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Abstract—This letter presents a new method to directly analyze
and optimize symbol error rate (SER) performance of minimum
decoding complexity (MDC) ABBA space-time block codes based
on a tight union bound on SER. Additionally, a new signal trans-
formation for rectangular quadrature amplitude modulation is
proposed to provide better performance than the existing ones
with lower encoding/decoding complexities. It is also shown that
MDC-ABBA codes achieve full-diversity with antenna selection
and limited feedback.

Index Terms—Quasi-orthogonal space-time block codes, ABBA
codes, performance analysis.

I. INTRODUCTION

ABBA codes [1], a class of space-time block codes
(STBC), have been proposed to increase the code rate of

orthogonal STBC (OSTBC) [2]. Recently, Yuen et al. [3] have
shown that ABBA codes enable pairwise real-symbol (PWRS)
decoding, which is the minimum decoding complexity (MDC)
achievable by non-orthogonal STBC. This fact makes MDC-
ABBA codes attractive for practical applications.

To design MDC-ABBA codes with full-diversity, conven-
tional signals, like quadrature amplitude modulation (QAM)
or phase-shift keying (PSK), need to be transformed [3], [4].
The authors in [3], [4] employ the coding gain metric [5] to
derive the optimal signal transformations for QAM and 8PSK.
However, this method provides no guarantee for minimizing
the symbol error rate (SER).

In this letter, we present a novel approach, based on a tight
union bound on SER, to directly analyze and optimize SER
performance of MDC-ABBA codes. We first show how to
adapt the signal transformations proposed in [3], [4] to the
newly proposed decoder of MDC-ABBA codes in [6]. The
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exact symbol pairwise error probability (SPEP) and the union
bound on the SER are derived. For all the examined constel-
lations, the union bound is only 0.1 dB from the simulated
SER when SER < 10−2. The union bound can thus be used
to precisely predict the performance of MDC-ABBA codes
and, moreover, to optimize the signal transformations for any
constellation. Furthermore, for rectangular QAM (QAM-R),
we propose a new signal transformation combining signal
rotation and power allocation. Our new method performs
better and has lower encoding/decoding complexities than that
proposed in [4]. We also show that MDC-ABBA codes achieve
full diversity in the systems with antenna selection and limited
feedback.

II. PRELIMINARIES

We consider the transmission of ABBA codes over a quasi-
static Rayleigh flat fading channel with M transmit (Tx) and
N receive (Rx) antennas. Let H = [hij ] i=1,...,M

j=1,...,N
be the channel

matrix. The channel gains are assumed to be uncorrelated and
known perfectly at the receiver, but not at the transmitter.

Let Ak and Bk (k = 1, 2, · · · , K) be the t × m basis
matrices of an OSTBC Om with rate ROm . Two blocks
of data, each of K symbols, are mapped into two code
matrices A and B of Om as A =

∑K
k=1 (skAk + s∗kBk),B =∑K

k=1

(
sk+KAk + s∗k+KBk

)
1, where sk is the data symbol

with unit average energy. The ABBA codes for M = 2m Tx

antennas are constructed from Om as QM =
[A B
B A

]
.

Let Q be a transmitted ABBA code matrix, the Rx signal
vector over antenna n is yn =

√ρκ
2 Qhn + wn, where hn is

the nth column of H, wn is the noise vector with independent
identically distributed (i.i.d.) entries ∼ CN (0, 1), κ = 1

mROm
,

ρ is the average receive signal-to-noise ratio (SNR).
The equivalent Tx-Rx signals for a data vector sk =

[sk sk+K ]T of ABBA codes is presented for 1 Rx antenna
in [6, (11)]. For multiple Rx antennas, this signal relation can

1Superscript ∗ denotes conjugate operation. From now on, superscripts T

and † stand for matrix transpose and transpose conjugate. The n×n identity
and all-zero matrices are denoted by In and 0n, respectively. The diagonal
matrix with elements of vector x on the main diagonal is denoted by diag(x).
Kronecker product is denoted by ⊗. A mean-m and variance-σ2 circularly
complex Gaussian random variable is written by CN (m, σ2). �(X) and
�(X) denote the real and imaginary parts of a matrix X, respectively.
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be generalized as follows.

N∑
n=1

(E†
knyn + F T

kny∗
n)︸ ︷︷ ︸

ŷk

=
√

ρκ

2
Zsk+

N∑
n=1

(E†
knwn + F T

knw∗
n)︸ ︷︷ ︸

ŵk

(1)
where Ekn =

[
ek1,n ek2,n

]
(k = 1, . . . , K), eki,n =(

Ak ⊗ Πi−1
)
hn (i = 1, 2), Fkn =

[
fk1,n fk2,n

]
, fki,n =(

Bk ⊗ Π1−i
)
hn, Π =

[
0 1
1 0

]
, Z =

∑N
j=1

∑m
i=1 H†

i,jHi,j ,

and Hi,j =
[

hi,j hi+m,j

hi+m,j hi,j

]
.

Note that the noise vector ŵk is correlated with covariance
matrix V = E[ŵkŵ†

k] = Z �= IM . Let Ĥ = Z
1
2 . Thus this

correlated noise vector can be whitened by a matrix Ĥ−1 =
Z− 1

2 [7].
Since Z is real, the real and imaginary parts of the two

sides of (1) can be decoupled as[�(ŷk)
�(ŷk)

]
︸ ︷︷ ︸

ȳk

=
√

ρκ/2
[
Z 02

02 Z

]
︸ ︷︷ ︸

H̃

[�(sk)
�(sk)

]
+
[�(ŵk)
�(ŵk)

]
︸ ︷︷ ︸

w̄k

. (2)

The detection of vectors �(sk) or �(sk) in (2) can be
decoupled and involves only 2 real symbols. Therefore, MDC-
ABBA codes are single-symbol decodable. In order to achieve
full-diversity, signal transformation may be required for the
data vectors �(sk) and �(sk) before sending them to the
channels. We next adapt the existing signal transformations in
[3], [4] to our new decoding framework.

III. ANALYZING THE EXISTING SIGNAL

TRANSFORMATIONS

1. Signal rotation proposed by Yuen, Guan, and Tjhung (YGT)
[3]:

Let the input symbols be dk = ak + j bk, (k = 1, . . . , 2K);
they are drawn from a constellation S. In [3], the transmitted
symbols sk = pk + j qk are generated as follows: �(sk) =[
pk pk+K

]T = R
[
ak bk

]T
and �(sk) =

[
qk qk+K

]T =

R
[
ak+K bk+K

]T
, where R =

[
cos(α) sin(α)
sin(α) − cos(α)

]
. The

rotation angle for QAM is α = 1
2 arctan(1

2 ) = 13.2825◦.
2. Signal transformation proposed by Wang, Wang, and Xia
(WWX) [4]:

In general, we can jointly transform the input data vector
ĉk =

[
ak bk ak+K bk+K

]T
by a real transformation R

to generate transmitted symbols pk, qk, pk+K , and qk+K as[�(sk)T �(sk)T
]T

=
[
pk pk+K qk qk+K

]T
= R

[
ak bk ak+K bk+K

]T
. (3)

Wang et al. [4] present three transformations R, which are,
however, permutation-equivalent. We thus consider only the
first case with transformation:

[
pk qk pk+K qk+K

]T =

RW ĉk, where RW =
[

U1 U2

U1R1 U2R2

]
, and U1, U2, R1, R2

are 2 × 2 real matrices, R2
1 = R2

2 = I2. Compared
with (3), the symbols pk+K and qk are permuted such
that

[�(sk)T �(sk)T
]T

=
[
pk pk+K qk qk+K

]T =

π
[
pk qk pk+K qk+K

]T = πRW ĉk, where π is a square
permutation matrix to permute rows 2 and 3 of data vector
ĉk. Substituting πRW into (2), we have

ȳk =
√

ρκ/2(H̃πRW )ĉk + w̄k. (4)

The matrix H̃πRW in (4) is not block-diagonal; thus PWRS
decoding seems to be impossible. However, by multiplying
both sides of (4) with (πRW )T, the matrix (πRW )TH̃πRW

becomes block diagonal again; then PWRS decoding is pos-
sible.

Proof: We first can show that the product πTH̃π =[
z1 I2 z2 I2

z2 I2 z1 I2

]
, where z1 and z2 are the elements of Z

such that Z =
[
z1 z2

z2 z1

]
. Then, H̄ = R̂T

W H̃R̂W =

RT
W πTH̃πRW =

[
X1 02

02 X2

]
, where Xi = z1U

T
i Ui +

z2R
T
i UT

i Ui + z2U
T
i UiRi + z1R

T
1UT

i UiRi (i = 1, 2).
We have some comparisons on the signal transformations

by Yuen et al. and Wang et al. as follows.

• Complexity: The 4 × 4 WWX transformation RW has
higher encoding complexity compared with the 2 × 2
YGT rotation R. Also, the multiplication of (πRW )T and
ȳk in (4) increases the decoding complexity of WWX
transformation, compared with that of YGT rotation.

• Performance: For square QAM (QAM-S), the WWX
transformation in [4, Theorem 2] provides no SNR gain
compared with the YGT rotation [3]. The transformation
in [4, Theorem 3] performs better with rectangular QAM
(QAM-R) at the cost of higher encoding/decoding com-
plexities.

We next optimize the performance of MDC-ABBA codes
based on the union bound on SER. Only the signal rotation of
Yuen et al. is considered due to its mathematical convenience.
More importantly, we will show that by combining power
allocation and signal rotation, better performance for QAM-
R can be achieved than by using the transformation in [4,
Theorem 3], however, with less complexity.

IV. OPTIMAL SIGNAL TRANSFORMATIONS

A. Exact Symbol Pairwise Error Probability

We first derive the exact SPEP. With noise whitening and
signal rotation, we can rewrite (2) as

Ĥ−1�(ŷk) =
√

ρκ/2ĤR
[
ak bk

]T + Ĥ−1�(ŵk). (5)

and another equation can be similarly written for the data
vector

[
ak+K bk+K

]
[6].

Since Ĥ−1�(ŵk) and Ĥ−1�(ŵk) are real random Gaus-
sian vectors with i.i.d. entries (zero-mean and variance N0 =
1/2), the information vectors

[
ak bk

]T
and

[
ak+K bk+K

]T
(k = 1, 2, . . . , K) experience the same channels; they are
subject to the same error probability. We thus can consider the
error probability of one of the two vectors only; the subscript
of symbols can be omitted for short. Furthermore, the pairwise
error probability of each vector is also the SPEP.

Consider two distinct symbols d = a + j b and d̂ = â + j b̂.
Let δ1 = a− â, δ2 = b− b̂, Δ = [δ1 δ2]T, the conditional SPEP

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 17, 2009 at 15:12 from IEEE Xplore.  Restrictions apply. 



ÐÀO and TELLAMBURA: QUASI-ORTHOGONAL STBC WITH MINIMUM DECODING COMPLEXITY 851

of d and d̂ can be expressed by the Gaussian Q-function as
[8]

P (d → d̂|Ĥ) = Q

(√
ρκ|ĤRΔ|2/8N0

)
. (6)

From Section II, we can show that Ĥ is a 2×2 real circulant
matrix [6]. Hence Ĥ†Ĥ = ĤĤ = Ĥ2 = Z . We can use
eigenvalue decomposition for Hi,j so that Hi,j = F †

2 Λi,jF2,
where F2 is a 2× 2 discrete Fourier transform matrix, Λi,j =
diag(λi,j,1, λi,j,2) and [λi,j,1 λi,j,2]T = F2[hi,j hi+M/2,j ]T.
Since hi,j and hi+M/2,j are i.i.d. ∼ CN (0, 1), so are λi,j,1 and
λi,j,2. Thus, Z =

∑N
j=1

∑M/2
i=1 F2 diag(|λi,j,1|2, |λi,j,2|2)F2.

Let x � |ĤRΔ|2 = (RΔ)†Ĥ†Ĥ(RΔ), one has x =∑N
j=1

∑M/2
i=1

[
β2

1 |λi,j,1|2 + β2
2 |λi,j,2|2

]
, where [β1 β2]T =

F2RΔ. We can apply the Craig’s formula [9] to derive the
conditional SPEP in (6).

P (d → d̂|Ĥ) =

1
π

∫ π/2

0

N∏
j=1

M/2∏
i=1

exp

(
−ρκ

(
β2

1 |λi,j,1|2 + β2
2 |λi,j,2|2

)
4 sin2 θ

)
dθ.

(7)

Since λi,j,1 and λi,j,2 are i.i.d ∼ CN (0, 1), we can apply a
method based on the moment generation function (MGF) [8]
to obtain the unconditional SPEP in the following:

P (d → d̂) =

1
π

∫ π/2

0

[(
1 +

ρκβ2
1

4 sin2 θ

)(
1 +

ρκβ2
2

4 sin2 θ

)]−MN/2

dθ. (8)

A closed form of SPEP without integration can be derived,
Only the final result is given below for brevity.

P (d → d̂) =
L̂−1∑
i=0

(
uiε

i
1ε

L̂
2M1,i + viε

L̂
1 εi

2M2,i

)
. (9)

where L̂ = MN/2, and

ui =
(−1)iL̂(L̂ + 1) . . . (L̂ + i − 1)

i!(ε2 − ε1)L̂+i
, (10a)

vi =
(−1)iL̂(L̂ + 1) . . . (L̂ + i − 1)

i!(ε1 − ε2)L̂+i
, (10b)

εk =
4

ρκβ2
k

(k = 1, 2), (10c)

Mk,i =
(

1 − ηk

2

)L̂−i L̂−i−1∑
l=0

(
L̂ − i − 1 + l

l

)(
1 + ηk

2

)l

,

(10d)

ηk =
√

1/(1 + εk) (k = 1, 2). (10e)

B. Optimal Signal Rotations Based on tight SER Union Bound

Assume that di and dj , i, j = 1, . . . , L, are signals drawn
from a constellation S of size L. From the SPEP in (8), we
can find the union bound on SER of constellation S with
MDC-ABBA codes as

Pu(S) =
2
L

L−1∑
i=1

L∑
j=i+1

P (di → dj). (11)

TABLE I
OPTIMAL ROTATION ANGLES OF POPULAR CONSTELLATIONS

Signal Optimal α Signal Optimal α

4QAM 14.382◦ 8QAM-S 12.268◦

4TRI 31.155◦ 8QAM-R 13.166◦

8PSK 5.915◦, 39.085◦ 8QAM-SR 31.964◦

8APSK 33.472◦ 16PSK 24.883◦ , 42.617◦

8TRI-a 30.284◦ 16TRI 0◦

8TRI-b 0◦ 16QAM-S 13.195◦

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

S
E

R
 U

ni
on

 B
ou

nd

SNR [dB]

16PSK
16TRI
16QAM
16QAM, simulated SER
8PSK
8APSK
8TRI−a
8TRI−b
8QAM−R
8QAM−S
8QAM−SR
4TRI
4QAM
4QAM, simulated SER

Fig. 1. Simulated SER of 4- and 16-QAM, and SER union bound of 4-, 8-,
16-ary constellations, 4 Tx/1 Rx antennas.

The SER union bounds of 4- and 16QAM with YGT
rotation (α = 13.2825◦) are plotted in Fig. 1. The union
bound is only about 0.1 dB apart from the simulated SER
when SER < 10−2. Therefore, the union bound can be used
to accurately predict the SER performance of MDC-ABBA
codes and, furthermore, to optimize the signal rotation R.

We run computer search to find the optimal rotations, which
minimize the SER union bound, for popular 4-, 8- and 16-ary
constellations. Their geometrical shapes can be found in [10],
[11]. Note that in [11, Fig. 2], the labels of square 8QAM
(8QAM-S) and 8QAM-R should be swapped. The rotation
angle is searched in the range [0◦, 45◦] (with increment of
0.001◦), because if α is an optimal angle, the following angles
are also optimal −α, 90◦ ± α, 180◦ ± α, 270◦ ± α. The SNR
is chosen such that the SER of corresponding optimal rotation
angle is about 10−8. At such low SER, the optimal rotation
angles also yield full-diversity MDC-ABBA codes. The results
are summarized in Table I.

The SER union bounds of several 4-, 8- and 16-ary con-
stellations are illustrated in Fig. 1. Signal constellations carved
from the lattice of equilateral triangle (TRI signals) have the
best minimum Euclidean distance and perform well compared
with QAM when they are used for fading channels [10].
However, combined with MDC-ABBA codes, QAM signals
always perform much better than the others.

The new optimal rotation angles for QAM (square or
rectangular) constellations are very close to the proposed angle
α = 13.2825 by minimizing CPEP [3]. Therefore, the SNR
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gains in these cases are negligible compared to the results
of [3] and [4, Theorem 2]. Nevertheless, we are able to find
the optimal rotations for PSK and TRI, and to compare their
performances with QAM2. We next present a new approach,
which is applicable to QAM-R, to find the best transformation
so that the MDC-ABBA codes perform better but have lower
complexity than that proposed in [4, Theorem 3].

C. Optimal Signal Rotations with Power Allocations

For QAM-R, the average powers of the real and imaginary
parts of the signal points are unbalanced. We may change the
power allocation to the real and imaginary parts of QAM-R
signals to a get better overall SER. In particular, the real and
imaginary parts of QAM-R signals are scaled by constants
μ1 and μ2, respectively, before they are rotated. Thus, if the
input constellation is S = {d | d = a + j b, a, b ∈ R}, the
constellation with new power allocation is S̄ = {d̄ | d̄ =
μ1a + j μ2b; a, b ∈ R}. The average energy of the constel-
lation must be kept unchanged. Therefore, μ1 and μ2 are
mutually dependent. For example, for 8QAM-R with signal
points {(±3± j,±1± j)/

√
48}, μ1 and μ2 are constrained as

5μ2
1 + μ2

2 = 6. We thus have two parameters μ1 (or μ2) and
α to be optimized.

The best found parameter set (μ1, μ2, α) by computer
search for 8- and 32QAM-R are (0.9055, 1.3784, 0◦) and
(0.8972, 1.3487, 1.954◦), respectively. Using our new trans-
formation, the frame error rate of MDC-ABBA codes with
QAM-R is improved compared with YGT rotation, and also
WWX transformation, however, with lower encoding/decoding
complexities (see Fig. 2).

V. MDC-ABBA CODES WITH ANTENNA SELECTION AND

LIMITED FEEDBACK

When a feedback channel exist between receiver and trans-
mitter, transmit antenna selection (TAS) can be employed to
provide significant SNR gains compared with the open loop
STBC [12]. We thus investigate the performance of MDC-
ABBA codes with TAS, with emphasis on the diversity order.

Let β̄1 = min(|β1|, |β2|), β̄2 = max(|β1|, |β2|),
we have

∑N
j=1

∑M/2
i=1

[
β̄2

1

(|λi,j,1|2 + |λi,j,2|2
)] ≤

x ≤ ∑N
j=1

∑M/2
i=1

[
β̄2

2

(|λi,j,1|2 + |λi,j,2|2
)]

. Since
[λi,j,1 λi,j,2]T = F2[hi,j hi+M/2,j ]T, we get
|λi,j,1|2 + |λi,j,2|2 = |hi,j |2 + |hi+M/2,j |2. Therefore
β̄2

1‖H‖2 ≤ x ≤ β̄2
2‖H‖2 and the SPEP in (6) is bounded as

P (d → d̂|H) ≥ Q

(√
ρκβ̄2

2‖H‖2
F/4
)

, (12a)

P (d → d̂|H) ≤ Q

(√
ρκβ̄2

1‖H‖2
F/4
)

. (12b)

2One of reviewers has suggested to find the optimal signal rotation by
simulation-based computer search, without knowing the SER union bound.
Note that the simulation time to obtain SER = 2.13 × 10−5 (170 errors),
for 8QAM-SR is about 1.62 hours, using Matlab Release 14, 2GHz micro-
processor, Redhat Linux version 9 operating system. If the rotation angle
α ∈ [0, 90◦), with raw increment of 0.1◦ , then 900 runs will be completed
in more than 60 days. If we want to compare 10 different constellations, the
brute-force search could spend 1 year and 8 months. While our search method
takes only less than 5 minutes to find the best rotation angle for 8QAM-
SR, however, with finer increment of 0.001◦ . This comparison highlights the
efficiency of our approach over the brute-force search.
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Fig. 2. Performances of MDC-ABBA codes with new optimal power allo-
cation and existing signal transformations for QAM-R, 4 Tx/1 Rx antennas.

If β̄1 �= 0 and β̄2 �= 0 for all distinct pairs of symbols,
the SPEP of MDC-ABBA codes in (12) is lower and upper-
bounded by a (full-diversity) SPEP of some OSTBC transmit-
ted over the same channel H with different SNR scales.

With TAS, M rows of H are chosen to formulate a selected
channel H̄ so that Frobenius norm of H̄ is maximized. We
now show that MDC-ABBA codes achieve full diversity with
TAS and limited feedback. The concept of TAS with limited
feedback [12] can be explained as follows. Choosing M out
of Mt transmit antennas requires b =

⌈
log2

(
Mt

M

)⌉
feedback

bits and b may be large. In some scenarios, it is required to
keep b small. Therefore, instead of

(
Mt

M

)
possible choices, the

M antennas are selected from G predefined groups, such that
log2 G� < b, to reduce the number of feedback bits. This
method is called limited feedback. Obviously, the selected M
antennas may not be optimal with limited feedback; however,
it is shown that OSTBC can achieve full transmit diversity
Mt with limited feedback [12]. Therefore, MDC-ABBA codes
also achieve full diversity with limited feedback.

We verify the diversity order of MDC-ABBA codes with
TAS and limited feedback in Fig 3. In the simulations, 3 anten-
nas are chosen out of 4 Tx antennas. The full feedback scheme
requires 2-bit feedback. In the limited feedback system, there
are only 2 choices to select 3 out of 4 antennas; thus only 1-bit
feedback is needed. At high SNR, the BER curves of the open-
loop and feedback schemes are parallel, which confirms that
the limited and full feedback schemes achieve full diversity.
Additionally, the limited feedback scheme gains 0.9 dB over
the open-loop scheme at 10−4 BER.

VI. CONCLUSION

We have presented a new efficient method to directly
analyze and optimize the SER performance of MDC-ABBA
codes. Our approach relies on the exact SPEP, which is dis-
tinguished from the other methods with worst-case codeword
PEP optimization. Additionally, a new signal transformation
to improve the performance of rectangular QAM with less
encoding/decoding complexity has been proposed. We have
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Fig. 3. Performance of MDC-ABBA codes with limited and full feedback,
choose M = 3 transmit antennas from Mt = 4 antennas, and 1 receive
antenna, 16QAM.

also shown that MDC-ABBA codes achieve full diversity
with transmit antenna selection and limited feedback. Our
results show that QAM signals have the best performance
and, therefore, should be used with MDC-ABBA codes. Our
approach to analyze SER of MDC-ABBA can be extended
to investigate performance of other quasi-orthogonal STBC
(QSTBC), for example, in [13]. Due to the space limit,
performance comparison of MDC-ABBA codes and QSTBC
are not presented in this letter. Nevertheless, interested readers
can find some performance comparisons of MDC-ABBA and
ABBA codes in [3], [6].
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