2πu1Δl/Ltr(Q)|, we can always set
u1 = 0.

2) The order of ui does not affect the metric, so we always
assume that ui2 ≥ ui1 , if i2 > i1.

3) In (32), Δl and L−Δl give the same ζ. Hence, we need
to search for Δl only from 1 to

⌊
L
2

⌋
.

Table I shows the results of our search for parameters that
minimize ζ.

Normally, L = 2RNt is an even number. Then ui cannot
all be odd/even numbers since this condition would cause Vl

and Vl+L/2 to be indistinguishable. Intuitively, this effect may
reduce the flexibility of the search space. This effect can be
eliminated by taking L as an odd number or a prime number.
The design method is described as follows. Suppose we prefer
a transmission with roughly rate R. We can choose L as an odd
or prime number around 2RNt . Whether L is greater than or
less than 2RNt depends on the exact rate requirement. Similar
searching for ui could then be carried out. Table II provides
some search results for ui with the rate around R = 1.

Remarks:
• We can show that |tr(Q)| = Nt leads to the worst PEP,

which occurs when Q = γINt where γ is a complex
scalar with a unit norm. The traditionally designed cyclic
group codes [3] are among those who yield the worst
PEP. For example, if we choose l = l1, l

′
= l1+L/2, then

|tr (Q)| =
∣∣∣∑Nt

i=1 e
j2πuiΔl/L

∣∣∣ = ∣∣∣∑Nt

i=1 e
jπui

∣∣∣. From [3],

all ui are odd integers. Therefore, we have |tr (Q)| = Nt,
and ζ = Nt.

• In Section III, we showed that the proposed method
cannot work for single transmit antenna systems, e.g.,
SISO, SIMO. From the design criterion above, we know
that the constant transmission will be adopted on one
antenna. This fact suggests that the MLD rule (15) would
not achieve the full transmit diversity because handling
the additional unknown CFO sacrifices one degree of
freedom in transmit antennas.

• The previous remark also suggests that the MLD rule (15)
can be considered as employing differential modulation
across the transmit antennas, resulting in a new differen-
tial modulation scheme. Our scheme applies differential
modulation in both the spatial and temporal domains as
opposed to only the temporal used in DDUSTM [14].

• The design criterion obtained by maximizing the mod-
ified diversity product is not limited to cyclic group
codes, but can also be used in other diagonal constellation
designs.

V. EFFICIENT DETECTION ALGORITHMS

A. Single Symbol Detection

The detection of V[k] by solving (15) requires an exhaustive
search over the whole constellation V . The complexity of this
naive algorithm increases exponentially with the increase of
the transmission rate or the number of the transmit antennas,
and prohibits the use of this algorithm in practice. Therefore,
we adapt the BID proposed in [16] for DUSTM detection to
the proposed SSD rule (15).

We consider detecting cyclic group codes [3] in this section,
where the unitary matrices Vl are chosen as (1).

Denote the (i, i)-th entry of X[k−1]XH [k] as di. The MLD
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(15) is equivalent to

l̂ = argmax
l

∣∣∣∣∣
Nt∑

k=1

dke
j2πukl/L

∣∣∣∣∣
= argmax

l

Nt∑
i=1

Nt∑
j=1

did
∗
je

j2πuil/Le−j2πuj l/L

= argmin
l

Nt−1∑
i=1

Nt∑
j=i+1

−2�
{
did

∗
je

j2πuil/Le−j2πuj l/L
}

= argmin
l

Nt−1∑
i=1

Nt∑
j=i+1

Ai,j −Bi,j cos ((ui,j l − φi,j) 2π/L)

= argmin
l
λ(l), (33)

where

Ai,j = |di|2 + |dj |2, Bi,j = 2 |didj | ,
ui,j = uj − ui, φi,j = ∠(di/dj)L/2π,

and ∠(di/dj) is the phase of di/dj . The approximated PDF
of λ(l0) corresponding to the true transmitting code Vl0 is
derived in Appendix II. Instead of searching all of the 0 ≤
l < L, we can search only the values of l subject to λ(l) < C,
where C is the initial searching radius such that the probability
P (λ(l0) < C) is no less than ε. From Appendix II, we know
that C should be selected from

Fχ

(
Nt

Nt∑
i=1

|di|2 − C

)
≤ 1 − ε, (34)

where Fχ is defined in Appendix II.
To find all the l’s that satisfy λ(l) < C, we note that

λ(l) in (33) consists of Nt(Nt−1)
2 non-negative terms. Thus, a

necessary condition for λ(l) < C is that each term of (33) is
less than C, or equivalently

Ai,j −Bi,j cos ((mod(ui,j l, L)− φi) 2π/L) < C, (35)

1 ≤ i < j ≤ Nt,

where mod (x, L) reduces x to an integer between 0 and
L − 1. Let us define the candidate set Li,j = {l |Ai,j −
Bi,j cos ((mod(ui,j l, L)− φi)2π/L) < C, 0 ≤ l < L}. To
find Li,j , we first show how, given a number n, to find an l
such that mod(ui,j l, L) = n. In [16], an efficient algorithm
by using the well-known Extended Euclidean Algorithm [26]
is given by considering the fact that ui,j and L are coprime.
However, for our problem, ui,j and L may not be coprime as
shown in Tables I and II.

A new algorithm is developed here. Let ξi,j = gcd(ui,j, L),
u′i,j = ui,j/ξi,j , and L′ = L/ξi,j . Clearly, we have
mod(ui,j l, L) = ξi,j · mod(u′i,j l, L

′) = n. Therefore, there
exists such an l if and only if mod(n, ξi,j) = 0. If
mod(n, ξi,j) = 0 holds, let n′ = n/ξi,j . Since now u′i,j
is relatively prime to L′, the gcd of u′i,j and L′ is 1. The
Extended Euclidean Algorithm computes the gcd of u′i,j and
L′, as well as the numbers μi,j and κ such that

u′i,jμi,j + κL′ = 1, (36)

where 1 is the gcd of u′i,j and L′. For the details
of the Extended Euclidean Algorithm, see [26]. To find

mod(u′i,j l, L
′) = n′, we multiply both sides of (36) by n′,

to obtain
u′i,j(n

′μi,j) + κn′L′ = n′. (37)

Therefore, l̃ = mod(n′μi,j , L
′) satisfies mod(u′i,j l̃, L

′) = n′,
or, equivalently, mod(ui,j l̃, L) = n. Since 0 ≤ l̃ < L′, a
total of ξi,j different l satisfy mod(ui,j l, L) = n (They are
l = l̃ + kL′, k = 0, . . . , ξi,j − 1, respectively). We can now
determine Li,j . Define

UBi,j = �φi + ρi� , LBi,j = �φi − ρi� , (38)

where

ρi,j =
L

2π
cos−1

(
Ai,j − C

Bi,j

)
. (39)

Let Si,j = {n/ξi,j|n ∈ Z, LBi ≤ n ≤
UBi, and mod(n, ξi,j) = 0}. Following the same arguments
as in [16], we find Li,j is given by

Li,j =
⋃

0≤k<ξi,j

(mod(μi,jSi,j , L
′) + kL′) , 1 ≤ i < j ≤ NT ,

(40)
where both the mod operation and addition are performed
component-wise. The candidate set for all l’s such that λ(l) <
C is the intersection of all of the Nt(Nt−1)

2 sets Li,j :

L =
⋂

1≤i<j≤NT

Li,j . (41)

As with the BID in [16], we first choose l∗ from L. C is then
replaced by the new cost λ(l∗), and l∗ is deleted from the set
L (L = L − {l∗}). All Li,j 1 ≤ i < j ≤ NT are updated by
using the new bound C. In later iterations, (41) is replaced by

L = L ∩
⎛
⎝ ⋂

1≤i<j≤NT

Li,j

⎞
⎠ . (42)

The process continues until L becomes the null set. The l with
the minimum cost is then the optimal solution. This optimal
detection algorithm is called the “modified BID”.

If ui,j is coprime to L or ξi,j = 1, as shown in Table II, the
modified BID reduces to the original BID [16]. Alternatively,
(15) can also be suboptimally solved by using the lattice
reduction algorithm proposed in [27] for the detection of
DUSTM.

B. Multiple Symbol Detection

Note that (19) has the same form as (8) in [16]. By
combining our modified BID, (19) can be efficiently solved by
using the MSDs proposed in [16]. Moreover, (19) can also be
solved by using the sphere decoding BID proposed in [28] by
replacing the BID in [28] with the modified BID. With these
variants of MSD, (19) can be solved efficiently.

VI. SIMULATION RESULTS

In this section, the proposed MDUSTM scheme is simu-
lated. The SER is the figure of merit. The signal transmitted
in the first block is chosen as S[0] = INt .
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Fig. 1. Average SER versus CFO for Nt = Nr = 2, R = 1 (SNR=12dB).

A. Performance Comparison with DUSTM under Frequency
Errors

This experiment investigates the performance of a 2 × 2
MIMO system with the MDUSTM scheme and the DUSTM
without compensating for the frequency errors. The maximum
range of ε, [0, 1], is examined. For both schemes, their
respective optimal codes with R = 1 (u = [0, 3], and
u = [1, 1]) are employed. The simulation results are shown
in Fig. 1 for SNR= 12 dB. We note that, when the CFO is
small, the conventional DUSTM without CFO compensation
performs better. The SER plot of DUSTM is periodic over ε.
However, for a large range of CFO values, DUSTM totally
fails while MDUSTM is effective. A similar phenomenon has
been observed in [14] and [15].

B. Complexity Reduction by Using the Modified BID

Fig. 2 shows the complexity of the modified BID in flops
for Nt = 3 and Nr = 4 with different rates R = 1 and R = 2,
respectively. The complexity exhibited includes only that from
the detection process. We use the flops function in MATLAB
for both the modified BID and the ML detection (33) (this
function provides an estimate of the number of floating-point
operations performed by a sequence of MATLAB statements).
No parallelization is considered. For R = 2, the modified BID
is about 2 times less complex than the ML. Thus, the use of
the modified BID is more computationally efficient than that
of the conventional ML searching. However, the complexity
of the modified BID is not reduced as quickly as that of the
traditional BID [16] when SNR increases.

C. Performance for Different Nt, Nr

We now examine the performance of the proposed scheme
for different numbers of antennas. The asymptotically de-
signed codes shown in Table I with R = 1 are used. The SER
performance as a function of SNR is depicted in Fig. 3. The
proposed code, although designed for an asymptotically large
Nt or Nr, performs well for a small number of transceiver
antennas. Moreover, Fig. 3 also shows that, increasing Nt
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Fig. 2. Average number of flops versus SNR for Nt = 3, Nr = 4 with the
rate R = 1 and R = 2.
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Fig. 3. Average SER versus SNR for different Nt and Nr with R = 1. The
frequency offset is 0.4/Nt .

or Nr would enhance the diversity order of the proposed
MDUSTM algorithm.

D. Performance Comparison of the Designed Optimal Codes
with All Other Codes

Next, we investigate how the asymptotically optimal codes
perform with a finite number of transceiver antennas. In
this example, we choose Nt = 3, Nr = 4, R = 1. The
performance curves of our designed code u = [0, 1, 3], as
well as those of all other possible u’s are presented in Fig.
4. Basically, different choices of u will provide different
performance. All codes could be divided into several groups,
and within each group, the codes would provide similar
performance. However, the performance from group to group
are quite different. One group in particular totally fails the
detection. Our asymptotically optimal codes belong to the
group that gives the best performance. In fact, only one choice
of u = [0, 1, 6] in this example outperforms the designed code.
This result is not unexpected since the optimal code for a finite
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Fig. 4. Demonstration of the optimality of the designed code under regular
transceiver antennas, Nt = 3, Nr = 4, R = 1. The frequency offset is
0.4/Nt.

number of antennas may not necessarily be the asymptotic
codes. Nevertheless, we might safely claim that our codes
give near optimal performance even for a finite number of
antennas.

E. Performance Comparison with Normal DDUSTM under
Frequency Drifting

The optimal cyclic group code for both MDUSTM and
DDUSTM is tested in this experiment. Since the optimal cyclic
group codes are not necessarily the universal optimal codes,
we cannot claim one method is better based only on the
numerical figures. However, since MDUSTM sacrifices one
degree of freedom in transmit antennas to cope with CFO, it
is expected that the DDUSTM would outperform MDUSTM
at high SNR due to its higher diversity order.

Nevertheless, it is found that our proposed scheme is more
robust than DDUSTM against frequency drifting. Similar to
[15], the CFO drifting is modeled as a random process from
block to block, but the drifting is zero inside each block.
Suppose the CFO at the kth block is εk. For the (k + 1)st
block, the CFO becomes

εk+1 = εk + Δεk, (43)

where Δεk is drawn uniformly from [−0.5Δεmax, 0.5Δεmax].
Four different values of Δεmax are chosen, and the perfor-
mance comparisons between MDUSTM and DDUSTM are
plotted in Fig. 5. The parameters are selected as Nt = 3, Nr =
4, R = 1, ε0 = 0.4/Nt. Both schemes employ the optimal
code designs u = [0, 1, 3] and u = [1, 1, 3], respectively. With
a smaller CFO drifting, both schemes are affected slightly.
However, when Δεmax goes beyond 0.05ε0, the performance
of DDUSTM degrades significantly. Especially for very large
drifting4 Δεmax = 0.1Δε0, the performance of DDUSTM is
almost unacceptable. This evidence suggests that MDUSTM
is more robust than the DDUSTM for mitigating CFO drifting.

4The large value is examined for theoretical study
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Fig. 6. Performance comparison of SSD, MSD1, MSD2 and DDUSTM,
Nt = 3, Nr = 4, R = 1 with the frequency offset 0.4/Nt . The DUSTM
performance with zero frequency offset is also included as reference.

F. Performance of Multi-Symbol Detection

This experiment examines the performance of our pro-
posed MSD1 and MSD2 and compares them with SSD and
DDUSTM. The parameters are chosen as Nt = 3, Nr = 4,
R = 1 and N = 2. No CFO drifting is considered. The
average SER as a function of SNR for these four algorithms is
displayed in Fig. 6. Both MSD1 and MSD2 perform similarly
and, at the same time, are better than SSD. The diversity order
of MSD1 and MSD2 is similar to that of SSD, an observation
consistent with those in traditional MSD [16], [22]. Intuitively,
we expect that the SNR gain by applying MSD goes to 3 dB
when N is sufficiently large. Note that MSD1 and MSD2
outperform DDUSTM at lower SNR, although all these three
algorithms use the same number of received blocks. However,
since DDUSTM has higher diversity, it is superior to MSD1
and MSD2 at higher SNR.

In addition, we include a performance curve for the tradi-
tional DUSTM [3] with zero CFO in Fig, 6. Bearing in mind
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the performance of DDUSTM or MDUSTM is not related
with the value of the CFO, we see that DUSTM with no
CFO performs around 4 dB better than both DDUSTM and
MDUSTM. Therefore, the receiver benefits from knowing
whether CFO exists or not. However, if wrong information
is used, DUSTM may fail to detect any symbol as is seen
from Fig. 1.

VII. CONCLUSIONS

In this paper, we developed transmit-symbol detection algo-
rithms for DUSTM in the presence of an unknown CFO. The
proposed MDUSTM removes the effect of the unknown CFO
by spatial differentiation, whereas the conventional method
relies on temporal differentiation. We have derived the asymp-
totic pairwise symbol error rate and, accordingly, designed the
asymptotically optimal codes for a large number of antennas.
Nevertheless, these asymptotic codes also perform well when
the number of transceiver antennas is small. In order to
reduce the detection complexity, we developed a modified
BID algorithm for both single-symbol and multiple-symbol
cases of the proposed MDUSTM scheme. Since the proposed
MDUSTM requires a slowly varying channel and constant
CFO during only two blocks, it is more robust than DDUSTM
against CFO drifting. Finally, all the results provided in this
paper can be readily generalized to Ricean MIMO channels.
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APPENDIX I
HIGH SNR APPROXIMATION OF PEP AND ITS UPPER

BOUND

Consider a specific realization of the channel matrix H. It
is known that the error event Vl → Vl′ happens if∣∣tr (VlX[k − 1]XH [k]

)∣∣ < ∣∣tr (Vl′X[k − 1]XH [k]
)∣∣ ,

(44)
when Vl is remitted. The inequality (44) could be further
converted to∣∣∣tr ((√ρH + W̃[k])H(

√
ρH + W̃[k − 1])

)∣∣∣
<
∣∣∣tr ((√ρH + W̃[k])HQ(

√
ρH + W̃[k − 1])

)∣∣∣ ,(45)

where

W̃[k − 1]=e−jϑ1,k−1ΓH(ε)SH [k − 1]W[k], (46)

W̃[k]=e−j(ϑ1,k−1+2πNtε)ΓH(ε)SH [k − 1]VH
l W[k − 1].(47)

All entries of W̃[k − 1] or W̃[k] are independent and
identically distributed (i.i.d) Gaussian random variables with
unit variance. Another observation is that the probability of
(45) does not change if we replace Q by QH . Therefore,
Pe|H (Vl′ → Vl) = Pe|H (Vl → Vl′ ) and Pe (Vl′ → Vl) =
Pe (Vl → Vl′ ).

At the high SNR region, the second-order noise term can
be ignored and then (45) becomes∣∣∣∣∣∣∣∣∣∣

Nt∑
i=1

Nr∑
j=1

(√
ρ|hij |2 + h∗ijw̃ij [k − 1] + hijw̃

∗
ij [k]

)
︸ ︷︷ ︸

x

∣∣∣∣∣∣∣∣∣∣

<

∣∣∣∣∣∣∣∣∣∣
Nt∑
i=1

Nr∑
j=1

(√
ρ|hij |2qi+h∗ijw̃ij [k − 1]qi+hijw̃

∗
ij [k]qi

)
︸ ︷︷ ︸

y

∣∣∣∣∣∣∣∣∣∣
,(48)

where qi denotes the (i, i)th entry of the diagonal matrix
Q. Since all hij are currently deterministic values, x, y are
Gaussian random variables. The probability of |x| < |y| has
been derived in [21]. Following [21], we obtain

x̄ =
Nt∑
i=1

Nr∑
j=1

√
ρ|hij |2 =

√
ρtr(HHH) =

√
ρ‖H‖2

F ,

θ1f = 0,

cov(x) = 2
Nt∑
i=1

Nr∑
j=1

|hij |2 = 2tr(HHH) = 2‖H‖2
F ,

ȳ =
Nt∑
i=1

Nr∑
j=1

√
ρ|hij |2qi =

√
ρtr(HHQH),

θ2f = arg{tr(HHQH)},

cov(y) = 2
Nt∑
i=1

Nr∑
j=1

|hij |2 = 2‖H‖2
F ,

cov(x, y) = 2tr(HHQH),

φ = arg{tr(HHQH)}.
Furthermore,

S1f = |x̄|2/2 = ρ‖H‖4
F/2,

N1f = cov(x)/2 = ‖H‖2
F ,

S2f = |ȳ|2/2 = ρ|tr(HHQH)|2/2,
N2f = cov(y)/2 = ‖H‖2

F ,

ρf = tr(HHQH)/‖H‖2
F .

Since ρf =
√

S2f

S1f
exp[j(θ2f − θ1f )], and N1f = N2f = Nf ,

we define {
a
b

}
=

S1f

2Nf
(1 ∓

√
1 − |ρf |2)

=
S1f

2Nf

(
1 ∓
√

1 − S2f

S1f

)
. (49)

The PEP conditioned on H is [21]

Pe|H =
1
2

[
1 +Q(

√
a,
√
b) −Q(

√
b,
√
a)
]
, (50)

and the PEP is

Pe = EH

{
1
2

[
1 +Q(

√
a,
√
b) −Q(

√
b,
√
a)
]}

. (51)
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APPENDIX II
ON THE RADIUS OF THE MODIFIED BID ALGORITHM

From (33), we have the following equation:

λ(l) = Nt

Nt∑
i=1

|di|2 −
∣∣tr(Vl[k]X[k − 1]XH [k])

∣∣2 . (52)

For the true solution l0, |tr(VlX[k − 1]XH [k])| could be
represented by the left-hand side of (45), which is independent
from both code group V and the CFO ε. The radius λ(l0)
corresponding to the true solution l0 is related to SNR in
the modified BID. As we did in Appendix I, we consider
the high SNR approximation such that

√
ρx could be used to

represent tr(VlX[k−1]XH [k]). Consequently, χ = ρ|x|2 is a
non-central chi-square distributed random variable with mean
ρ‖H‖2

F and variance ρ‖H‖2
F per dimension, conditioned on

fixed H. The conditioned PDF of χ is then expressed as

pχ(χ|H) =
1

2ρ‖H‖2
F

e
− ρ2‖H‖4

F +χ

2ρ‖H‖2
F I0(

√
χ), χ ≥ 0, (53)

where Iν(·) is the νth order modified Bessel functions of the
first kind. As well, ι = ‖H‖2

F is a chi-square random variable
with degree 2NtNr whose PDF is

pι(ι) =
2NtNr

(NtNr − 1)!
ιNtNr−1e−ι, ι ≥ 0. (54)

Therefore, pχ(χ) can be calculated as

pχ(χ) =
∫ ∞

0

pχ(χ|H)pι(ι)dι

=
2NtNr−1I0(

√
χ)

ρ(NtNr − 1)!

∫ ∞

0

ιNtNr−2e−( ρ
2 +1)ι− χ

2ρι dι.

(55)

From [29, pp. 384, and pp.364 ], the above PDF could be
written into a closed form as

pχ(χ) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2NtNr

ρ(NtNr−1)!

(
χ

ρ2+2ρ

)NtNr−1
2

×I0(√χ)K(NtNr−1)

(
2
√(

1
4 + 1

2ρ

)
χ

)
, χ > 0,

2NtNr−1

ρ(NtNr−1) (
ρ
2 + 1)1−NtNr , χ = 0.

(56)

where Kν(·) is the νth order modified Bessel functions of
the second kind. One observation is that pχ(χ) is related
to NtNr and SNR only. Then the cumulative distribution
function (CDF) of χ, denoted as Fχ(χ), can be expressed
as

Fχ(χ) =
∫ χ

0

pχ(t)dt. (57)

The CDF of both |tr(VlX[k−1]XH [k])|2 and ρ|x|2 are shown
in Fig. 7 for different pairs of (Nt, Nr) at SNR= 0 dB. The
statistics of ρ|x|2 fit those of |tr(VlX[k − 1]XH [k])|2 very
well even at a low SNR. Finally, the CDF of the radius λ(l0)
is given by

Fλ(C) = P (λ(l0) < C) = 1 − Fχ

(
Nt

Nt∑
i=1

|di|2 − C

)
.

(58)
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Fig. 7. The CDFs of ρ|x|2 and |tr(VlX[k − 1]XH [k])|2 at SNR= 0 dB.
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