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Bounds on the Distribution of a Sum of
Correlated Lognormal Random Variables and Their Application

C. Tellambura, Senior Member, IEEE

Abstract—The cumulative distribution function (cdf) of a sum
of correlated or even independent lognormal random variables
(RVs), which is of wide interest in wireless communications,
remains unsolved despite long standing efforts. Several cdf
approximations are thus widely used. This letter derives bounds
for the cdf of a sum of 2 or 3 arbitrarily correlated lognormal
RVs and of a sum of any number of equally-correlated lognormal
RVs. The bounds are single-fold integrals of readily computable
functions and extend previously known bounds for independent
lognormal summands. An improved set of bounds are also
derived which are expressed as 2-fold integrals. For correlated
lognormal fading channels, new expressions are derived for the
moments of the output SNR and amount of fading for maximal
ratio combining (MRC), selection combining (SC) and equal gain
combining (EGC) and outage probability expressions for SC.

Index Terms—Amount of fading, cochannel interference, log-
normal distribution, diversity combining.

I. INTRODUCTION

A LOGNORMAL power sum of type

I =
n∑

i=1

eXi (1)

where each Xi is a Gaussian random variable (RV) appears
pervasively in wireless communications. Applications include
modeling and assessing cochannel interference, evaluating
coverage for cellular mobile networks and modeling fading
and shadowing [1], [2], and the book by Aitchison and Brown
[3] lists over 100 applications. Nevertheless, no exact closed-
form formula for the distribution of I is known. Even the
characteristic function (chf) of a lognormal RV is not known
in closed-form. Thus, several approximations have been de-
veloped such as moment matching [4], cumulant matching [5]
and recursive methods [6] - for comparisons see [2] [7]. For
more recent results on lognormal sums the reader is referred
to [8]–[17].

Although independent lognormal sums have been widely
studied, applications where correlation among the summands
in (1) exists occur just as frequently. Therefore, the distribu-
tion of correlated lognormal sums has applications such as
macro-diversity systems [18], soft handoff algorithms, single
frequency networks and others. Moment matching or cumulant
matching approximations that have been developed for inde-
pendent lognormal sums can also be extended for correlated
lognormal sums [19]–[21].
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In this paper, we derive bounds for the cdf of a sum of two
or three correlated lognormal RVs with arbitrary correlation
and of a sum of any number of equally-correlated lognormal
RVs. Several previously derived bounds are shown to be
special cases of these. A further set of improved bounds
(2-fold integrals) are derived. The simulation results confirm
the tightness of these bounds. Although diversity combiners
such as maximal ratio combining (MRC), selection combining
(SC) and equal gain combining (EGC) have been widely
studied over various channel models, their performance over
correlated lognormal channels is not available in detail. For
correlated lognormal fading channels, we also derive new
expressions for the moments of the output SNR and amount of
fading for MRC, SC and EGC and outage probability expres-
sions for SC. For this development, we utilize S-function and
T-function [22], [23], which are generalizations of the well-
known Q-function and are not known widely in the wireless
community. These results facilitate the rapid evaluation of the
performance of diversity schemes over correlated lognormal
channels, where no results have been published for diversity
order more than two.

Our bounds generalize previously published bounds for
independent lognormal sums by Slimane [24] and Farley’s
lower bound (or approximation) for independent lognormal
sums [1] [2]. Abu-Dayya & Beaulieu [19] provide a detailed
analysis of outage probabilities in the presence of multiple
correlated lognormal interferers, using Wilkinson’s approach,
Schwartz and Yeh’s approach and cumulant matching. Outage
probability estimation in the presence of multiple lognormal
components has been discussed by Ligeti [21]. Pratesi et al
[20] treat outage analysis in mobile radio with generically
correlated lognormal interferers. They extend several approx-
imations for the independent case to those for the generically
correlated case. Berggren and Slimane [25], by applying the
arithmetic-geometric mean inequality, give a lower bound
expressed by a single Q-function. Our work is different from
all these in that we develop bounds for the correlated case and
analyze diversity schemes. A detailed performance analysis
of dual-branch diversity schemes over correlated lognormal
fading has been developed by Alouini & Simon [26]. Our
results generalize some of their results to multibranch (n > 2)
diversity systems.

This paper is organized as follows. Section II lists several
relevant results for the multinormal distribution. Section III
develops bounds for sums of correlated lognormal variables.
Section IV derives the performance of SC, MRC and EGC
receivers over correlated lognormal channels and Section V
concludes the paper.
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II. NOTATION AND PRELIMINARIES

To derive bounds for correlated lognormal sums, a number
of distributional results on correlated normal RVs are required.
This section lists these required results.

A. Multivariate normal distribution

Let random variables X = (X1, X2, · · · , Xn)T have a
joint multivariate normal distribution with the joint probability
density function (pdf) [27]

fX(x) = (2π)−n/2|R|−1/2 exp
{
−1

2
(x − µ)T R−1(x − µ)

}
(2)

where x = (x1, x2, · · · , xn)T , µ = (μ1, μ2, · · · , μn)T ,
μi = E(xi), R = E[(x − µ)(x − µ)T ] and |R| denotes
the determinant of R. The moment generating function (mgf)
of X is given by

MX(t1, t2, · · · , tn) = E[etT ·X]

= exp
(
tT · µ +

1
2
tTRt

)
.

(3)

We write X ∼ N(μ, σ2) to denote that X is Gaussian
distributed with mean μ and variance σ2.

B. Single and bivariate normal distribution functions

The standardized normal cdf (i.e. that of X ∼ N(0, 1)) is
denoted by

Φ(h) = Pr(X ≤ h) =
∫ h

−∞
φ(t) dt (4)

where φ(t) = e−t2/2/
√

2π is the unit Gaussian pdf. The cdf in
(4) relates to the more familiar Q function as Φ(h) = 1−Q(h).
Note also that Φ(−h) = 1 − Φ(h) = Q(h). We use the same
Φ(·) to denote the cdf for univariate, bivariate and trivariate
cases and the number of arguments of Φ(·) will indicate which
particular case being handled.

The joint cdf of the standardized bivariate normal distribu-
tion (i.e. X1, X2 ∼ N(0, 1) and E[X1X2] = ρ) is

Φ(h1, h2; ρ) =
1

2π
√

1 − ρ2

·
∫ h1

−∞

∫ h2

−∞
exp
{−(x2

1 − 2ρx1x2 + x2)
2(1 − ρ2)

}
dx1dx2.

(5)

Many numerical methods have been derived to compute the
bivariate normal cdf [27]. Using the method due to Owen
[23], the bivariate cdf Φ(h1, h2; ρ) can be computed as a
sum of simple integrals. An equivalent representation has been
derived by Simon [28] and Simon and Alouini [26] used it to
analyze dual-diversity SC over correlated lognormal fading.
For brevity, we do not list the details here. Note that the
bivariate Q function has been studied in [28]. The relationship
between Q(h1, h2; ρ) = Pr[X1 > h1, X2 > h2] and the
bivariate cdf (5) is

Φ(h1, h2; ρ) = 1 − Q(h1) − Q(h2) + Q(h1, h2; ρ). (6)

C. Trivariate normal distribution function

We next consider the standardized trivariate cdf, in which
Xi ∼ N(0, 1), i = 1, 2, 3 and E[XiXj] = ρij . The trivariate
cdf has been derived by Steck [22]. In the following, we update
Steck’s notation and note that the cdf is now expressed in form
of Φ, T -function and S-function. This will yield the cdf as a
sum of several single-fold integrals of well-known functions.
For h1, h2, h3 ≥ 0 (or h1, h2, h3 ≤ 0), the trivariate cdf is
given by [22]

Φ(h1, h2, h3; ρ12, ρ13, ρ23)
= Pr(X1 < h1, X2 < h2, X3 < h3)

=
1
2

3∑
k=1

(1 − δakck
)Φ(hk)

− 1
2

3∑
k=1

[T (hk, ak) + T (hk, ck)]

−
3∑

k=1

[S (hk, ak, bk) + S(hk, ck, dk)],

(7)

where ak, bk, ck and dk are given by Eq. (11),

T (α, β) =
1
2π

∫ β

0

exp
[− 1

2α2(1 + x2)
]

(1 + x2)
dx (8)

=
1
2π

∫ π
2

tan−1(1/β)

exp
(
− α2

2 sin2 θ

)
dθ (9)

S(h, a, b) =
b

2π

∫ 1

0

Φ
(
h
√

1 + a2 + a2b2t2
)

dt

(1 + b2t2)
√

1 + a2 + a2b2t2
, (10)

Δ = 1 − ρ2
12 − ρ2

13 − ρ2
23 + 2ρ12ρ13ρ23,

Iijk = ρjk − ρijρik,

[k] =
{

k if k ≤ 3
k − 3 if k > 3

and δhk =
{

0 if sgn(h)sgn(k) = 1
1 otherwise

with

sgn(h) =
{

1 if h ≥ 0,
−1 if h < 0.

For cases h1 ≥ 0, h2 ≥ 0, h3 < 0 or h1 ≤ 0, h2 ≤ 0, h3 >
0, we have [22]

Φ(h1, h2, h3; ρ12, ρ13, ρ23)

=
1
2

[Φ(h1) + Φ(h2) − δh1h2 ] − T (h1, a1) − T (h1, c1)

− Φ(h1, h2,−h3; ρ12,−ρ13,−ρ23).

Note that for the special case when h1 = h2 = h3 = h and
all the correlation factors equal to ρ, the trivariate cdf is given
by

Φ(h, h, h; ρ) =
3
2
Φ(h) − 3T

(
h,

√
1 − ρ

1 + ρ

)

− 6S

(
h,

√
1 − ρ

1 + ρ
,

1√
1 + 2ρ

)
.

(12)

It should be emphasized that the trivariate cdf in this case is
a sum of simple finite-range integrals.
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ak =
h[k+1] − hkρk[k+1]

hk

√
1 − ρ2

k[k+1]

, ck =
h[k+2] − hkρk[k+2]

hk

√
1 − ρ2

k[k+2]

,

bk =
(1 − ρ2

k[k+1]
)(h[k+2] − hkρk[k+2]) − Ik[k+1][k+2](h[k+1] − hkρk[k+1])

(h[k+1] − hkρk[k+1])Δ
1/2

,

dk =
(1 − ρ2

k[k+2]
)(h[k+1] − hkρk[k+1]) − Ik[k+1][k+2](h[k+2] − hkρk[k+2])

(h[k+2] − hkρk[k+2])Δ
1/2

.

(11)

FXmax(x) = Pr[Xmax ≤ x] = Pr

[
n⋂

k=1

(Xk ≤ x)

]

=

∫ x

−∞
· · ·
∫ x

−∞
(2π)−n/2|R|−1/2 exp

{
−1

2
(x − µ)T R−1(x − µ)

}
dx.

(13)

D. Distribution of the maximum of normal random variables

If Xmax = max{X1, X2, · · · , Xn}, the cdf is given by
(13). For an arbitrary correlation matrix R, there is no closed-
form solution for this integral despite longstanding efforts
of researchers in the probability and statistics community.
Numerically evaluating an n-dimensional integral is not sat-
isfactory for large n. For special cases n = 2 and n = 3,
[23] and (7) completely solve this integral. When four or
more normal RVs exist, the computational problem becomes
difficult and motivates the development of the bounds.

III. BOUNDS ON CORRELATED LOGNORMAL SUM

DISTRIBUTIONS

We consider the lognormal RV γi to be represented as

γi = 10Yi/10 = eXi (14)

where Yi ∼ N(mYi , σ
2
Yi

), Xi ∼ N(μi, σ
2
i ) and mYi and σYi

are measured in decibels (μi = λmYi and σi = λσYi where
λ = 0.1 ln(10) = 0.23026). In a mobile environment, the dB
spread σYi can vary between 6 and 12 dB [2]. For notational
convenience, we always use γi = eXi .

We primarily intend to derive bounds for lognormal sum
distributions and common bounding techniques fail in this
case. For example, the Chernoff bounding technique requires
the mgf of each summand and this mgf does not exist in
closed-form for lognormal sums. This highlights the difficulty
of the task facing us. Fortunately, Slimane [24] has suggested
that

eXmax ≤ I ≤ neXmax . (15)

Consequently, the complementary cdf of I is bounded by

1 − FXmax(ln z) ≤ P (I > z) ≤ 1 − FXmax

[
ln
( z

n

)]
. (16)

Our task at hand is to find the cdf of the maximum of the
summands.

A. Two lognormal summands

The cdf of the maximum is readily turned to be

FXmax(x)

=
1

2π
√

1 − ρ2

·
∫ x−μ1

σ1

−∞

∫ x−μ2
σ2

−∞
exp
[
−x2

1 − 2ρx1x2 + x2
2

2(1 − ρ2)

]
dx1dx2

= Φ
(

x − μ1

σ1
,
x − μ2

σ2
; ρ
)

.

(17)

Since Φ(h1, h2; ρ) can be computed as a sum of single-fold
integrals [23], the bounds (16) can be readily computed.

B. Three lognormal summands

The cdf of the maximum now given by

FXmax(x) = Φ
(

x − μ1

σ1
,
x − μ2

σ2
,
x − μ3

σ3
; ρ12, ρ13, ρ23

)
.

(18)
This provides the distribution of the maximum for the most
general use (i.e. non-identically distributed and arbitrarily
correlated).

C. Equally-correlated Lognormal Summands

We assume that the Xi’s in (1) are equally correlated and of
the same variance but of different means. The means, variance
and covariances are thus given by [29]

(1) E(Xi) = μi, i = 1, · · · , n, (19a)

(2) E[(Xi − μi)2] = σ2, i = 1, · · · , n, (19b)

E[(Xi − μi)(Xj − μj)] = ρσ2, i �= j, i = 1, · · · , n.
(19c)

The quantity ρ is the correlation coefficient between any two
summands in I . Note that the equally-correlated fading model
is not exactly valid for many scenarios encountered in wireless
communications. However, it can be used to described the
correlation among equally-spaced (close) antennas and also
serves as a worst-case bench mark [30].

A set of equally-correlated normal RVs can be represented
as

Xi = σ
√

ρZ0 + σ
√

1 − ρZi + μi (20)
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for ρ ≥ 0, i = 1, · · · , n, where Zi(0 ≤ i ≤ n) are independent
standard normal RVs. Note that the equal correlation among
the Xi’s is ensured by the presence of Z0 in all of them. We
use the following ’trick’ in the subsequent development of
various results. The key idea is to fix Z0 and the Xi’s then
become conditionally independent RVs. Distributional results
for the conditionally independent variates can be obtained and,
as a final step, they have to be averaged over the distribution
of Z0. This approach, borrowed from Owen and Steck [29],
is now extended to compute the cdf of the maximum of
correlated normal RVs and joint pdf’s of the order statistics
of correlated normal RVs (subsection D).

Consequently, let Z0 = t, then the Xi’s are conditionally
independent RVs with Xi|t ∼ N [μi + σ

√
ρt, σ2(1 − ρ)].

Averaging over the distribution of t, the cdf of the maximum
readily follows as

FXmax(x) =
∫ ∞

−∞

[
n∏

i=1

Φ
(

x − μi − σ
√

ρt

σ
√

1 − ρ

)]
φ(t) dt. (21)

Integral (21) can be evaluated using the Gauss-Hermite
quadrature formula [31]. Using (16) and (21), the lower and
upper bounds on the complementary cdf are obtained as

1−
∫ ∞

−∞

[
n∏

i=1

Φ
(

ln z − μi − σ
√

ρt

σ
√

1 − ρ

)]
φ(t) dt ≤ P (I > z)

≤ 1 −
∫ ∞

−∞

[
n∏

i=1

Φ
(

ln(z/n) − μi − σ
√

ρt

σ
√

1 − ρ

)]
φ(t) dt.

(22)

Notice that, for independent and identically distributed log-
normal variates (ρ = 0) with the zero means, (22) reduces
to

1−
[
Φ
(

ln z

σ

)]n

≤ P (I > z) ≤ 1−
[
Φ
(

ln(z/n)
σ

)]n

(23)

which are identical to the bounds given in [24]. In particular,
the lower bound is Farley’s approximation [1] [2]. Thus, the
lower bound in (22) generalizes Farley’s approximation to
equally-correlated lognormal summands.

To examine the tightness of the lower and upper bounds,
(22) is plotted in Fig. 1 for sums of six lognormal variates
(n = 6) with 4 dB and 8 dB spreads for correlation
coefficient values 0.25 and 0.75. The simulation results are
also provided for comparison. The lower bound is tighter
than the upper bound, similar to the bounds for independent
lognormal variates [24], and it becomes tighter as the standard
deviation increases. As expected, the lower bound loses its
accuracy when ρ increases because the sum distribution is no
longer dominated by the maximum summand due to the high
correlation among the summands. Finally, the lower bound is
accurate provided ρ is small. This behavior is reminiscent of
the Farley bound for the independent case.

D. Improved Bounds for identically distributed, equally-
correlated lognormal summands

The bounds derived in the previous section can be improved,
albeit at a cost of computational complexity. Improved bounds
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Fig. 1. Lower and upper bounds for the distribution of a sum of six equally-
correlated lognormal RVs. The normalized correlation is ρ = 0.25.

can be obtained by considering the order statistics of one more
summand as [24]

I ≥ eXmax + (n − 1)eXmin . (24)

In order to find the distribution of the improved lower bound,
the joint pdf of Xmin and Xmax is required. We use the
representation (20) with μi = μ and Z0 = t. When Z0 is fixed
Xmin and Xmax are determined by Zmin and Zmax. Since
Zi(i = 0, · · · , n) are independent N(0, 1), the conditional
joint pdf of Xmin and Xmax can be written as [32, Eq.2.21]

fXminXmax(y, z|Z0 = t)

=
1

σ2(1 − ρ)
n!

(n − 2)!
[Φ(z̃) − Φ(ỹ)]n−2 φ(ỹ)φ(z̃), y ≤ z

(25)

where �̃ = �−σ
√

ρt−μ

σ
√

1−ρ
.

In a similar manner, the improved upper bound on a
correlated lognormal sum is given by applying the following
order statistics [24]

I ≤ eXmax + (n − 1)eX(n−1) (26)

where X(n−1) is the second largest of X1, X2, · · · , Xn. Again
by fixing Z0 in (20), the conditional joint pdf of X(n−1) and
Xmax is given by

fX(n−1)Xmax(y, z|Z0 = t)

=
n!

σ2(1 − ρ)(n − 2)!
Φ(ỹ)n−2φ(ỹ)φ(z̃), y ≤ z.

(27)

Using (24), (25), (26) and (27), tighter lower and upper bounds
on the complementary cdf of a sum of correlated lognormal
RVs can be obtained by

P (I > x)

≥ 1 −
∫ ∞

−∞

∫ ln x

−∞

∫ ym

−∞
fXminXmax(y, z|Z0 = t)φ(t) dy dz dt

(28a)
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Fig. 2. Improved lower and upper bounds for the distribution of a sum of six
equally-correlated lognormal RVs. The normalized correlation is ρ = 0.25.
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Fig. 3. Improved lower and upper bounds for the distribution of a sum of six
equally-correlated lognormal RVs. The normalized correlation is ρ = 0.75.

and

P (I > x)

≤ 1 −
∫ ∞

−∞

∫ ln x

−∞

∫ ym

−∞
fX(n−1)Xmax(y, z|Z0 = t)φ(t) dy dz dt

(28b)

where

ym =
{

z z < ln(x/n)
ln[(x − ez)/(n − 1)] z ≥ ln(x/n). (28c)

It is observed that when ρ = 0, both (25) and (27) reduce to
the joint pdf of ordered variates for independent summands
and (28a) and (28b) reduces to two bounds in [24]. Note
that the bounds which are three-fold integrals pose numerical
difficulties. Appendix I shows that (28a) and (28b) can be
simplified as (29).

To examine the tightness of these new lower and upper
bounds, (29) is computed for six summands and dB spreads
of 4 and 8 (same as in the previous section). These bounds

for correlation coefficient values 0.25 and 0.75 are shown in
Figs. 2 and 3 along with the simulation results. The two new
bounds are tighter than (22). Although the improved bounds
are more complex, their computation time does not increase
substantially compared to (22).

IV. APPLICATIONS

The previous expressions for the cdf of Xmax can be used to
compute the performance of selection combiner (SC) receivers
in correlated lognormal fading. Let the branch SNR’s be given
by γi = eXi (i = 1, 2, · · · , n). The maximum of the branch
SNR is the output of SC receiver as

γsc = max{γ1, γ2, · · · , γn}. (30)

We are interested in the moments of the SC outputs given by

E[γk
sc] =

∫ ∞

0

xkfγsc(x) dx k = 1, 2, · · · . (31)

Although SC performance has been treated for a wide variety
of channel models, performance over correlated lognormal
fading channels is not available, except for the dual-diversity
case by Simon and Alouini [26]. For the equally-correlated
case, expressing the moments as a two-fold integral using
(21), we find that E[γk

sc] can be represented as (32). In
general, there is no closed-form solution for this double
integral. However, when all the means are identical, using the
substitution y = x−μ−σ

√
ρt

σ
√

1−ρ
, the k-th moment is found to be

E[γk
sc]

= n

∫ ∞

−∞

∫ ∞

−∞
ek(σ

√
1−ρy+μ+σ

√
ρt) [Φ(y)]n−1

φ(y)φ(t)dydt

= nekμ+k2σ2/2

∫ ∞

−∞
[Φ(y + kσ

√
1 − ρ)]n−1φ(y)dy.

(33)

Thus, all SC output moments are derived as single-fold
integrals of computable functions. For the dual-branch case
(n = 2), (33) can be interpreted as a probability integral
involving two independent N(0, 1) variables, say, X1 and X2:

E[γk
sc] = 2ekμ+k2σ2/2

∫ ∞

−∞
Φ(y + kσ

√
1 − ρ)φ(y)dy

= 2ekμ+k2σ2/2 Pr
{
X1 < X2 + kσ

√
1 − ρ

}

= 2ekμ+k2σ2/2Φ

(
kσ

√
1 − ρ

2

)
.

(34)

This is exactly the correlated identically distributed fading
result given in [26, Eq. 34]. Closed-form expressions for n = 3
and n = 4 cases can also be derived. Using [33] and (33), for
equally-correlated identically distributed 3-branch systems, the
SC output moments are given by

E[γk
sc] = 3ekμ+k2σ2/2

·
[
Φ

(
kσ

√
1 − ρ

2

)
− 2T

(
kσ

√
1 − ρ

2
,

1√
3

)]
.

(35)
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1 −
∫ ∞

−∞

∫ ln x

−∞

n!

(n − 2)!σ
√

1 − ρ

[
n−2∑
r=0

(n−2
r

) (−1)r

r + 1
Φ(z̃)n−2−rφ(z̃)Φ(y∗)r+1

]
φ(t)dzdt

≤ P (I > x) ≤ 1 −
∫ ∞

−∞

∫ ln x

−∞

n

σ
√

1 − ρ
Φ(y∗)n−1φ(z̃)φ(t) dz dt.

(29)

E[γk
sc] =

1

σ
√

1 − ρ

n∑
i=1

∫ ∞

−∞

∫ ∞

−∞
exk

n∏
j=1
j �=i

Φ

(
x − μj − σ

√
ρt

σ
√

1 − ρ

)
φ

(
x − μi − σ

√
ρt

σ
√

1 − ρ

)
φ(t) dt dx. (32)

E[γk
sc] = 4ekμ+k2σ2/2

[
3

2
Φ

(
kσ

√
1 − ρ

2

)
− 3T

(
kσ

√
1 − ρ

2
,

1√
3

)
− 6S

(
kσ

√
1 − ρ

2
,

1√
3

,
1√
2

)]
. (36)

Using [33] and (33), for equally-correlated identically dis-
tributed 4-branch case, the SC output moments are given by
(36).

To the best of our knowledge, (33) and (34) are new results
and they enable rapid performance evaluation of 3-branch and
4-branch SC over correlated lognormal channels.

Amount of fading (AF), which is the variance normalized
by the square of the mean, is sometimes used as a performance
measure for diversity systems [26]. For a diversity system with
output SNR γout, the AF measure is given by

AFout =
E[γ2

out] − [E(γout)]2

[E(γout)]2
. (37)

The AF measure for three-branch SC over equally-correlated
lognormal fading is given by

AFsc =
eσ2

3

[
Φ
(
σ
√

2(1 − ρ)
)
− 2T

(
σ
√

2(1 − ρ), 1√
3

)]
[
Φ
(

σ
√

1−ρ
2

)
− 2T

(
σ
√

1−ρ
2 , 1√

3

)]2 −1

(38)
for n = 3. For four-branch SC over equally-correlated log-
normal fading, the AF is given by (39). To the best of our
knowledge, (36) and (37) are new AF expressions for SC over
correlated lognormal channels.

For comparison, the MRC output moments are derived next.
The MRC output is given by γmrc =

∑n
i=1 eXi . Expanding

γk
mrc multinomially, the k-th moment is found to be

E[γk
mrc] =

∑
k1+···+kn=k

(
k

k1 · · · kn

)
E
[
ek1X1+···+knXn

]
(40)

where the summation is to be carried over all non-negative
integers k1, k2, · · · , kn that sum to k and

(
n

k1···kn

)
= n!

k1!···kn! .
The expectation in (40) can be readily recognized as the mgf
of the multivariate normal distribution (3). We thus find that

E[γk
mrc] =

∑
k1+···+kn=k

(
k

k1 · · ·kn

)
exp
{
kT µ +

1
2
kT Rk

}
(41)

where k = (k1, k2, · · · , kn). This expression holds for ar-
bitrary correlation structures and not necessarily identically
distributed lognormal RVs and (41) generalizes the MRC
moments derived for the dual-branch case in [26, Eq. (13)].

Using R = [rij ] where rij = ρijσiσj and (41), we
can show that the AF measure for MRC over correlated
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Fig. 4. Amount of fading for 3-branch SC for different correlation coefficient
ρ.

lognormal channels is given by Eq. (42). Eq. (42) holds for
arbitrary correlation structures and not necessarily identically
distributed lognormal RVs and it also generalizes the AF
measure for MRC derived for the dual-branch case in [26,
Eq. (16)]. Fig. 4 shows the AF measure for SC and MRC
over correlated lognormal channels as a function of the dB
spread and for ρ = 0, 0.5.

For EGC, the output SNR may be given as

γegc =
1
n

(
√

γ1 + · · · + √
γn)2 =

1
n

(
e

1
2 X1 + . . . + e

1
2 Xn

)2

.

(43)
Expanding γk

egc multinomially, it can be shown that

E[γk
egc]

=
1
n

∑
k1+···+kn=2k

(
2k

k1 · · · kn

)
E
[
e

1
2 k1X1+···+ 1

2 knXn

]

=
1
n

∑
k1+···+kn=2k

(
2k

k1 · · · kn

)
exp
{

1
2
kT µ +

1
8
kT Rk

}
(44)

where the summation is to be carried over all non-negative
integers k1, k2, · · · , kn that sum to 2k. Using (42), we can
readily derive the AF measure for EGC and this is omitted
for brevity.
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AFsc =
eσ2

4

[
3
2
Φ
(
σ
√

2(1 − ρ)
)
− 3T

(
σ
√

2(1 − ρ), 1√
3

)
− 6S

(
σ
√

2(1 − ρ), 1√
3
, 1√

2

)]
[

3
2
Φ

(
σ
√

1−ρ
2

)
− 3T

(
σ
√

1−ρ
2

, 1√
3

)
− 6S

(
σ
√

1−ρ
2

, 1√
3
, 1√

2

)]2 − 1 (39)

AFmrc =

∑
i

exp[2(μi + σ2
i )] + 2

∑
i,j

exp

(
μi + μj +

1

2
(σ2

i + σ2
j ) + ρijσiσj

)
[∑

i

exp

(
μi +

1

2
σ2

i

)]2
− 1. (42)

A. Outage Probabilities

A widely-used performance measure is the outage, the
probability that the diversity combiner output falls below
a predefined threshold. The outage of L-branch SC P sc

out is
therefore given by

P sc
out(γth) = P [γsc < γth]

=
∫ ∞

−∞

L∏
i=1

Φ
(

ln γth − μi − σ
√

ρt

σ
√

1 − ρ

)
φ(t) dt.

(45)

Again there is no closed-form solution in general. For L = 2
and 3 and for identical means, however we get Eq. (46) for
the outage probability using [33]:

V. CONCLUSION

While lognormal sums widely occur in wireless applica-
tions, the sum distribution problem remains unsolved. Even
for independent sums, let alone for the correlated case, a
closed-form solution has been elusive. This letter therefore
has derived upper and lower bounds for the distribution of
a sum of 2 or 3 lognormal RVs with arbitrary correlation
and of a sum of any number of equally-correlated lognor-
mal RVs. The bounds are single-fold integrals of readily
computable functions. Several previously known bounds for
the independent case are shown to be special cases of these
results. An improved set of bounds are also derived which
are expressed as 2-fold integrals. The distributional results
developed for bounding purposes are further utilized to obtain
several performance measures for MRC, SC and EGC. Thus,
the moments of output SNR, outage probability and amount
of fading were derived for diversity systems over correlated
lognormal environments. A possible future topic is to extend
these results to generalized selection combiners. A challenging
open problem is to extend our results to arbitrary correlation
patterns.

APPENDIX A

Consider the evaluation of the integration in (28b), the part

I =
∫ ym

−∞
fX(n−1)Xmax(y, z|Z0 = t)dy

=
∫ ym

−∞
[1 − Q(ỹ)]n−2φ(ỹ)

dỹ

dy
dy

=
∫ y∗

−∞
[1 − Q(ỹ)]n−2φ(ỹ)dỹ

=
1

n − 1
[1 − Q(y∗)]n−1

(A.1a)

where y∗ = ym−σ
√

ρt

σ
√

1−ρ
. Thus, (28b) is reduced from 3-D to

2-D integration as

P (I > x)

≤ 1 −
∫ ∞

−∞

∫ ln x

−∞

n

σ
√

1 − ρ
[1 − Q(y∗)]n−1φ(z̃)φ(t) dz dt

(A.2)

Similar development occurs with (28a) since

[Q(ỹ)−Q(z̃)]n−2 =
n−2∑
r=0

(
n−2

r

)
(−1)r[1−Q(z̃)]n−2−r[1−Q(ỹ)]r.

(A.3)
Then (28a) is reduced to Eq. (A.4).
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