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This paper introduces a novel sequence called the “β-complementary sequence” to encode orthogonal frequency-division multiplexing (OFDM) signals,
with which one can substantially increase the code rate while maintaining a tight peak-to-mean envelope power ratio (PMEPR) of at most 2. Moreover,
encoding schemes based on β-complementary sequences provide very good tradeoff performance between PMEPR and code rate. This observation
follows from an intrinsic property of the β-complementary sequences considered. Furthermore, the distribution of code rate versus β is determined, and
numerical results based on these properties are presented. Finally, comparisons with the well-known Golay complementary sequences and the generalized
Golay complementary sequences (called “GN -complementary sequences” in this paper) are made.

On présente dans cet article une nouvelle séquence dénommée “séquence β-complémentaire” pour le codage des signaux OFDM, qui permet d’accroı̂tre
de manière substantielle le taux de code tout en jouissant d’une valeur PMEPR (rapport puissance de crête–puissance moyenne d’enveloppe) resserrée d’au
plus 2. En plus, les mécanismes de codage basés sur les séquences β-complémentaires permettent de réaliser un bon compromis entre les performances
PMEPR et le taux de code. Cette observation se base sur une propriété intrinsèque des séquences β-complémentaires examinées. En plus de cela, on
détermine la distribution du taux de code par rapport à β et on présente les résultats numériques basés sur ces propriétés. Finalement, on compare
le nouveau modèle aux séquences complémentaires Golay bien connues et à la séquence complémentaire Golay généralisée (dénommée “séquence
complémentaire GN ” dans cet article).

I Introduction

In multi-carrier communications, orthogonal frequency-division mul-
tiplexing (OFDM) has been used for wireless large-area net-
works (LANs) by the committees for the international standards IEEE
802.11 and ETSI BRAN, since it provides great immunity to impulse
noise and fast fades and eliminates the need for equalizers while en-
abling efficient hardware implementations using fast Fourier trans-
form (FFT).

However, a major drawback of OFDM is the high peak-to-mean
envelope power ratio (PMEPR) of the uncoded OFDM signal. Num-
bers of PMEPR reduction schemes based on the oversampled sequence
have been proposed [1]–[6]. On the other hand, several coding schemes
to reduce the PMEPR of the OFDM waveform have been studied
in [7]–[12]. Some of them enjoy the large Euclidean distance and an
efficient soft-decision decoding algorithm.

One idea introduced in [13] and developed in [14] is to use the Go-
lay complementary sequences [15] to encode the OFDM signals with
PMEPR of at most 2. Recently, [16] made further advances on this
work and observed that the 2h-ary Golay complementary sequences
of length 2m [15] can be obtained from certain second-order cosets
of the classical first-order Reed-Muller code. As a result of this in-
trinsic observation, [7] was able to obtain, for a small number of car-
riers (n ≤ 32), a range of binary, quaternary, and actuary OFDM
codes with good error-correcting capabilities, efficient encoding and
decoding, reasonable code rates, and controlled PMEPR of at most 2.
Follow-up work in [17] investigated the tradeoffs between code rate
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and PMEPR by using the complementary set [18], which determined
the codes with PMEPR of at most the exponential of 2 in the second-
order Reed-Muller code. Since this tradeoff only slightly increases the
code rate by relaxing the PMEPR, it remains an open problem to dis-
cover low-PMEPR error-correcting code constructions for a moder-
ately large subcarrier.

In this paper, we introduce a novel sequence called the “β-
complementary sequence” to encode the OFDM signal in a way that
substantially increases the code rate. At the same time, such code also
enjoys good performance in terms of the tradeoff between code rate
and PMEPR. We first investigate the properties of β-complementary
sequences and determine the distribution of code rate versus β. Then
we make comparisons with the well-known Golay complementary se-
quences and the generalized Golay complementary sequences (called
“GN -complementary sequences” in this paper).

II β-complementary sequences and power control

Before proceeding further, let us introduce the OFDM signals, the
PMEPR, and related concepts.

II.A Preliminaries
Let j be the imaginary unit, i.e., j2 = −1. Then the n-subcarrier com-
plex baseband OFDM signal can be represented as

s(t) =

∞X
k=−∞

n−1X
`=0

ck,`e
j2π(fc+`∆f)tg[t− k(T + Tg)], (1)

where 0 ≤ t < T ; ck,` is the data symbol for the `-th subcarrier
and the k-th OFDM symbol; the frequency separation between any
two adjacent subcarriers is ∆f = 1/T ; and fc is the carrying fre-
quency, which is much larger than ∆f (fc � ∆f ). The unit rectangu-
lar pulse g(t) is of duration T + Tg , where Tg is known as the guard
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interval. For the PMEPR problem, it is enough to consider only a sin-
gle OFDM symbol, since there is almost no overlap between different
OFDM symbols. In practice, filtering can cause some intersymbol in-
terference, but this will be ignored in this discussion. The guard inter-
val Tg is used to repeat parts of each OFDM signal and has no effect
on PMEPR. For convenience of discussion, we may set Tg equal to 0
and c0,` equal to c`.

For an M -ary phase modulation OFDM, c` ∈ ξZM = {ξk : k ∈
ZM}, where ξ = exp (2πj/M) and Zd = {0, . . . , M − 1}. Let θ =
2π∆ft. Suppose that fc = K∆f for some large K ∈ Z, the integer
set. Then, for a codeword b = (b0, . . . , bn−1) with b` ∈ ξZM , the
complex envelope (1) can be reduced to

sb(θ) =

K+n−1X
`=K

b`e
j`θ, θ ∈ [0, 2π). (2)

The instantaneous power of the complex envelope sb(θ) is defined by

Pb(θ) = |sb(θ)|2. (3)

Therefore the PMEPR of the codeword b is defined by

PMEPR(b) =
1

n
sup

0≤θ<2π
|sb(θ)|2. (4)

Obviously, in such a PMEPR problem, one can assume that K = 0.

A ξZM -sequence a of length n is called a Golay complementary
sequence [15] if there is a ξZM -sequence b of length n such that

Pa(θ) + Pb(θ) = 2n. (5)

It is easy to see that PMEPR(a) ≤ 2 if a is a Golay complementary
sequence. A generalization of the Golay complementary sequence is
the complementary set [18]. A set of ξZM -sequences a0, . . . , aN−1 of
length n is said to be a complementary set if

Pa0(θ) + · · ·+ PaN−1(θ) = Nn. (6)

Any sequence in the complementary set is called a GN - or GN (n)-
complementary sequence. Obviously, PMEPR(a) ≤ N if a is a GN -
complementary sequence, and any G2-complementary sequence is a
Golay complementary sequence. In this paper, we will further gener-
alize the GN -complementary sequences to substantially increase the
code rate.

II.B β-complementary sequences
In a Golay complementary set, one actually uses the sequence a0 ∈
ξZM only to encode the OFDM signals. Therefore the other sequences
a1, . . . , aN−1 can be any sequence in Cn, the n-tuple complex num-
ber. This observation is one of the primary motivations for introducing
the β-complementary sequence. Note that sb(θ), defined in (2), and
Pb(θ), defined in (3), are also well defined for any sequence b ∈ Cn.
We therefore give the following definition.

DEFINITION 1: A ξZM -sequence a of length n is said to be a β- or
β(n)-complementary sequence for some β ≥ 1 if there is a sequence
b ∈ Cn such that

Pa(θ) + Pb(θ) = βn.

It is easy to see that PMEPR(a) ≤ β if a is a β-complementary
sequence. In the following, we will also show an intrinsic property of
β-complementary sequences which signifies that any ξZM -sequence
a, where PMEPR(a) ≤ β, is a β-complementary sequence. First we
show some fundamental properties of β-complementary sequences.

II.C Some fundamental properties of β-complementary
sequences

For a sequence a = (a0, . . . , an−1) ∈ Cn, the aperiodic autocorrela-
tion of a is defined as

Ra(`) =

 Pn−`−1
k=0 ak+`āk, 0 ≤ ` < n,

0, otherwise,

where āk is the complex conjugate of ak. Immediately we can use the
aperiodic autocorrelation to describe β-complementary sequences.

PROPOSITION 1: A ξZM -sequence is a β(n)-complementary se-
quence if and only if there is a sequence b ∈ Cn such that Rb(0) =
(β − 1)n and Ra(`) + Rb(`) = 0 for ` = 1, . . . , n− 1.

PROOF: For any b ∈ Cn,

Pb(θ) = Rb(0) +

n−1X
`=1

h
Rb(`)e

j`θ + R̄b(`)e
−j`θ

i
.

Denote the real and imaginary parts of Rb(θ) by RR
b (θ) and RI

b(θ)
respectively. Then

Pb(θ) = Rb(0) + 2

n−1X
`=1

h
RR

b (`) cos `θ + RI
b(`) sin `θ

i
.

Since {1, cos θ, . . . , cos(n−1)θ, sin θ, . . . , sin(n−1)θ} is an orthog-
onal system in the square integrable function space (L2[0, 2π]), we
conclude that the condition Pa(θ) + Pb(θ) = βn is equivalent to the
conditions Ra(0)+Rb(0) = βn and RR

a (`)+RR
b (`) = 0 = RI

a(`)+
RI

b(`) for ` = 1, . . . , n − 1. By noting that Ra(0) = n when a is a
ξZM -sequence, we have the equivalent conditions Rb(0) = (β − 1)n
and Ra(`) + Rb(`) = 0 for ` = 1, . . . , n − 1. This completes the
proof. 2

The following property indicates how to produce new β-
complementary sequences from a known β-complementary sequence.

PROPOSITION 2: If a = (a0, . . . , an−1) is a β-complementary
sequence, then for any ζ ∈ ξZM , ζa = (ζa0, . . . , ζan−1), ār =
(ān−1, . . . , ā0), ā = (ā0, . . . , ān−1), ar = (an−1, . . . , a0), and
aζ = (a0ζ

0, . . . , an−1ζ
n−1) are also β-complementary sequences.

PROOF: Since

Pζa(θ) =

˛̨̨̨
˛
n−1X
`=0

ζa`e
i`θ

˛̨̨̨
˛
2

=

˛̨̨̨
˛
n−1X
`=0

a`e
i`θ

˛̨̨̨
˛
2

= Pa(θ)

and

Pār (θ) =

˛̨̨̨
˛
n−1X
`=0

ān−`−1e
j`θ

˛̨̨̨
˛
2

=

˛̨̨̨
˛
n−1X
`=0

ā`e
j(n−`−1)θ

˛̨̨̨
˛
2

=

˛̨̨̨
˛
n−1X
`=0

ā`e
−j`θ

˛̨̨̨
˛
2

=

˛̨̨̨
˛
n−1X
`=0

a`e
j`θ

˛̨̨̨
˛
2

= Pa(θ),

it is easy to see that ζa and ār are also β-complementary sequences
by the definition of β-complementary sequences. On the other hand,

Pā(θ) =

˛̨̨̨
˛
n−1X
`=0

ā`e
j`θ

˛̨̨̨
˛
2

=

˛̨̨̨
˛
n−1X
`=0

a`e
−j`θ

˛̨̨̨
˛
2

= Pa(−θ).

This shows that Pā(−θ) + Pb̄(−θ) = 2n for some b ∈ Cn

if a is a β-complementary sequence, and therefore ā is also a β-
complementary sequence. Immediately, this implies that ar = ār

is a β-complementary sequence. Suppose that ζ = ejd/M for some
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d ∈ ZM . Then

Paζ (θ) =

˛̨̨̨
˛
n−1X
`=0

ζ`a`e
j`θ

˛̨̨̨
˛
2

=

˛̨̨̨
˛
n−1X
`=0

a`e
j`(θ+d/M)

˛̨̨̨
˛
2

= Pa

„
θ +

d

M

«
.

Therefore Pa(θ + d/M) + Pb(θ + d/M) = βn if a is a β-
complementary sequence, and therefore aζ is also a β-complementary
sequence. This completes the proof. 2

Using Proposition 2, we can investigate the combination of β-
complementary sequences.

PROPOSITION 3: If a ξZm -sequence a is a β(n)-complementary
sequence, then the concatenated sequence a ∨ a = (a0, . . . ,
an−1a0, . . . , an−1) and the interleaved sequence a∧a = (a0, a0, . . . ,
an−1, an−1) are 2β(2n)-complementary sequences.

PROOF: There is a b ∈ Cn such that Rb(0) = (β−1)n and Ra(`)+
Rb(`) = 0 for 1 ≤ ` ≤ n− 1, since, for 0 ≤ ` ≤ n− 1,

Rb∨b(`) = 2Rb(`) + Rb(n− `)

and, for n ≤ ` ≤ 2n− 1,

Rb∨b(`) = Rb(`− n).

This completes the proof. 2

II.D An intrinsic property of binary β-complementary
sequences

If we restrict ourselves to binary phase-shift keying (BPSK), i.e., to
the ξZ2 -sequences, we find that the β-complementary sequence com-
prises all sequences with PMEPR of at most β. However, we cannot
yet extend this result to M -ary phase-shift keying (MPSK).

THEOREM 1: A ξZ2 -sequence a of length n is a β-complementary
sequence if and only if PMEPR(a) ≤ β.

PROOF: We need only to show that a is a β-complementary se-
quence if PMEPR(a) ≤ β, since the necessity requirement has been
demonstrated in Subsection II.B. We separate the proof into several
steps.

1. Given PMEPR(a) ≤ β, we have Pa(θ) ≤ βn. Since Pa(θ) =

n+2
Pn−1

`=1 Ra(`) cos `θ, we can write the non-negative trigono-
metric polynomial βn−Pa(θ) = p(cos θ), where p is a polyno-
mial of degree n− 1 with real coefficients. This polynomial can
be factored as

p(c) = α

n−1Y
k=1

(c− ck),

where the zeros, ck, of p appear either in complex duplets (ck,
c̄k), or in real singlets since p = p̄. Meanwhile, we can also
write

βn− Pa(θ) = ejnθP (e−jθ),

where P is a polynomial of degree 2(n − 1). For |z| = 1, we
have

P (z) = znα

n−1Y
k=1

„
z + z−1

2
− ck

«

= α

n−1Y
k=1

„
1

2
− ckz +

1

2
z2

«
.

The two polynomials in the right- and left-hand sides also agree
for all z ∈ C since a polynomial is an analytic function.

2. If ck is real, then the zeros of 1/2 − ckz + (1/2)z2 are ck ±p
c2

k − 1. For |ck| ≥ 1, these are two real zeros (degenerate if
ck = ±1) of the form rk, r−1

k . For |ck| < 1, the two zeros
are complex conjugate and of absolute value 1, i.e., they are of
the form ejαk , e−jαk . Since |ck| < 1, such zeros correspond to
“physical” zeros of βn − Pa(θ) (i.e., to values of θ for which
βn − Pa(θ) = 0). In order not to cause any contradiction with
βn− Pa(θ) ≥ 0, these zeros must have even multiplicity.

3. If ck is not real, we consider it together with c̄k. Then polynomial
(1/2 − ckz + (1/2)z2)(1/2 − c̄kz + (1/2)z2) has four zeros,
ck ±

p
c2

k − 1 and c̄k ±
p

c̄2
k − 1. One can easily check that

the four zeros are all different and form a quadruplet zk, z−1
k ,

z̄k, z̄−1
k .

4. We therefore have

P (z) = Ra (n− 1)

·

"
IY

i=1

(z − zi)
`
z − z−1

i

´
(z − z̄i)

`
z − z̄−1

i

´#

·

"
KY

k=1

“
z − ejαk

”2 “
z − e−jαk

”2
#

·

"
LY

`=1

(z − r`)
`
z − r−1

`

´#
,

where we have regrouped the three kinds of zeros and 2I+2K+
L = n− 1.

5. For z = ejθ on the unit circle, we have˛̨̨“
e−iθ − z0

” “
e−iθ − z̄−1

0

”˛̨̨
= |z0|−1

˛̨̨
e−iθ − z0

˛̨̨2
.

Consequently,

βn− Pa (θ) = |βn− Pa (θ) | = |P
“
e−jθ

”
|

=

"
|Ra (n− 1) |

IY
i=1

|zi|−2
LY

`=1

|r`|−1

#

·

˛̨̨̨
˛

IY
i=1

“
e−jθ − zi

” “
e−jθ − z̄i

”˛̨̨̨
˛
2

·

˛̨̨̨
˛

KY
k=1

“
e−jθ − ejαk

” “
e−iθ − e−jαk

”˛̨̨̨
˛
2

·

˛̨̨̨
˛

LY
`=1

“
e−jθ − r`

”˛̨̨̨
˛
2

= |sb (θ) |2,

where

sb (θ) =

"
|Ra (n− 1) |

IY
i=1

|zi|−2
LY

`=1

|r`|−1

#1/2

·
IY

i=1

“
e−jθ − zi

” “
e−jθ − z̄i

”
·

KY
k=1

“
e−jθ − ejαk

” “
e−iθ − e−jαk

”
·

LY
`=1

“
e−jθ − r`

”
is clearly a trigonometric polynomial of order n−1 with b ∈ Rn.
Then Pa(θ) + Pb(θ) = βn, that is, a is a β-complementary
sequence. This completes the proof. 2
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This result immediately implies that a GN -complementary se-
quence is a special β-complementary sequence.

COROLLARY 1: A ξZ2 -sequence is a β-complementary sequence
with β = N if a is a GN -complementary sequence.

PROOF: It is easy to see that PMEPR(a) ≤ N if a is a GN -
complementary sequence. Then Theorem 1 immediately shows that
a is a β-complementary sequence with β = N . 2

The argument used in the proof of Theorem 1 also implies the fol-
lowing results about the combination of β-complementary sequences.

COROLLARY 2: If a ξZ2 -sequence a is a β(n)-complementary
sequence, then the concatenated sequence a ∨ a = (a0, . . . ,
an−1, a0, . . . , an−1) and the interleaved sequence a ∧ a = (a0, a0,
. . . , an−1, an−1) are 4β(2n)-complementary sequences.

PROOF: There is a sequence b ∈ Cn such that

Pa(θ) + Pb(θ) = βn.

Then

Pa∨a(θ) + Pb∨b(θ) = |1 + zn|2(Pa(θ) + Pb(θ)) = βn|1 + ejnθ|2.

Let p(θ) = 4βn − βn|1 + ejnθ|2 + Pb∨b(θ). Then P (θ) is a non-
negative trigonometric polynomial of degree 4n− 2. By the argument
in the proof of Theorem 1, we conclude that there exists a b′ ∈ C2n

such that Pb′(θ) = p(θ), that is

Pa∨a(θ) + Pb′(θ) = 4βn.

Similarly, we can prove that the interleaving sequence a ∧ a is a
4β(2n)-complementary sequence. This completes the proof. 2

III The distribution of code rate versus β

By Theorem 1, for a β-complementary sequence, PMEPR = β. Then
we can determine the distribution of code rate versus β by the distri-
bution of the PMEPR of ξZ2 -sequences. Using the assumption that the
envelope sn(t) is asymptotically complex Gaussian, [19] and [20] de-
termined good approximations of the distribution of the PMEPR by
relying on the work of [21]. However, this assumption lacks rigorous
proof. Let8><>:

xn(t) =
1√
n

Pn−1
`=0

`
AR

` cos ω`t−AI
` sin ω`t

´
,

yn(t) =
1√
n

Pn−1
`=0

`
AR

` cos ω`t + AI
` sin ω`t

´
,

(7)

where AR
` and AI

` are, respectively, the real and imaginary parts of A`,
and ω` = 2π`/n. Then one can write the complex envelope sn(t) as

sn(t) = xn(t) + jyn(t). (8)

Recently, the work done in [22] and [23], using Lindberg’s central limit
theorem for triangular arrays [24], rigorously proved that either xn(t)
or yn(t) converges to a stationary Gaussian process on any closed
interval in R, in the sense of distribution (weakly). Therefore, sn(t)
weakly converges to a complex Gaussian process. Consequently, us-
ing the modern extremal theory [25], the authors of [22] and [23] ar-
rived at a very good approximation of the cumulative distribution func-
tion (CDF) of the PMEPR.

Unfortunately, the proof presented in [22] and [23] is not correct
for binary OFDM signals since it requires that xn(t) and yn(t) both
be stationary, which constraint, however, does not hold for a binary
OFDM signal. In this section, we add a random phase to a binary

OFDM signal and apply the results in [22] and [23] to the newly de-
rived binary OFDM signal with random phase. With this technique, we
establish a rigorous proof for the claim that the newly derived binary
OFDM signal with random phase weakly converges to a stationary
complex Gaussian process on any closed interval in R. Then we em-
ploy the modern extremal theory for χ2-process to estimate the CDF
of the PMEPR for the original binary OFDM signals.

III.A Addition of random phase to the binary OFDM signals
For a binary OFDM signal sn(t), we have M = 2, AR

` = A`,
and AI

` = 0. Therefore the associated real part xn(t) and imaginary
part yn(t) degenerate to8><>:

xn(t) =
1√
n

Pn−1
`=0 A` cos ω`t,

yn(t) =
1√
n

Pn−1
`=0 A` cos ω`t,

(9)

neither of which is stationary. To make xn(t) and yn(t) stationary, we
add a random phase to the OFDM signal sn(t).

Let θ be a random variable of uniform distribution, which equally
takes values in the interval [0, 2π]. Consider the binary OFDM signal
with random phase θ,

s̃n(t) =
1√
n

n−1X
`=0

A`e
j(2π`t/n+θ), t ∈ [0, n]. (10)

Since a random phase does not change the PMEPR of an OFDM sig-
nal, it is easy to see that

PMEPR = max
t∈[0,n]

|s̃n(t)|2.

Let Ã` = A`e
jθ and8><>:

x̃n(t) =
1√
n

Pn−1
`=0

“
ÃR

` cos ω`t + ÃI
` sin ω`t

”
,

ỹn(t) =
1√
n

Pn−1
`=0

“
ÃR

` cos ω`t + ÃI
` sin ω`t

”
,

(11)

where ÃR
` and ÃI

` are, respectively, the real and imaginary parts of Ã`,
i.e., ÃR

` = A` cos θ and ÃI
` = A` sin θ. Then we can rewrite s̃n(t) as

s̃n(t) = x̃n(t) + jỹn(t).

For the newly defined signal s̃n(t) with random phase θ, verify the
constraints of Theorem 2 in [22]–[23]:8>>>>><>>>>>:

E
“
ÃR

`

”
= E

“
ÃI

`

”
= 0,

E
“
ÃR

` ÃI
`

”
= 0,

E

»“
ÃR

`

”2
–

= E

»“
ÃI

`

”2
–

=
1

2
.

By Theorem 2 in [22]–[23], we conclude that x̃n(t) and ỹn(t) weakly
converge to the stationary Gaussian processes x̃(t) and ỹ(t), respec-
tively, on any closed interval in R as n → ∞. Meanwhile, we have

E[x̃(s)x̃(t)] = E[ỹ(s)ỹ(t)] =
sinc(2(t− s))

2

and

E[x̃(s)ỹ(t)] =
sin2(π(t− s))

2π(t− s)
.

Consequently, s̃n(t) converges to a stationary complex Gaussian pro-
cess s̃(t) = x̃(t) + jỹ(t) on any closed interval in R as n → ∞.
This fixes the difficulty in the proof for binary OFDM signals in [22]
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Figure 1: The diamond-solid line is the code rate versus the length of the β-
complementary sequences for PMEPR of at most 2. The triangle-dashed line is the code
rate versus length of the Golay complementary sequences for PMEPR of at most 2.

and [23] and establishes a rigorous proof for the claim that the newly
derived binary OFDM signal s̃n(t) with random phase θ, rather than
the original binary OFDM signal sn(t), is asymptotically Gaussian.

III.B The distribution of code rate versus β
In the last subsection, we rigorously showed that the newly derived sig-
nal s̃n(t) with random phase weakly converges to a stationary complex
Gaussian process s̃(t) on any closed interval in R as n →∞. We will
use this result and the extremal theory for χ2-process to estimate the
CDF of the PMEPR for binary OFDM signals in this section.

Before proceeding further, we should modify the derived binary
OFDM signal s̃n(t) with random phase to a symmetric binary OFDM
signal by setting ω` = (2π/n)(` − (n − 1)/2). By abusing the sym-
bols in the following, we can still use s̃n(t) = x̃n(t) + jỹn(t) to
represent the modified symmetric binary OFDM signal with random
phase. Then it is trivial to verify that s̃n(t) weakly converges to s̃(t)
on any closed interval in R by an argument similar to the one in the
last section. As an advantage of such modification, we have

E[x̃(s)ỹ(t)] = 0.

By the definition of χ2-process,1 the normalized instantaneous power
2|s̃n(t)|2 = 2x̃2

n(t) + 2ỹ2
n(t) weakly converges to a χ2-process on

any closed interval in R as n →∞. Hence, for n sufficiently large, we
have

PMEPR = max
t∈[0,n]

|s̃n(t)|2 ≈ 1

2
max

t∈[0,n]
χ2(t). (12)

Using the extremal theory for χ2-process [25] and referring to the ar-
gument in [22] and [23], we have, as n →∞,

P (an( max
t∈[0,n]

χ(t)− bn) ≤ λ) → exp(−e−λ), (13)

where an = 1/2 and bn = 2 log n + log log n− log(λ/π). Combin-
ing (12) and (13), for n sufficiently large, we obtain the CDF of the
PMEPR for binary OFDM signals as

P (PMEPR ≤ λ) ≈ exp


−e−λn

r
π

3
log n

ff
. (14)

1For the stationary Gaussian processes G1(t), . . . , Gd(t) (d ≥ 2) of mean
0 and variance 1, the process χ(t) =

Pd
i=1 G2

i (t) is called χ2-process (with
d degrees of freedom) if G1(t), . . . , Gd(t) are mutually independent.

Figure 2: The diamond-solid line is the code rate versus the PMEPR of the β(16)-
complementary sequences. The triangle-dashed line is the code rate versus the PMEPR
of the GN (16)-complementary sequences with N = β.

IV Numerical results

Consider the simplest ξZ2 -sequences, i.e., the binary sequences. Ex-
haustive computer searching shows that there are, respectively, 4, 8,
64, 608, and 149 184 available codewords for n = 2, 4, 8, 16, 32.
Therefore the corresponding code rates are, respectively, 1, 0.75, 0.75,
0.578, and 0.58 for n = 2, 4, 8, 16, 32. The distribution of code rate
versus the length of binary β-complementary sequences is plotted in
Fig. 1 by the diamond-solid line. In Fig. 1, we also plot the distribu-
tion of code rate versus the binary Golay complementary sequences
with the triangle-dashed line. From [7], the code rates of binary Go-
lay complementary sequences are [blog2(m!)c + m + 1]/2m, where
m = log2 n. Therefore the code rates of binary Golay complemen-
tary sequences are, respectively, 1, 0.75, 0.5, 0.3125, and 0.1875 for
n = 2, 4, 8, 16, 32. From Fig. 1, both lines decrease as the number
of subcarriers increases. However, the code rate of binary Golay se-
quences decreases very fast, while that of β-complementary sequences
persists, relatively speaking. This implies that the β-complementary
sequences provide a high code rate for a moderately large subcarrier
in OFDM. Meanwhile, we find that the diamond-solid line lies above
the triangle-dashed line, and that the difference is more than 0.38 for
n = 32, which means that there are many more codes with PMEPR
of at most 2 available beyond the Golay complementary sequences.
Therefore it is reasonable to expect that we can determine an efficient
encoding method using these codewords. This is another primary mo-
tivation for introducing the β-complementary sequences.

On the other hand, we can consider the tradeoff between the
PMEPR and code rate as in [17]. We focus on the binary sequences
of length n = 16. The distributions of code rate versus PMEPR for β-
complementary sequences and versus GN -complementary sequences
(N = β) are plotted in Fig. 2. When one relaxes the PMEPR, the code
rate of GN -complementary sequences slowly increases, while that of
β-complementary sequences increases very fast. For example, when
the PMEPR is relaxed from 2 to 4, the code rate of GN -complementary
sequences increases merely from 0.5366 to 0.6688, while that of
β-complementary sequences increases from 0.5639 to 0.97. When
PMEPR = 8 or 16, the code rates of GN -complementary sequences
increase only slightly, while those of β-complementary sequences rise
to almost 1. This numerical result implies that β-complementary se-
quences have very good performance in terms of the tradeoff be-
tween PMEPR and code rate, compared to the GN -complementary
sequences, and suggests a way to determine an efficient encoding
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Figure 3: CDF of PMEPR for binary OFDM signal for n = 16. The estimates derived
in [19] and [20] provide good approximations of the actual CDF. However, the estimate
derived in this paper by random phase and extremal theory approximates the actual distri-
bution much better.

scheme with low PMEPR based on some subset of β-complementary
sequences.

Fig. 3 shows the distribution of code rate versus β for β-
complementary sequences of length 16. We also compare the results
with those derived in [19] and [20]. From this figure, we observe that
the estimate from (14) approximates the actual CDF very well. How-
ever, there is a difference between the estimate and the actual CDF,
which comes from (12), where we approximately consider s̃n(t) as a
complex Gaussian process, and (13), where we approximately use the
limit distribution “double exponential distribution” as the distribution
of maxt∈[0,n] χ

2(t). Further estimation of the approximation errors
in (12) and (13) will reduce the difference between the estimate and
the actual distribution. However, this is obviously not an easy prob-
lem in the theory of stochastic processes and extremal theory, and it
remains open.

V Conclusion and open problems

In this paper, we introduced novel sequences called “β-complementary
sequences” to encode OFDM signals in a way that can substantially
increase code rate while tightly bounding the PMEPR. As the subcar-
rier n increases in size, the code rate of β-complementary sequences
will decline like that of Golay complementary sequences. However, the
code rate of β-complementary sequences declines very slowly com-
pared to that of Golay complementary sequences. Since the code rate
of Golay complementary sequences is prohibitively low for a mod-
erately large subcarrier (e.g., n > 32), the β-complementary se-
quences are suitable for use in encoding both small and large sub-
carrier OFDM signals, while maintaining a PMEPR of at most 2.
On the other hand, the β-complementary sequences also enjoy good
performance in terms of the tradeoff between PMEPR and code rate,
compared to the GN -complementary sequences. Slightly relaxing the
PMEPR in β-complementary sequences will greatly increase the code
rate to combat the slow increment when the PMEPR is relaxed in GN -
complementary sequences. This discussion suggests a way to construct
a low-PMEPR encoding scheme for OFDM signals based on some
subset of β-complementary sequences.

For a moderately large subcarrier OFDM signal, one can create a
look-up table to encode the OFDM symbols. However, for large sub-
carrier OFDM signals, the question of finding an efficient way to gen-
erate sufficient numbers of β-complementary sequences remains open.

We have developed certain recursive generating formulas. If one also
considers decoding, the Hamming distance is a critical factor affect-
ing the decoding efficiency. Therefore, understanding the Hamming
distance is another open problem for the use of β-complementary se-
quences in OFDM. In addition, we conjecture that Theorem 1 and
Corollary 1 also hold for any β-sequences in ξZM .
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