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Abstract—Optimal pilot design and placement for channel
estimation in Multiple-input Multiple-output (MIMO) Orthog-
onal Frequency-Division Multiplexing (OFDM) systems with
frequency offsets are considered. Both the single-frequency-
offset case and the multiple-frequency-offset case are treated.
We show that the Constant-Envelope (CE) condition is sufficient
but not necessary for pilot design, and that pilots with multiple
envelopes can also achieve the optimal performance in terms
of the Mean Square Error (MSE) minimization, provided that
an additional constraint on the pilot placement is satisfied
simultaneously. New pilot designs, which take into account the
multiple-frequency-offset case, are proposed to eliminate Inter-
Pilot-Interference (IPI) and to optimize the MSE performance.
The Least-Squares (LS) and Linear Minimum Mean Square
Error (LMMSE) channel estimators for the multiple-frequency-
offset case are designed for uncorrelated and correlated MIMO-
OFDM channels, respectively. The LMMSE estimator requires
the channel covariance matrix. Both optimal adaptive pilot power
allocation and suboptimal uniform pilot power allocation are
developed for the proposed LMMSE estimator. The adaptive
allocation performs 4 dB better than the uniform allocation in the
high noise region, but they both perform identically in the low
noise region. Performance comparisons are made against several
previous pilot designs due to [1], [2]. The proposed LMMSE
estimator significantly outperforms the LS estimator.

Index Terms—Frequency offset, channel estimation, MIMO,
OFDM.

I. INTRODUCTION

CONSIDERABLE research has focused on Multiple-input
Multiple-output (MIMO) technology for increasing the

wireless system capacity. Compared to a single-input single-
output (SISO) system, a MIMO system can improve the
capacity by a factor of the minimum number of transmit
and receive antennas. Space-time coding, including space-time
block codes (STBC) and space-time trellis codes (STTC) [3],
can extract transmit diversity in MIMO systems.

The frequency-selective fading MIMO channel can be trans-
formed into a set of flat-fading MIMO channels by using
Orthogonal Frequency-Division Multiplexing (OFDM). This
transformation achieves a high capacity at a low cost of
equalization and demodulation [4], [5]. However, just as with
the SISO-OFDM, MIMO-OFDM systems too are sensitive
to frequency offset. Many SISO-OFDM frequency offset
estimators have been proposed [6]–[8]. A synchronization
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algorithm for MIMO-OFDM systems is proposed in [9], where
identical timing offset and frequency offset with respect to
each transmit-receive antenna pair are assumed. Parameters
estimation of MIMO flat-fading channels is discussed in [10],
where frequency offsets for different transmit-receive antennas
are assumed to be different, and the Cramer-Rao Lower Bound
(CRLB) for either the frequency offsets or channel estimation
variance error is derived.

Another prevalent impairment is the channel estimation
error, which degrades the bit error rate of MIMO-OFDM
systems. Robust channel estimation for OFDM systems is
discussed in [11]. Optimal pilot design and placement for
channel estimation is developed in terms of minimization of
the CRLB [12]. Optimal training signal design for frequency-
selective block fading channel estimation in MIMO-OFDM
systems is discussed in [13]. Some other constraints for train-
ing signal designs, such as low peak-to-average energy ratio
(PAR) and robustness to frequency offsets, are also considered
in [13]. Barhumi, Leus and Moonen (BLM) propose a high-
quality channel estimator for a MIMO-OFDM channel based
on frequency-domain uniformly placed pilots (the frequency
offset and channel correlation are not considered) [1]. Hu
improves the BLM pilots with a nonuniform placement de-
sign, which mitigates the performance loss due to the non-
modulated pilots in virtual subcarriers [14]. MIMO-OFDM
channel estimation for a correlated channel is discussed in
[15], [16]. However, neither [15] nor [16] considers the effect
of frequency offset. Training sequence design for MIMO chan-
nel estimation in the presence of a single frequency offset is
discussed in [17], [18]. In [17], optimal training signal design
for MIMO-OFDM channel estimation while considering a
single frequency offset and phase noise is proposed, and its
performance is much more robust than the algorithms that
consider only the effect of frequency offset. In [18], the
estimation of frequency-selective channel and frequency offset
in either SISO or MIMO systems is discussed. By using the
exact CRLB as a metric, a power efficient training preamble is
designed in [18] to reduce the complexity of estimation. Joint
frequency offset and channel estimation with either single
or multiple frequency offsets for MIMO frequency selective
fading channels is discussed in [2], where pilots for different
transmit antennas are orthogonal in the time-domain, and pilot
optimization in terms of MSE reduction is also studied.

This paper considers optimal pilot design and placement for
channel estimation in Multiple-input Multiple-output (MIMO)
Orthogonal Frequency-Division Multiplexing (OFDM) sys-
tems in the presence of frequency offsets. Both the single-
frequency-offset case and the multiple-frequency-offset case
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are treated1. Each frequency offset is modeled as an Indepen-
dent and Identically Distributed (i.i.d.) random variable (RV).
In our proposed scheme, several subcarriers are allocated to
each transmit antenna to transmit either pilots or data symbols.
The pilots of different transmit antennas may be either orthog-
onal (in the frequency-domain or time-domain) or not. We
show that the Constant-Envelope (CE) condition is sufficient
but not necessary for pilot design, and that pilots with multiple
envelopes can also achieve the optimal performance in terms
of the Mean Square Error (MSE) minimization, provided that
an additional constraint on the pilot placement is satisfied
simultaneously. New pilot designs, which take into account
the multiple-frequency-offset case, are proposed to eliminate
Inter-Pilot-Interference (IPI) and to optimize the MSE perfor-
mance. The Least-Squares (LS) and Linear Minimum Mean
Square Error (LMMSE) channel estimators for the multiple-
frequency-offset case are designed for uncorrelated and cor-
related MIMO-OFDM channels, respectively. The LMMSE
estimator requires the channel covariance matrix. Both optimal
adaptive pilot power allocation and suboptimal uniform pilot
power allocation are developed for the proposed LMMSE
estimator. Performance comparisons are made against several
previous pilot designs due to [1], [2]. The estimator of [1] is
found to exhibit high error floors for the multiple-frequency-
offset case. The proposed LMMSE estimator significantly
outperforms the LS estimator.

The remainder of this paper is organized as follows. A
MIMO-OFDM system model with multiple frequency offsets
is discussed in Section II, and the LS frequency offset and
channel estimation are analyzed in Section III. The optimal
pilot design and placement for LS channel estimation in the
presence of multiple frequency offsets are discussed in Section
IV, and an LMMSE estimator for a correlated MIMO-OFDM
channel is proposed in Section V. Numerical results are given
in Section VI, followed by conclusions in Section VII2.

II. MIMO-OFDM SIGNAL MODEL

Input data bits of MIMO-OFDM are mapped to com-
plex symbols drawn from a typical signal constellation, e.g.,
phase-shift keying (PSK) or quadrature amplitude modulation
(QAM). An OFDM symbol is generated by taking the Inverse
Discrete Fourier Transform (IDFT) of N input sub-symbols,
where N is the IDFT size, and the IDFT matrix F is defined

as [F]nk =
1√
N
e

j2πnk
N for 0 ≤ n, k ≤ N − 1. We also

assume that each OFDM symbol has a useful part of duration
Ts seconds and a cyclic prefix of length Tg seconds to mitigate
Inter-Symbol-Interference (ISI), where Tg is longer than the
channel-response duration. For a MIMO-OFDM system with

1This case can occur when, for example, MIMO OFDM is used in a
multiple user scenario. This case can also occur in cooperative relaying, which
can be seen as virtual MIMO systems. The single frequency offset case is a
special case of this case.

2Notation: (·)−1, (·)T and (·)H are the inverse, transpose and complex
conjugate transpose of a matrix. The imaginary unit is j =

√−1. �{x},
and �{x} are the real and imaginary part of x, respectively. A circularly
symmetric complex Gaussian RV w with mean m and variance σ2 is denoted
by w ∼ CN (m, σ2). A real Gaussian RV x with mean a and variance σ2

is denoted by x ∼ N (a, σ2). IN is the N × N identity matrix, and ON
is the N × N all-zero matrix. 0N is the N × 1 all-zero vector. a[i] is the
i-th entry of vector a, and ‖a‖2

2 =
∑
i
|a[i]|2. [B]mn is the mn-th entry of

matrix B. (x)n represents the remainder after division of x by n. E{x} and
Var{x} are the mean and variance of x.

Nt transmit antennas and Nr receive antennas, a N × 1
vector xi(z) is used to represent the z-th block of frequency-
domain symbols sent by the i-th transmit antenna, where
i ∈ {1, 2, · · · , Nt}. In the following sections, the temporal
index z will be omitted for the sake of simplicity. Without
loss of generality, each entry of xi is assumed to be an

i.i.d. RV with mean zero and variance σ2
x =

Es

NNt
, where

Es =
Nt∑
i=1

E

{
‖xi‖2

2

}
is the total transmit power.

By using hk,i(z) to represent the discrete-time impulse
response of the z-th tap channel between the i-th transmit
and the k-th receive antenna, the related channel response
vector can be represented as hk,i = [h̃T

k,i,0
T
N−Lmax

]T =
[hk,i(0), hk,i(1), · · · , hk,i(Lmax −1),0T

N−Lmax
]T with Lmax

representing the maximum length of all channels. The cor-
responding frequency-domain channel attenuation matrix is
given by Hk,i = diag

{
H

(0)
k,i , H

(1)
k,i , · · · , H(N−1)

k,i

}
with

H
(n)
k,i =

Lmax−1∑
d=0

hk,i(d)e−
j2πnd

N representing the channel at-

tenuation at the n-th subcarrier.
In the following sections, ψk,i and εk,i are used to rep-

resent the initial phase and the normalized frequency offset
(frequency offset normalized to a subcarrier spacing of OFDM
symbols) between the i-th transmit and the k-th receive anten-
nas. Since the initial phase is independent of the frequency off-
sets and channel attenuation and also because the estimation of
the initial phase is beyond the discussion of this paper, without
loss of generality, we assume that ψk,i for each (k, i) has been
estimated and compensated for and that, therefore, ψk,i = 0.
By considering the channel attenuations and frequency offsets,
the q-th received vector can be represented as

y(q) = [yT
1 (q),yT

2 (q), · · · ,yT
Nr

(q)]T , (1)

where yk(q) =
Nt∑
i=1

Ek,iFHk,ixi(q) + wk(q), Ek,i =

diag
{
1, e

j2πεk,i
N , · · · , e j2πεk,i(N−1)

N

}
, and wk(q) is a vector

of additive white Gaussian noise (AWGN) with wk(q)[i] ∼
CN (0, σ2

w).
At the k-th receive antenna, by taking the DFT operation

to the received vector, we obtain

rk(q) = FHyk(q) =
Nt∑
i=1

√
NEcir

k,iX
p
i (q)F

H
(Lmax)︸ ︷︷ ︸

Pk,i(q) (N×Lmax)

h̃k,i

+
Nt∑
i=1

√
NEcir

k,iX
d
i (q)F

H
(Lmax)︸ ︷︷ ︸

Dk,i(q) (N×Lmax)

h̃k,i + FHwk(q)︸ ︷︷ ︸
ηk(q) (N×1)

,

(2)

where Ecir
k,i = FHEk,iF is a circulant matrix, F(Lmax) is

the first Lmax rows of F, and Xi(q) = Xd
i (q) + Xp

i (q) =
diag{xd

i (q)}+diag{xp
i (q)} with xd

i (q) and xp
i (q) being some

N × 1 data and pilot vectors, respectively. Note that the
averaged power of the data and pilot may be different. With
the pilots modulated over consecutive M symbols (M ≥ 1),
the received vector becomes

rk =
[
rT

k (0), · · · , rT
k (M − 1)

]T
= Pkhk + Dkhk + ηk,

(3)
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where Pk =

⎡
⎢⎣ Pk,1(0) . . . Pk,Nt(0)

...
. . .

...
Pk,1(M − 1) . . . Pk,Nt(M − 1)

⎤
⎥⎦,

Dk =

⎡
⎢⎣ Dk,1(0) . . . Dk,Nt(0)

...
. . .

...
Dk,1(M − 1) . . . Dk,Nt(M − 1)

⎤
⎥⎦, hk =

[
h̃T

k,1, · · · , h̃T
k,Nt

]T
and ηk =

[
ηT

k (0), · · · ,ηT
k (M − 1)

]T
.

III. LS FREQUENCY OFFSET AND CHANNEL ESTIMATION

IN MIMO-OFDM SYSTEMS

This section and the next assume that the channel coeffi-
cients for the different transmit and receive antennas indepen-
dent. Section V considers correlated MIMO-OFDM channels.

Using rk, the frequency offsets and channel coefficients are
jointly estimated as{
ε̂k,1, · · · , ε̂k,Nt ; ĥk

}
= arg min

ε̂k,1,··· ,ε̂k,Nt ;ĥk

∥∥∥rk − P̂kĥk

∥∥∥2

2
,

(4)

where P̂k =
√
N

⎡
⎢⎣ Γk,1(0) . . . Γk,Nt(0)

...
. . .

...
Γk,1(M − 1) . . . Γk,Nt(M − 1)

⎤
⎥⎦,

Γk,i(m) = Êcir
k,iX

p
i (m)FH

(Lmax), and [Êcir
k,i]ls =

sin (π ((s− l)N + ε̂k,i))
N sin

(
π
N ((s− l)N + ε̂k,i)

) · e
j(N−1)((s−l)N +ε̂k,i)

N , and

ε̂k,i represents the estimate of εk,i.
We perform an estimation in two steps: first, we keep each

channel attenuation unchanged and design a robust frequency
offset estimator whose performance is insensitive to the wire-
less channel; second, based on the frequency offset estimation
result, Pk can be achieved and used for channel estimation.
The frequency offset can be estimated as

{ε̂k,1, · · · , ε̂k,Nt}

= arg min
ε̂k,1,··· ,ε̂k,Nt

M−1∑
n=0

∥∥∥∥∥yk(n) −
Nt∑
i=1

Êk,iFHk,ix
p
i (n)

∥∥∥∥∥
2

2

,

(5)

where Êk,i = diag
{
1, e

j2πε̂k,i
N , · · · , e j2πε̂k,i(N−1)

N

}
. By trans-

mitting the pilot vector mk(n) =
Nt∑
i=1

Ek,iFHk,ix
p
i (n), from

[19, page 926], for an unbiased estimator, the CRLB for a
variance error of ε̂k,i is given by

Var {ε̂k,i} ≥ σ2
w

M−1∑
n=0

�
{

∂mH
k (n)

∂εk,i

∂mk(n)
∂εk,i

}
=

σ2
w

M−1∑
n=0

‖ΛFHk,ix
p
i (n)‖2

2

=
3NNtσ

2
w

2π2(N − 1)(2N − 1)Ep
,

(6)

where Λ = diag

{
0,

2π
N
, · · · , 2π(N − 1)

N

}
, and Ep is the

total transmit power of the pilots. Evidently, Var {ε̂k,i} is

inversely proportional to the Pilot-to-Noise Ratio (PNR), as
defined by PNR = Ep/σ

2
w. Note that we will mainly focus

on the channel estimation in the following sections, and the
design of a frequency offset estimator that satisfies (5) is
beyond the scope of this paper. Many existing algorithms,
e.g., that proposed in [20]–[22], can be used to perform the
frequency offset estimation (although these algorithms were
originally designed for OFDMA systems, they can be easily
tailored to MIMO-OFDM with each user in OFDMA being
virtually seen as a transmit antenna in MIMO-OFDM). In
Section IV, when the variance error of the frequency offset
estimator is smaller than 10−2 (this accuracy is easy to achieve
in [20]–[22]), a robust channel estimation can be performed
by using the proposed pilots.

When performing LS channel estimation, P̂k, the estimate
of Pk, should be full column rank, so that MN ≥ LmaxNt.
Since the frequency offsets have been estimated with negligi-
ble errors, Pk instead of P̂k is used in channel estimation (the
effect of a large frequency offset estimation error on the per-
formance of the proposed channel estimation will be analyzed
in the following sections, where P̂k 	= Pk is considered). By
defining the pseudo-inverse of Pk as P†

k =
(
PH

k Pk

)−1
PH

k ,
the LS estimation of hk is given by

ĥk|εk,1,··· ,εk,Nt
= P†

krk = hk + P†
kDkhk + P†

kηk, (7)

where the subscript of ĥk|εk,1,··· ,εk,Nt
means the LS estimator

is a function of frequency offsets εk,1, · · · , εk,Nt . The MSE
of LS estimator ĥk|εk,1,··· ,εk,Nt

is given by

MSE
(
ĥk|LS

)
=

1
LmaxNt

E

{∥∥∥ĥk|εk,1,··· ,εk,Nt
− hk

∥∥∥2

2

}

=
trace

{
VH

k

(
PH

k Pk

)−2
VkΦk

}
LmaxNt

+
σ2

wtrace
{(

PH
k Pk

)−1
}

LmaxNt
,

(8)

where Φk = E
{
hkhH

k

}
, and Vk = PH

k Dk (Vk

represents the power spread of Dk to the signal space
of Pk). When in the presence of frequency offsets,
trace

{
VH

k

(
PH

k Pk

)−2
VkΦk

}
= 0 is achieved if and only if

the following two conditions are satisfied simultaneously:
Preposition 1:

1. xd
i (m)xpH

k (q) = 0 for each 1 ≤ i, k ≤ Nt, 0 ≤
m, q ≤M−1; i.e., the subcarrier spaces allocated to data
symbols are orthogonal to each pilot subcarrier space of
each transmit antenna.

2. P†
kDk =

(
PH

k Pk

)−1
PH

k Dk = OLmaxNt .

The second condition in Preposition 1 can be derived as
follows:

trace

{
VH

k

(
PH

k Pk

)−2

VkΦk

}
= 0

⇔ trace

{((
PH

k Pk

)−1

VkΦ
1
2
k

)((
PH

k Pk

)−1

VkΦ
1
2
k

)H
}

= 0

⇔
(
PH

k Pk

)−1

VkΦ
1
2
k = OLmaxNt .

(9)
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Since both PH
k Pk and Φk are non-zero Hermitian matrices,

the only solution of (9) is Vk = OLmaxNt , which proves the
second condition in Preposition 1.

IV. OPTIMAL PILOT DESIGN AND PLACEMENT FOR LS
CHANNEL ESTIMATION IN THE PRESENCE OF MULTIPLE

FREQUENCY OFFSETS

In the multiple frequency offsets case, define λ2
p,k,j , λ

2
v,k,j

and λ2
h,k,j as the j-th eigenvalue of PH

k Pk, VkVH
k and Φk,

respectively, where both λ2
p,k,j and λ2

v,k,j are functions of
εk,1, · · · , εk,Nt , and, therefore, (8) can be rewritten as

MSE
(
ĥk|LS

)
=

1
LmaxNt

⎛
⎝LmaxNt−1∑

j=0

λ2
v,k,jλ

2
h,k,j

λ4
p,k,j

+
LmaxNt−1∑

j=0

σ2
w

λ2
p,k,j

⎞
⎠ ,

s.t.

LmaxNt−1∑
j=0

λ2
p,k,j = LmaxEp.

(10)

The optimal λ2
p,k,j that minimizes MSE

(
ĥk|LS

)
can be de-

rived based on (10). Unfortunately, for a frequency selective
fading MIMO-OFDM channel where λ2

h,k,0 	= λ2
h,k,1 	=

· · · 	= λ2
h,k,LmaxNt−1, obtaining a closed-form resolution of

λ2
p,k,j appears intractable, if not impossible. A closed-form

resolution of λ2
p,k,j is achievable when λ2

h,k,0 = λ2
h,k,1 =

· · · = λ2
h,k,LmaxNt−1 = λ2

h,k, i.e., Φk = λ2
h,kILmaxNt .

From the definition of Vk, we can readily represent its j-
th eigenvalue as λ2

v,k,j = α2
d,k,jλ

2
p,k,j , which means that

λ2
v,k,j is proportional to λ2

p,k,j (Note that α2
d,k,j here is a

function of the frequency offset with α2
d,k,j ≤ λ2

d,k,j , and
that λ2

d,k,j is the n-th eigenvalue of DkDH
k . Equality holds

only if the subcarriers allocated to the data and pilots for each
transmit antenna are totally overlapped.) For MIMO-OFDM
systems with frequency offsets, the interference of the pilots,
contributed by the data subcarriers, is noise-like; therefore, it
is reasonable to assume that the average interference power of
each pilot subcarrier is identical, i.e., α2

d,k,0 = α2
d,k,1 = · · · =

α2
d,k,LmaxNt−1 = α2

d,k, and the optimal λ2
p,k,j can be obtained

as

λ2
p,k,j =

Ep

Nt
, 0 ≤ j ≤ LmaxNt − 1. (11)

A. The Optimal Pilot Design and Placement

Before designing pilots that satisfy (11), let us first analyze
PH

k Pk:

PH
k Pk =

⎡
⎢⎣ Gk,1,1 . . . Gk,1,Nt

...
. . .

...
Gk,Nt,1 . . . Gk,Nt,Nt

⎤
⎥⎦ , (12)

where

Gk,m,n = N

M−1∑
i=0

F(Lmax)XpH
m (i)Ecir

k,m,nXp
n(i)FH

(Lmax),

(13)

1 ≤ m,n ≤ Nt, with the ls-th element of Ecir
k,m,n being given

by

[Ecir
k,m,n]ls =

sin (π ((s− l)N + (εk,n − εk,m)))
N sin

(
π
N ((s− l)N + (εk,n − εk,m))

)
× e

j(N−1)((s−l)N +(εk,n−εk,m))
N .

(14)

Note that Gk,m,n = GH
k,n,m represents the Inter-Pilot-

Interference (IPI). To satisfy the requirement of (11), the
following conditions should be satisfied simultaneously:

Preposition 2:

1. Gk,n,n =
Ep

Nt
ILmax , 1 ≤ n ≤ Nt.

2. Gk,m,n �=m = OLmax for each (m,n 	= m).
The first condition of Preposition 2 is easy to explain: since
(11) requires that all the eigenvalues of PH

k Pk to be identical,
each Gk,n,n should be a diagonal matrix with an identical
diagonal element. Since the first item in (8) is noise-like,
which cannot be minimized by optimizing the pilots, so that

arg min
Pk

MSE
(
ĥk|LS

)
⇔ arg min

Pk

trace
{(

PH
k Pk

)−1
}

(15)

For a given power constraint trace
{
PH

k Pk

}
= LmaxEp,

minimizing trace
{(

PH
k Pk

)−1
}

requires the minimization

of the off-diagonal power of PH
k Pk, and when the second

condition of Preposition 2 is satisfied, (15) is met.
In order to find the pilots and their placements that satisfy

Preposition 2, let us first assume that a total of Np pilots are
allocated to each transmit antenna, and that the frequency-
domain indexes of the pilots for the n-th transmit antenna is
(θn,1, · · · , θn,Np), where 0 ≤ θn,1 < · · · < θn,Np ≤ N−1. To
make PH

k Pk full-rank, Np ≥ Lmax should be satisfied. Note
that θn,z for each 1 ≤ n ≤ Nt may be either identical or not.
When M ≥ Nt, the pilots and data transmitted by different
transmit antennas can also be orthogonal in the time-domain.

For each transmit antenna, to satisfy condition 1 of Prepo-
sition 2, the total transmit power of the consecutive M
symbols in each pilot subcarrier should be identical (i.e.,
M−1∑
i=0

XpH
n (i)Xp

n(i) =
Ep

NpNt
diag{0, · · · , 1, · · · , 0}), and the

pilots’ placement requires

(θn,2 · l − θn,1 · l)N = · · · (θn,Np · l − θn,Np−1 · l
)
N

=
(
θn,1 · l− θn,Np · l)

N

(16)

for each 1 ≤ n ≤ Nt, 1 ≤ l ≤ Lmax − 1. Note that
M−1∑
i=0

XpH
n (i)Xp

n(i) =
Ep

NtNp
diag {0, · · · , 1, · · · , 0} should

not be understood as indicating that each non-zero element
of Xp

n(i) must be modulated as a constant-envelope (CE)
pilot, although a CE is a perfect resolution (e.g., CE pilots
are proposed in [1]). A CE is required only when M = 1. If
M > 1, we need neither to modulate each pilot subcarrier for
each symbol nor to modulate these non-zero pilots as a CE.
For example, each pilot shown in Table I to Table II satisfies
this requirement.

Since the single frequency offset (SFO) case is a special
condition of the multiple frequency offsets (MFO) case, the
optimal pilot for a multiple frequency offsets case should also
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be optimal in a single frequency offset case. Therefore, we
can simplify the condition 2 of Preposition 2 as

M−1∑
i=0

F(Lmax)XpH
m (i)Xp

n(i)FH
(Lmax) = OLmax , (SFO);

(17a)

F(Lmax)ΠmnFH
(Lmax) = OLmax , (MFO), (17b)

where Πmn =
M−1∑
i=0

XpH
m (i)Ecir

k,m,nXp
n(i), and (17b) implies

(17a). Also define a Np×Np matrix Πmn, which is generated
by deleting all the zero rows and columns of Πmn. In Ap-
pendix A, it is shown that when pilot subcarriers allocated to
the different transmit antennas are orthogonal in the frequency-
domain, Gk,m,n �=m = OLmax for each m 	= n, and that,
therefore, all pilots and their placements that satisfy (18) are
optimal pilots in terms of the minimum MSE:

arg
{

[Xp
m(i)]θm,zθm,z

}
=

2πθm,zKpm

N
,

s.t. Lmax ≤ Np ≤ N,
N

Np
= integer;

Kp ≥ Lmax,
θm,zKp(n−m)

N
	= integer;∣∣∣[Xp

m(i)]θm,zθm,z

∣∣∣2 =
∣∣∣[Xp

m(i)](θm,z+ N
2 )

N
(θm,z+ N

2 )
N

∣∣∣2 ;

M∑
i=1

∣∣∣[Xp
m(i)]θm,zθm,z

∣∣∣2 =
Ep

NpNt
;

M∑
i=1

Np∑
z=1

∣∣∣[Xp
m(i)]θm,zθm,z

∣∣∣2 =
Ep

Nt
.

(18)

where 1 ≤ z ≤ Np, 1 ≤ m ≤ Nt and 0 ≤ i ≤M − 1.
When θm,z = θn�=m,z = θz for each 1 ≤ m,n 	= m ≤

Nt and 1 ≤ z ≤ Np, the Nt transmit antennas share Np

pilot subcarriers. From (34) in Appendix A, we know that
in order to make Gk,m,n = OLmax , μT

u Πmnμ∗
t = 0 should

be satisfied for each 1 ≤ u, t ≤ Lmax. One way to achieve
this result is to make Πmn = ONp , which requires the pilots
transmitted by different transmit antennas be orthogonal in
the time-domain. These time-domain orthogonal pilots achieve
optimal MSE performance, but at the cost of low spectral
efficiency.

B. The Suboptimal Pilot Design and Placement to Minimize
the Expectation of MSE

Note that the MSE given by (8) is a function
of εk,1, · · · , εk,Nt . In the multiple frequency offsets
case, designing the optimal pilots that satisfy

F(Lmax)

[
M−1∑
i=0

XpH
m (i)Ecir

k,m,nXp
n(i)

]
FH

(Lmax) = OLmax

is difficult, if the pilots transmitted by the different transmit
antennas are neither orthogonal in the time-domain nor
orthogonal in the frequency-domain.

However, orthogonal pilot placement considerably reduces
the spectral efficiency, and in this subsection, we consider
only the case of θm,z = θn�=m,z = θz for each (1 ≤
m,n 	= m ≤ Nt, 1 ≤ z ≤ Np) with M < Nt. Since
the IPI cannot be totally eliminated in this case, we can get

TABLE I
OPTIMAL PILOTS ALLOCATION IN MIMO-OFDM WITH N = 32, Nt = 4,

Lmax = 4, Np = 4 AND M = 2: CONSTANT ENVELOPE.

Symbol 1

θz Tx 1 Tx 2 Tx 3 Tx 4

0 ρ√
2

ρ√
2

ρ√
2

ρ√
2

8 ρ√
2
e

jπ
2 ρ√

2
ejπ ρ√

2
e

j3π
2 ρ√

2
ej2π

16 ρ√
2
ejπ ρ√

2
ej2π ρ√

2
ej3π ρ√

2
ej4π

24 ρ√
2
e

j3π
2 ρ√

2
ej3π ρ√

2
e

j9π
2 ρ√

2
ej6π

Symbol 2

θz Tx 1 Tx 2 Tx 3 Tx 4

0 ρ√
2

ρ√
2

ρ√
2

ρ√
2

8 ρ√
2
e

jπ
2 ρ√

2
ejπ ρ√

2
e

j3π
2 ρ√

2
ej2π

16 ρ√
2
ejπ ρ√

2
ej2π ρ√

2
ej3π ρ√

2
ej4π

24 ρ√
2
e

j3π
2 ρ√

2
ej3π ρ√

2
e

j9π
2 ρ√

2
ej6π

TABLE II
OPTIMAL PILOTS ALLOCATION IN MIMO-OFDM WITH N = 32, Nt = 4,

Lmax = 4, Np = 4 AND M = 3: MULTIPLE ENVELOPES.

Symbol 1

θz Tx 1 Tx 2 Tx 3 Tx 4

0 ρ ρ 0 0

8 ρ√
3
e

jπ
2 ρ√

3
ejπ ρ√

3
e

j3π
2 ρ√

3
ej2π

16 ρejπ ρej2π 0 0

24 ρ√
3
e

j3π
2 ρ√

3
ej3π ρ√

3
e

j9π
2 ρ√

3
ej6π

Symbol 2

θz Tx 1 Tx 2 Tx 3 Tx 4

0 0 0 ρ√
2

ρ√
2

8 ρ√
3
e

jπ
2 ρ√

3
ejπ ρ√

3
e

j3π
2 ρ√

3
ej2π

16 0 0 ρ√
2
ej3π ρ√

2
ej4π

24 ρ√
3
e

j3π
2 ρ√

3
ej3π ρ√

3
e

j9π
2 ρ√

3
ej6π

Symbol 3

θz Tx 1 Tx 2 Tx 3 Tx 4

0 0 0 ρ√
2

ρ√
2

8 ρ√
3
e

jπ
2 ρ√

3
ejπ ρ√

3
e

j3π
2 ρ√

3
ej2π

16 0 0 ρ√
2
ej3π ρ√

2
ej4π

24 ρ√
3
e

j3π
2 ρ√

3
ej3π ρ√

3
e

j9π
2 ρ√

3
ej6π

suboptimal pilots only in terms of the MSE. These suboptimal
pilots can be designed by minimizing the expectation of
MSE

(
ĥk|εk,1,··· ,εk,Nt

)
; i.e.,

Psubopt
k = arg min

Pk

E

{
MSE

(
ĥk|εk,1,··· ,εk,Nt

)}
,

s.t. trace
{(

PH
k Pk

)}
= LmaxEp,

(19)

where the expectation is with respect to εk,1, · · · , εk,Nt . When
the eigenvalues of PH

k Pk are identical, the minimum MSE is
achieved, which requires that

M−1∑
i=0

PH
k,m(i)Pk,n �=m(i) = OLmax , (SFO); (20a)

arg min
Pk

∑
n�=m

∣∣∣∣∣E
{

trace

{
M−1∑
i=0

PH
k,m(i)Pk,n(i)

}}∣∣∣∣∣
2

, (MFO).

(20b)
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(20a) can be achieved by all the pilots that satisfy (18). To
resolve (20b), we have

E

{
trace

{
M−1∑
i=0

PH
k,m(i)Pk,n(i)

}}

= trace

{
M−1∑
i=0

F(Lmax)X
pH
m (i)FHΛpFXp

n(i)FH
(Lmax)

}
,

(21)

where Λp
∼= diag

{
0,−4π2 × 4

N2
σ2

ε , · · · ,−
4π2(N − 1)2

N2
σ2

ε

}
.

To minimize (21), it requires

Nt∑
m=1

M−1∑
i=0

F(Lmax)XpH
m (i)FH =

Ep

Nt

⎡
⎢⎣BL, · · · ,BL︸ ︷︷ ︸

N/Np times BL

⎤
⎥⎦ ,
(22)

where BL =

⎡
⎢⎣ILmax , · · · , ILmax︸ ︷︷ ︸

Lmax×(LmaxNt)

,OLmax×(Np−LmaxNt)

⎤
⎥⎦,

and Np ≥ LmaxNt should be satisfied. By resolving (20)
to (22), the suboptimal pilots and their placements are

arg
{
[Xp

m(i)]θzθz

}
=

2πθz(m− 1)Lmax

N
,

s.t. LmaxNt ≤ Np ≤ N,
N

Np
= integer;

(θ2 · l − θ1 · l)N = · · · (θNp · l − θNp−1 · l
)
N

=
(
θ1 · l − θNp · l)

N
, l = 1, 2, · · · , Lmax − 1;

θz(n−m)Lmax

N
	= integer;

[Xp
m(i)]θ1θ1

= · · · = [Xp
m(i)]θNpθNp

≥ 0;
M∑
i=1

∣∣[Xp
m(i)]θzθz

∣∣2 =
Ep

NpNt
;

M∑
i=1

Np∑
z=1

∣∣[Xp
m(i)]θzθz

∣∣2 =
Ep

Nt
.

(23)

When pilots for different transmit antennas are orthogonal
in the frequency-domain, pilots and their placements that
satisfy (18) are the optimal; if pilots for different transmit
antennas are overlapped in the frequency-domain, pilots and
their placements that satisfy (23) are sub-optimal in terms of
LS MSE minimization. For a given (N,Nt, Lmax,Np,M),
the number of the optimal pilots is so large that numerically
exemplifying all the optimal pilots as well as their placements
would be trivial. Table I to Table II present some examples of
the optimal pilots and their placements that satisfy both (18)
and (23) when N = 32, Nt = 4, Lmax = 4, Np = 4 and
M = 2, 3.

Note that both the optimal pilots and the suboptimal pilots
are uniformly placed in the frequency-domain, and may suffer
a performance degrade due to the pilots losses at the virtual
subcarriers. One way to mitigate this performance loss here
is to make the pilot distance larger than the virtual-subcarrier
bandwidth and to guarantee that Np ≥ LmaxNt simultane-
ously.

V. LINEAR MINIMUM MEAN SQUARE ERROR (LMMSE)
ESTIMATOR BY EXPLOITING THE CHANNEL CORRELATION

Sections III to IV considered pilot design for an uncorre-
lated MIMO-OFDM channel. However, channel correlation is
usually exploited to improve the performance, as discussed in
[15], [16].

A. LMMSE Estimator

Define the received vector on the Nr receive anten-
nas as r =

[
rT
1 , · · · , rT

Nr

]T
= Ph + Dh + η, where

P = diag {P1, · · · ,PNr}, D = diag {D1, · · · ,DNr},h =[
hT

1 , · · · ,hT
Nr

]T
, η =

[
ηT

1 , · · · ,ηT
Nr

]T
. Based on it, we

define

h̃ = P†r = h + P†Dh + P†η, (24)

where P† =
(
PHP

)−1
PH . The channel

correlation matrix is given by Φ = E
{
hhH

}
=⎡

⎢⎢⎢⎣
Φ1,1 Φ1,2 . . . Φ1,Nr

Φ2,1 Φ2,2 . . . Φ2,Nr

...
...

. . .
...

ΦNr,1 ΦNr,2 . . . ΦNr,Nr

⎤
⎥⎥⎥⎦, where Φk,i =

E
{
hkhH

i

}
=

⎡
⎢⎢⎢⎣

Φk,i,1,1 Φk,i,1,2 . . . Φk,i,1,Nt

Φk,i,2,1 Φk,i,2,2 . . . Φk,i,2,Nt

...
...

. . .
...

Φk,i,Nt,1 Φk,i,Nt,2 . . . Φk,i,Nt,Nt

⎤
⎥⎥⎥⎦

and Φk,i,m,n = E

{
h̃k,mh̃H

i,n

}
= 	k,i,m,n ·

diag
{
σ2

h,0, σ
2
h,1, · · · , σ2

h,Lmax−1

}
with σ2

h,l = E

{
|hk,i(l)|2

}
for each (k, i). In the following sections, we assume

that
Lmax−1∑

l=0

σ2
h,l = 1. Note that 	k,k,m,m = 1 and that

0 ≤ 	k,i,m,n ≤ 1 for each k 	= i or m 	= n. The correlation
matrix of h̃ is given by

Ch̃h̃ = ΩΦΩH + σ2
w

(
PHP

)−1
, (25)

where Ω =

⎛
⎝ILmaxNtNr +

(
PHP

)−1
PHD︸ ︷︷ ︸

V

⎞
⎠. We also have

Chh̃ = E

{
hh̃H

}
= ΦΩH . From [23], an LMMSE estimator

can be designed as

ĥLMMSE =
(
σ2

wΦ−1 + ΩH
(
PHP

)
Ω
)−1

ΩH
(
PHP

)
h̃
(26)

with its covariance matrix of estimation error being given by

Ce = E

{(
ĥLMMSE − h

)(
ĥLMMSE − h

)H
}
. (27)

The MSE of ĥLMMSE is MSE
(
ĥLMMSE

)
=

trace {Ce}
LmaxNtNr

.
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B. Adaptive Power Allocation to Minimize MSE

Using the eigenvalue decomposition of Ce, we have

MSE
(
ĥLMMSE

)
=

LmaxNtNr−1∑
j=0

σ2
wλ

2
φ,jλ

2
p,j

LmaxNtNr

(
σ2

wλ
2
p,j + λ2

φ,j

(
λ2

p,j + λv,j

)2) ,
(28)

where λ2
φ,j represents the j-th eigenvalue of Φ, λ2

p,j and λ2
v,j

represent the j-th eigenvalue of PHP and VVH , respectively.
By resolving (36) in Appendix B, the optimal λ2

p,j to minimize

the MSE
(
ĥLMMSE

)
can be derived as

λ2
p,j =

(
NrLmaxEp +

LmaxNtNr−1∑
m=0

σ2
w

λ2
φ,m

)
LmaxNtNr − 1

− σ2
w

λ2
φ,j

, (29)

where 0 ≤ j ≤ LmaxNtNr − 1. By consid-

ering
LmaxNtNr−1∑

j=0

λ2
p,j = NrLmaxEp, the minimum

MSE
(
ĥLMMSE

)
is given by

min
{

MSE
(
ĥLMMSE

)}
=

LmaxNtNr−1∑
j=0

σ2
w

NrLmaxEp +
LmaxNtNr−1∑

m=0

σ2
w

λ2
φ,m

.
(30)

As compared to (30), when uniform power allocation to the

pilots is applied; i.e., when PHP =
Ep

Nt
ILmaxNtNr , the

suboptimal MSE
(
ĥLMMSE

)
is given by

MSE

(
ĥLMMSE

∣∣∣PHP =
Ep

Nt
ILmaxNtNr

)

=
LmaxNtNr−1∑

j=0

σ2
wλ

2
φ,j

NrLmax

(
Ntσ2

w + λ2
φ,jEp

) . (31)

VI. NUMERICAL RESULTS

A multipath-fading channel with path gains hk,i(l) = e−l

and the channel correlation coefficient 	k,i,m,n �=n = 0.5
is considered, where l = 0, 1, 2, · · · , Lmax − 1, k, i =
1, 2, · · · , Nr and m,n = 1, 2, · · · , Nt. We also assume that
N = 128, M = 1, 2, 4, Lmax = 4, Nt = 2, 4, Nr = 2, 4 and
Np = LmaxNt. Here, we use the Normalized-Pilot-to-Noise

Ratio (NPNR), i.e., NPNR =
Ep

Nt · Np · σ2
w

, instead of the

PNR to represent the normalized PNR of each pilot subcarrier
for each transmit antenna, and without loss of generality, the
average power of each pilot subcarrier is also assumed to
be identical to that of each data subcarrier, unless otherwise
stated. Multiple frequency offsets are considered for different
transmit and receive antennas with εk,i ∼ N (0, σ2

ε).
In a MIMO-OFDM system, pilots transmitted by Nt trans-

mit antennas are modulated into consecutive M ≥ 1 symbols
(Sections III to IV). When M = 1, the pilot subcarriers
for the different transmit antennas can be either orthogonal
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2 = 10−3

Proposed: σε
2 = 10−3

BLM: σε
2 = 10−2

Proposed: σε
2 = 10−2

Fig. 1. LS channel estimation in single frequency offset MIMO-OFDM
systems with M = 1, Nt = 4 and pilot subcarriers of different transmit
antennas are overlapped.
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2 = 10−3
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2 = 10−2

Proposed: σε
2 = 10−2

Fig. 2. LS channel estimation in multiple frequency offsets MIMO-OFDM
systems with M = 1, Nt = 2 and pilot subcarriers of different transmit
antennas are overlapped.

in the frequency-domain or not. Fig. 1 to Fig. 5 compares
the performance of the proposed LS estimator and the BLM
estimator with M = 1. Fig. 1 shows that with a single
frequency offset, the BLM estimator exhibits a performance
floor at high NPNR, and a larger σ2

ε implies a worse MSE
performance. However, the proposed estimator eliminates this
floor, and for different σ2

ε , it achieves an identical MSE.
Fig. 2 to Fig. 5 are for the multiple frequency offsets case.

Fig. 2 and Fig. 3 present the simulation results with overlapped
pilot subcarriers allocated for the different transmit antennas
when Nt = 2 and Nt = 4, respectively. In the multiple fre-
quency offsets case, both the BLM estimator and the proposed
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Fig. 3. LS channel estimation in multiple frequency offsets MIMO-OFDM
systems with M = 1, Nt = 4 and pilot subcarriers of different transmit
antennas are overlapped.

0 2 4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

NPNR (dB)

M
S

E

N = 128; M = 1; L
max

 = 4; N
p
 = 4× L

max
; N

t
 = 2; Orthogonal Pilots; Multiple Frequency Offsets; LS Estimators

 

 

BLM: σε
2 = 10−3

Proposed: σε
2 = 10−3

BLM: σε
2 = 10−2

Proposed: σε
2 = 10−2

Fig. 4. LS channel estimation in multiple frequency offsets MIMO-OFDM
systems with M = 1, Nt = 2 and pilot subcarriers of different transmit
antennas are orthogonal.

one exhibit a performance floor. However, the latter maintains
a performance advantage. For example, when Nt = 2 and
NPNR=20 dB, the MSE of the proposed estimator is about
1.6× 10−3 (or 5× 10−3) for σ2

ε = 10−3 (or σ2
ε = 10−2), and

that for the BLM estimator is about 5.1×10−3 (or 3.1×10−2)
for σ2

ε = 10−3 (or σ2
ε = 10−2).

Fig. 4 and Fig. 5 compare the proposed estimator and
the BLM estimator with orthogonal pilot placement in the
frequency-domain. Note that even with orthogonal pilots
placement, a performance floor will always appear at the
proposed estimator in the presence of multiple frequency
offsets, although the proposed estimator still outperforms the
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Fig. 5. LS channel estimation in multiple frequency offsets MIMO-OFDM
systems with M = 1, Nt = 4 and pilot subcarriers of different transmit
antennas are orthogonal.
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BLM
Proposed: CE
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Fig. 6. LS channel estimation in multiple frequency offsets MIMO-OFDM
systems with M = 4, Nt = 4 and pilot subcarriers of different transmit
antennas are orthogonal.

BLM estimator. Since in frequency-domain orthogonal pilot
placement, the IPI is reduced as compared to that in the
overlapped pilot placement, the MSE is smaller than that of the
latter, but at the cost of lower spectral efficiency. For example,
when Nt = 4, σ2

ε = 10−2 and NPNR=20 dB, the MSE for the
proposed estimator with overlapped pilots placement is about
1.7 × 10−2, whereas that with orthogonal pilots placement is
about 1.2 × 10−2, as shown in Fig. 3 and Fig. 5.

When Nt > 1, pilots for each transmit antenna can be
modulated into consecutive M > 1 symbols, the envelope can
either be CE or not. The simulation results with Nt = M = 4
are illustrated in Fig. 6, where frequency-domain orthogonal
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Fig. 7. LS channel estimation in multiple frequency offsets MIMO-OFDM
systems with M = 4, Nt = 4 and pilots modulated with either consecutive
multiple symbols or perfect orthogonal in time-domain.
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Fig. 8. Performance degradation of LS channel estimation in the multipath-
fading channels with M = 4, Nt = 4 and pilot subcarriers of different
transmit antennas are orthogonal.

pilot placement is assumed for the different transmit antennas
in each symbol (a similar result can be achieved in the
case of overlapped pilots placement for different transmit
antennas). The proposed pilots, either a CE or Multiple-
Envelope, can achieve the same performance advantage over
that of the BLM estimator, provided that the total pilots power
Ep remains fixed. For a given Ep, we can also conclude that
an identical performance can be achieved in the proposed
estimator with either M = 1 or M > 1. For example,
when Nt = 4, σ2

ε = 10−2 and NPNR=20 dB, an MSE
of about 1.5 × 10−2 can be achieved with either M = 1
or M = 4, as shown in Fig. 5 and Fig. 6. No matter what
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Fig. 9. Performance comparison between the proposed LS estimator and
Cui’s estimator with Lmax = 4 and Nt = 4.
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Fig. 10. Performance comparison between LS and LMMSE estimators.

pilots are used, multiple symbol pilots have no performance
advantage over that of single-symbol pilots in terms of MSE,
and more seriously, multiple-symbol pilot modulation has
lower spectrum efficiency. Multiple-symbol pilot modulation
is nevertheless applied for two main reasons: (1) it reduces
the peak power of each pilot subcarrier in each symbol; and
(2) it has an advantage over single-symbol pilot modulation in
tracking the time-variant channel. In the presence of multiple
frequency offsets, non-zero Inter-Antenna-Interference will
degrade the channel estimation performance if neither time-
domain nor frequency-domain orthogonal pilot placement is
utilized. To eliminate this Inter-Antenna-Interference, we can
make M = Nt and ensure that the pilots and data transmit-
ted by the different transmit antennas are orthogonal in the
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time-domain; i.e., when one transmit antenna is transmitting,
the other transmit antennas remain silent. Fig. 7 presents
the performance analysis of the proposed estimator in two
pilot placement cases: the time-domain orthogonal and non-
orthogonal pilot placements. The simulation results show that
the performance floor at high NPNR can be mitigated in the
case of orthogonal pilot placement, but at the cost of lower
spectral efficiency than that of non-orthogonal placement.

Note that (11) is optimal in flat fading, but the MSE
performance may degrade in frequency selective fading. Fig. 8
shows that a performance degradation of about 0.4 dB (or
about 0.9 dB) is achieved in the multipath-fading channel at
a high NPNR when σ2

ε = 10−3 (or when σ2
ε = 10−2), as

compared to the MSE performance in the flat-fading channels.
For a small σ2

ε , this performance degradation is negligible.
We also compare the performance of the proposed LS

estimator with Cui’s estimator [2] with multiple frequency
offsets, and the numerical results are shown in Fig. 9. Note
that in Cui’s estimator, the total preamble is used for training
only. For a fair comparison, we use 16 pilot subcarriers in
the proposed estimator and use a length-16 training sequence
in Cui’s estimator, with an identical total power Ep being
allocated to the pilots/training in each estimator. If the data
subcarriers in the proposed symbol are not modulated, the
proposed estimator always outperforms Cui’s estimator at a
high NPNR, and a larger performance gain can be achieved as
σ2

ε increases. For example, at a high NPNR, the performance
improvement of the proposed estimator with Ed = 0 over
Cui’s estimator is about 0.7 dB (or 2.6 dB) with σ2

ε = 10−2

(or σ2
ε = 10−1). A performance degradation will be achieved

in the proposed estimator if Ed 	= 0. In this simulation, we
assume that Ed/Ep = 10−1, and the MSE performance of
the proposed estimator is about 0.5 dB worse than that of
Cui’s estimator. In other words, Cui’s estimator outperforms
the proposed estimator by sacrificing the spectral efficiency.

When the covariance matrix is available at both the trans-
mitter and the receiver, an LMMSE estimator can be designed
to improve the estimation accuracy. Fig. 10 compares the
channel estimation performance of the proposed LS and the
proposed LMMSE estimators. Multiple frequency offsets are
considered with σ2

ε = 10−2. The LMMSE estimator with
CE pilot modulation can considerably reduce the MSE by
applying adaptive pilot power allocation at the transmitter. For
example, when Nt = Nr = 2, the performance advantage
of the proposed LMMSE estimator with adaptive pilot power
allocation over that with CE pilot modulated at a low NPNR
is about 3.1 dB, and its performance advantage over that of
the LS estimator is about 5.8 dB.

VII. CONCLUSIONS

The optimal pilot design and placement for channel es-
timation in MIMO-OFDM with multiple frequency offsets
were discussed. The IPI was eliminated in the proposed
estimator, and, therefore, a performance advantage over that
of conventional estimators was achieved. Given a total pilot
power Ep, the pilots for the different transmit antennas was
modulated into one or consecutive multiple OFDM symbols
with each pilot subcarrier in each symbol being modulated
as a CE or not (a CE is required in pilot design only when
M = 1). With the channel covariance matrix known at both

the transmitter and the receiver, an LMMSE estimator with
CE pilots modulation was designed based on the proposed
optimal pilots. This estimator outperformed the proposed LS
estimator in terms of the MSE. By applying an adaptive pilot
power allocation at the transmitter, a much lower MSE as
compared to that achieved with a CE pilot modulation was
achieved in the proposed LMMSE estimator.

APPENDIX A
ANALYSIS OF Gk,m,n �=m

Define Gk,m,n = NF(Lmax)ΠmnFH
(Lmax) where Πmn =

M−1∑
i=0

F(Lmax)XpH
m (i)Ecir

k,m,nXp
n(i), where the θm,lθn,s-th ele-

ment of Πmn is non-zero, as given by

[Πmn]θm,lθn,s

=
M−1∑
i=0

[Xp
m(i)]∗θm,lθm,l

[
Ecir

k,m,n

]
θm,lθn,s

[Xp
n(i)]θn,sθn,s

,

(32)

where 1 ≤ l, s ≤ Np. Let us consider the following two cases:
1) Pilot Subcarriers for the m-th and the n-th Transmit

Antennas are Orthogonal in the frequency-domain: In this
case, θm,l 	= θn,s for each l and s, and it is easy to show
that F(Lmax)ΠmnFH

(Lmax) = OLmax , so that Gk,m,n �=m =
OLmax for each m 	= n.

2) Pilot Subcarriers for the m-th and the n-th Transmit
Antennas are Overlapped in the frequency-domain (θm,z =
θn,z = θz for z = 1, 2, · · ·Np): Define Πmn as

[Πmn]θlθs
=

M−1∑
i=0

[Xp
m(i)]∗θlθl

[
Ecir

k,m,n

]
θlθs

[Xp
n(i)]θsθs

,

(33)
where 1 ≤ l, s ≤ Np. Also define a Np × Np matrix Πmn,
which is generated by deleting all the zero rows and columns
of Πmn. Evidently, Πmn = ΠH

mn. Gk,m,n can be rewritten
as

Gk,m,n = N
[
fθ1 , · · · , fθNp

]
︸ ︷︷ ︸

F(Lmax)

Πmn

[
fθ1 , · · · , fθNp

]H
︸ ︷︷ ︸

FH
(Lmax)

= N
[
μ1, · · · ,μLmax

]T
Πmn

[
μ∗

1, · · · ,μ∗
Lmax

]
,

(34)

where μT
z is the z-th row of F(Lmax). Therefore, the ut-

th element of Gk,m,n is [Gk,m,n]ut = NμT
uΠmnμ∗

t , and
Gk,m,n = OLmax is achieved only when μT

uΠmnμ∗
t = 0,

1 ≤ u, t ≤ Lmax.

APPENDIX B
OPTIMAL EIGENVALUES FOR ADAPTIVE ALLOCATION

Define a cost function,

C (λ2
p,0, · · · , λ2

p,LmaxNtNr−1

)
=

LmaxNtNr−1∑
j=0

σ2
wλ

2
φ,jλ

2
p,j

LmaxNtNr

(
σ2

wλ
2
p,j + λ2

φ,j

(
λ2

p,j + λv,j

)2)

+ β

⎛
⎝LmaxNtNr−1∑

j=0

λ2
p,j −NrLmaxEp

⎞
⎠ ,

(35)
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where β is a positive real coefficient.
To minimize (35), let us take the partial derivative to

C (λ2
p,0, · · · , λ2

p,LmaxNtNr−1

)
with respect to each λ2

p,j (0 ≤
j ≤ LmaxNtNr − 1) and set the result to zero. The result is

LmaxNtNr

(
σ2

wλ
2
p,j + λ2

φ,j

(
λ2

p,j + λv,j

)2)2

β

− σ2
wλ

4
φ,j

(
λ4

p,j − λ2
v,j

)
= 0,

st.

LmaxNtNr−1∑
j=0

λ2
p,j = NrLmaxEp.

(36)
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