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Abstract—The peak-to-average power ratio (PAR) of orthogonal
frequency division multiplexing (OFDM) systems can be reduced
by using an optimal set of subcarrier signs. However, this sign selec-
tion is a hard discrete optimization problem. We therefore consider
the use of the clipping noise, generated when the OFDM signal is
clipped at a given threshold level, to find a good set of signs. The
key idea of clipping-noise guided sign-selection (CGS) is to itera-
tively flip the signs of those subcarriers with high levels of clipping
noise. In each iteration, the key task is to determine the number and
locations of such subcarriers. We develop suitable criteria for this
task and derive CGS algorithms that can handle both unitary (e.g.,
� -ary phase shift keying) and nonunitary (e.g., � -ary quadra-
ture amplitude modulation) signal constellations. The simulation
results show that the PAR reduction of CGS is about 1 dB larger
than that of derandomization and tone reservation for a 256-sub-
carrier system, and is about 1–2 dB larger than that of partial
transmit sequence (PTS) and selective mapping (SLM). CGS also
removes the error floor due to nonlinear amplifiers.

Index Terms—Clipping-noise guided, orthogonal frequency di-
vision multiplexing (OFDM), peak-to-average power ratio (PAR)
reduction, sign-selection.

I. INTRODUCTION

T HE high peak-to-average power ratio (PAR) in orthog-
onal frequency division multiplexing (OFDM) systems

requires the high power amplifier (HPA) with a large linear
range that is inefficiently used [1]. If the linear range of HPA
is not sufficient, the large PAR leads to in-band distortion and
out-of-band radiation [1]. The previously proposed PAR-re-
duction techniques have included clipping and filtering [2]–[6]
which may increase the bit error rate (BER); tone reservation
[7]–[9], which lowers the throughput and may offer limited
PAR reduction gain if reserved tones are on the edge of the
OFDM frequency band; and distortionless coding methods
based on block codes, convolutional codes and Golay comple-
mentary sequences [10]–[14], which, result in low coding rates
for a large number of subcarriers. A comprehensive tutorial
review of PAR reduction techniques can be found in [15].

Probabilistic PAR reduction techniques are especially suited
for OFDM systems with a large number of subcar-
riers [16]–[24]. Selected mapping (SLM) and partial transmit

Manuscript received June 19, 2007; revised April 10, 2008. First published
June 10, 2008; current version published October 15, 2008. The associate editor
coordinating the review of this manuscript and approving it for publication was
Dr. Mounir Ghogho.

L. Wang was with the Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, AB T6G 2V4, Canada. He is now with
SMART Technologies, Calgary, Canada.

C. Tellambura is with the Department of Electrical and Computer Engi-
neering, University of Alberta, Edmonton, AB T6G 2V4, Canada (e-mail:
chintha@ece.ualberta.ca).

Digital Object Identifier 10.1109/TSP.2008.926972

sequences (PTS) [16]–[21] are such techniques that obtain
moderate PAR reduction with limited complexity. A more
general technique that includes both SLM and PTS as special
cases is the sign-selection method [23], [24]. This method
selects the subcarrier signs to significantly reduce the PAR.
However, since there are different sign patterns, where

is the number of subcarriers, optimal sign selection is a
hard discrete optimization problem with the complexity of

. In [24], a deterministic sign-selection algorithm based
on derandomization is developed. This algorithm iteratively
optimizes each sign by minimizing the probability that the PAR
is larger than a preset threshold. Although this algorithm limits
the PAR to , it requires iterations per OFDM
symbol, and each iteration involves the computation of a large
number of hyperbolic functions, leading to high complexity.

These probabilistic PAR reduction algorithms are computa-
tionally complex for large PAR reduction. In this paper, we
propose two clipping-noise guided sign-selection algorithms.
These algorithms use a new clipper model to obtain clipping
noise from the time-domain OFDM signal, and then flip the
signs of those subcarriers with high levels of clipping noise. In
developing these algorithms, a number of clipper models were
tested. For example, we found that the conventional soft limiter
[25] does not provide a sufficient performance; the new clipper
model obtains larger PAR reductions than the soft limiter. The
difference between the new clipper and the soft limiter is that
the clipping noise generated by the new clipper contains the en-
tire samples of large peaks higher than a predefined threshold,
while that generated by the soft limiter contains only fragments
of these large peaks.

This paper considers PAR reduction based on clipping-noise
guided sign-selection. The key idea of clipping-noise guided
sign-selection (CGS) is to iteratively flip the signs of those sub-
carriers with high levels of clipping noise. In each iteration, the
key task is to determine the number and locations of such sub-
carriers. We develop suitable criteria for this task and derive two
CGS algorithms that can handle both unitary (e.g., -ary phase
shift keying) and nonunitary (e.g., -ary quadrature amplitude
modulation) signal constellations. The simulation results show
that the PAR reduction of CGS is about 1 dB larger than that
of derandomization and tone reservation for a 256-subcarrier
system, and is about 1–2 dB larger than that of PTS and SLM.
CGS also removes the error floor due to nonlinear HPAs.

This paper is organized as follows. Section II characterizes
the OFDM System and reviews the sign-selection technique.
The clipping-noise guided sign-selection algorithms are pro-
posed in Section III. In Section IV, the proposed algorithms are
compared with SLM, PTS, and the derandomization algorithm.
Section V concludes this paper.
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II. SIGN-SELECTION TECHNIQUE FOR PAR REDUCTION

A. Characterization of OFDM System

The time-domain OFDM signal may be expressed as

(1)

where is the OFDM symbol period, and ,
, are typically chosen from an -ary PSK or QAM constel-

lation. Without loss of generality, we set . We

call an OFDM block. In practice,
samples of are efficiently computed by an inverse discrete
Fourier transform (IDFT)1

IDFT

(2)

where is the oversampling factor. The PAR may be defined as

(3)

where is the average power, and
. The PAR may also be computed by using the

discrete samples similar to (3), and is approximately equal
to when [26], [27].

B. Sign-Selection Technique

The sign of each subcarrier symbol is denoted by the vari-
able . A set of signs must be chosen to reduce
the PAR. The original OFDM block is thus replaced by

(4)

and the discrete-time transmit signal is given by

(5)

Note that the choice of does not affect the average power of
, which is the same as that of . The PAR reduction problem

is therefore equivalent to minimizing the maximum peak of the

1In this paper, all IDFT/DFT operations are of size �� . Moreover, for the
ease of subcarrier index notation, we use the zero-padding scheme to calculate
� ; i.e., the IDFT operation is applied to the extended vector

� � �� � � � � � � � �� � � � � � ��

Note that, in practice, the zero-insertion scheme is widely used to calculate � ,
where the IDFT operation is applied to the extended vector

� � �� � � � � � � � �� � � � � � � � � � � � �� ��

However, statistically, our algorithm obtains the same PAR reduction perfor-
mance in both oversampling schemes.

amplitude of . Consequently, the PAR reduction problem is
reformulated as

(6)

where , and is the set of -dimen-
sional binary vectors. The optimal solution may be sent
to the receiver as side information for the correct detection of
input modulation symbols. Alternatively, one can eliminate ex-
plicit side information by sacrificing one bit per subcarrier. For
example, with 64QAM, five data bits and one sign bit per con-
stellation point can be transmitted [23]. Note that the throughput
loss may be avoided by using the hexagonal constellation [28],
[29] or tone-injection. The proposed sign-selection algorithms
can be easily applied to these cases.

Equation (6) describes a combinatorial optimization problem
over the dimensional binary space . Let
without loss of generality. Since the size of the search space
is , which grows exponentially with , one has to resort
to suboptimal solutions. For example, the previously developed
SLM and PTS can be identified as special cases of (6). The SLM
method [17] uses a codebook of sign sequences containing
sign sequences . For a given OFDM block, a
sign sequence leading to the lowest PAR is selected from .
This sign sequence is clearly a suboptimal solution of (6). The
PTS method [21] partitions an OFDM block to subgroups,
assigns an optimal sign to each subgroup, and hence reduces the
size of the solution space from to . The PTS solution
is then a suboptimal solution of (6).

C. Peak Cancelation

In order to derive our algorithms, it is necessary to rewrite (4)
as

(7)

where is the peak-canceling
vector, and

.

The discrete-time transmit signal in (5) may now be expressed
as

IDFT

(8)

in which can be viewed as a peak-canceling signal. Note that
only negative signs contribute to the peak-canceling
signal. In Section III, we propose two suboptimal sign-selection
algorithms, which utilize the strength of the clipping noise on
each subcarrier to find the signs that should be negative.
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Fig. 1. OFDM system with clipping-noise guided sign-selection.

Fig. 2. Clipping-noise guided sign-selection algorithm.

III. CLIPPING-NOISE GUIDED SIGN-SELECTION ALGORITHM

The OFDM system with CGS is shown in Fig. 1. The input
bitstream is first mapped to data symbols by using a signal
constellation (or even multiple constellations if bit-loading is
employed). Each block of data symbols (called an OFDM
block) is fed into an IDFT block to generate the signal . The
CGS block finds an optimal time-domain OFDM signal
with the lowest PAR. With the Cyclic Prefix (CP) appended to

, the time-domain OFDM signal is modulated to the car-
rier frequency, amplified by the HPA, and transmitted through
the antenna.

The CGS block is expanded in Fig. 2, and the IDFT block is
also included to facilitate the complexity calculation discussed
later. In each iteration, the new clipper process samples and
outputs the clipping noise . The DFT of the clipping noise ,

, are used to calculate an index set of negative
signs, , that may reduce the peaks of
below threshold . A candidate OFDM block is thus generated
and is used as the input of the next iteration. After iterations,
the candidate OFDM block with the smallest PAR is selected
for transmission.

The proposed CGS algorithms are based on the new clipper
model. Given a predefined threshold , the clipping noise in this
case is

(9)

Note that this clipper is different from the conventional soft lim-
iter used in the literature, which generates clipping noise as [25]:

(10)

where is the phase of . While both the clipper models
generate clipping noise when ’s have peaks, the new model
(9) contains the entire samples of large peaks higher than ,
whereas the soft limiter (10) contains only fragments of the sam-
ples which exceed . Although both models can work with our

proposed algorithms, note that (9) need less computations than
(10).2 Moreover, the simulations show that the new model leads
to larger PAR reduction for nonunitary constellation input than
the soft limiter.

In this section, we first develop two criteria for selecting signs
by using the level of clipping noise. We first propose the clip-
ping-noise guided sign-selection algorithm for unitary constel-
lations (e.g., PSK), where , and extend it to nonunitary
constellations (e.g., QAM).

A. Sign-Selection Criteria

Recall that only the subcarriers with the negative signs con-
tribute to the peak-canceling signal. Finding the index set of neg-
ative signs requires two criteria to determine the number of
negative signs (which is the size of ) and to select the elements
of . Using the relationship between the peak-canceled samples
and the original samples (8), we have

Thus, a necessary condition for limiting smaller than is
that must satisfy

(11)

On the other hand, since

a larger size of increases the chance of obtaining a “bad”
candidate OFDM block with a large PAR. Therefore, the size
of is determined as follows:

1) Criterion 1 (Size of ): The that may limit to no
larger than must have the minimum size and satisfy (11).

2Compared to (9), (10) requires additional phase angle computation, two real
multiplications and subtraction per clipped sample.
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Selecting the elements of depends on the clipping noise
spectrum

(12)

where the clipping noise is given in (9). Projecting to ,
we have

where

(13)

and represents the real part of , and represents the
complex conjugate.

A peak-canceling signal may be obtained by taking the IDFT
of as

(14)

If a large peak of , or equivalently , occurs at , then,
also has a large peak at with the same direction of . More-

over, due to peak regrowth [6], usually . Therefore,

may be scaled by the optimum factor to further
reduce the peaks of . The modified discrete samples of the
OFDM signal are

(15)

A comparison of (8) and (15) suggests that can be obtained
by rounding some to 2 and rounding others to 0. The
resulting modified discrete samples may have larger peaks
than . However, by minimizing the rounding error, the peaks of

may still be lower than . The mean squared rounding
error is upper-bounded as

(16)

The upper bound on is determined by the term inside and
suggests the following criterion.

2) Criterion 2 (Elements of ): Define the maximum
rounding error as

(17)

Then, must be generated by rounding to 2 or 0 such
that is minimized.

B. Clipping-Noise Guided Sign-Selection for Unitary
Constellations

Substituting into (11), the size of can be calcu-
lated as

(18)

where represent the smallest integer greater than . In uni-
tary modulations, minimizing involves only.

Theorem 1: For unitary modulations, is minimized if
for all and .

Proof: By substituting into (17)

Let where for any and
. Without loss of generality, let ,
. Then

where and are the maximum rounding errors asso-
ciated with and , respectively. By discussing the signs of

, , and ,
we have . Since is arbitrary, Theorem 1
is proved.

Note that is irrelevant to the decision about in
the minimization of for unitary modulations. In other
words, we may substitute with an arbitrary positive
number without making a wrong decision about . However,
for nonunitary modulations, must be found before is
chosen. We will discuss this topic in Section III-C.

Also note that when
or . Thus, we are free to

include3 any to if and to exclude any from
if .
The largest samples of must be rounded to 2 and the

others to 0. Our algorithm is then summarized as follows.

3We do not exploit this freedom in Algorithm 1 since we do not calculate
� .
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Algorithm 1:

1) Choose a magnitude threshold , and the number of
iterations .

Runtime:

1) For each , calculate using (2). Note that is
required. Let .

2) If , let the iteration number and go to Step 3;
otherwise, transmit and terminate.

3) Set the index set of negative signs empty ; calculate
by using (9).

4) Calculate by using (13). If all , go to Step 8;
otherwise,

5) Calculate by using (18); generate by rounding the
largest samples of to 2 and rounding the other to 0.

6) Calculate and by using (7) and (8), respectively. If
, let , and store as .

7) If go to Step 8; otherwise, increase by one, let
and , and go to Step 3.

8) Transmit .

The complexity of this algorithm can be upper bounded as
two fast Fourier transforms (FFTs) per iteration. The detailed
complexity analysis is given in the Appendix.

C. Clipping Guided Sign-Selection Algorithm for Nonunitary
Constellations

Let . The size of can be calculated from (11)
as

(19)

For square -ary QAM constellations, we have

(20)

In nonunitary modulations, minimizing requires
knowing . By using the adaptive-scaling algorithm [30],

is found by minimizing the out-of-range power , i.e.

(21)

where

is the total power of those , and is the peak-reduced
signal calculated in (15). Equation (21) is equivalent to [30]

(22)

where
is the index set of the peaks of . By solving (22),

we have [30]

(23)

Since is not a constant, the minimization of for
nonunitary constellations depends on both and .
To illustrate the relationship between , and ,
we consider the following example.

1) Example 1: Suppose we have chosen elements
of , and the last element will be selected from and

, where and .
Case I: are 4QAM symbols.
Since , is minimized when and

.
Case II: are 16QAM symbols, and ,

.
It is easy to verify that if and .

However, when and . Thus, the
optimum sign-selection is and although

.
In general, we have the following theorem for minimizing

in nonunitary cases.
Theorem 2: In each iteration, let have the size that is

calculated in (19). Define

(24)

Then, for nonunitary modulations, is minimized if

(25)

Proof: Suppose satisfies (25). Let and
. We may form another set by replacing with

where . Since and have the same size,
and also have the same size. In the following, we show that

leads to a smaller maximum rounding error than .
Let contains the indices that are not in , and , i.e.

where is the OFDM index set and
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The maximum rounding error caused by is the given by

and the maximum rounding error caused by is

Therefore, we have

Since and are arbitrarily selected, minimizes the max-
imum rounding error.

Our algorithm for nonunitary modulations can be modified
from Algorithm 1 as follows, where the omitted parts are the
same as those in Algorithm 1:

Algorithm 2:

5) Find as follows.

a) Calculate , and using (19), (23), and (24),
respectively.

b) Find the smallest samples of , and denote them as
; set for , and set other

to 0.

Since calculating involves an FFT operation (for cal-
culating ), the complexity of this algorithm is upper-bounded
as three FFTs per iteration.

Remark 1 (Adaptively Calculating the Size of ): We may
directly use (11) to find the size of . That is, in each iteration,
we start from an empty set and flip the signs one-by-
one. The condition in (11) is tested every time a sign is flipped.
When (11) is satisfied, we generate the and go on to the next
iteration.

Note that the size of now depends on the choice of its el-
ements. Then, the condition of Theorem 2 is not satisfied. Al-
though in this case (25) does not ensure the minimization of

, the resulting is still small. Moreover, an adaptive
size of more precisely meets Criterion 1. Thus, adaptively
calculating the size of would not degrade the PAR reduction
performance. In fact, the simulations show that the PAR reduc-
tion performance is improved by using an adaptive size of .

Remark 2 (Simplification): The complexity of Algorithm 2
can be simplified to two FFTs per iteration by using the mean
of , which is calculated at the initialization stage by using
the level crossing theory [31], and is used for all OFDM blocks.

Unless is small, the clipping noise consists of a series of
pulses [6]. In [6], we have proved that, if the clipping noise
contains only one dominant pulse, the peak of is proportional
to that of

where is the constant of proportionality, whose value depends
on the OFDM bandwidth and the clipping level. The mean of
is

where is the average power of the OFDM signals. Since
must be close to at the positions of most peaks of

, we may estimate the mean of as

(26)

Remark 3 (Choice of ): As is common with clipping-based
PAR reduction algorithms, one has to perform experiments to
choose a suitable clipping threshold . In general, should
be small if a large PAR reduction is required, and should be
relatively large if low complexity is desired.

Remark 4 (Further Discussion): Our algorithm is effective
for large and for OFDM symbols with large PAR. This result
can be intuitively explained as follows.

1) Since SLM with a small number of candidates can effec-
tively reduce the PAR, when is large, there are a large
number of sign sequences that can effectively reduce the
PAR. So the CGS algorithms too can pick one of these se-
quences.

2) The PAR reduction performance of the CGS algorithms is
determined mainly by the errors in estimating the size of
and in rounding to 2 or 0. In Section IV, we will
see that using the average size of leads to smaller PAR re-
duction than using the adaptive size of while using
or gives virtually the same PAR reduction. Therefore, the
accuracy of estimating the size of plays a more important
role in our algorithm than the minimization of the rounding
error.

a) Effect of the error of estimating the size of .
If such an estimation error occurs, we have either
rounded too many s to 2 or rounded too many s
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to 0. In either case, the maximum degradation of peak
reduction is

where is the difference between the we are using
and the optimum . Thus, is small when is large.

b) Effect of the error of rounding to 2 or 0.
Ideally, a peak canceling signal is a series of pulses,
which cancels large peaks in the OFDM signal
without introducing any new peaks or increasing any
small peaks. Such an ideal signal is not realizable be-
cause of the spectrum constraints on peak canceling
signals.
In our algorithms, the rounding errors add new peaks
to the OFDM signal. In OFDM signals with small
PAR, most peaks have comparable magnitude. Thus,
the new peaks introduced by the rounding errors are
likely to fall on some existing peaks of the OFDM
signal. Little PAR reduction can be obtained.
On the other hand, in OFDM signals with large PAR,
since the number of large peaks is small [30], the lik-
lihood that the new peaks introduced by the rounding
errors will fall on the large peaks of the OFDM signal
is also small. Thus, the large PAR can be effectively
reduced.

IV. SIMULATION RESULTS

In this section, we compare the CGS algorithms with SLM,
PTS, derandomization, and tone reservation techniques for a
256-subcarrier OFDM system. Four times oversampling

is used in optimization and eight times oversampling
is used in calculating the PAR after an optimal sign sequence is
selected. For CGS, the average , , and the adaptively cal-
culated size of are used (see Remarks 1 and 2 ). The adaptive
scaling algorithm [30] with eight iterations is used for tone reser-
vation, where randomly selected 1/6 subcarriers are reserved
for PAR reduction. Thus, the amount of redundancy in CGS is
the same as that in tone reservation and derandomization, but
is higher than that in SLM and PTS. The complexity of the
tone reservation technique is the same as that of CGS with eight
iterations.

Fig. 3 compares the PAR reduction of these algorithms in
terms of the PAR complementary cumulative distribution func-
tion (CCDF) . Unit-energy 64QAM is used
in this experiment. Thus, for SLM, PTS and tone reservation,
each data symbol contains 6 data bits. For CGS and derandom-
ization, each data symbol contains 5 data bits and one sign bit for
PAR reduction. The PAR reduction of tone reservation is about
0.1 dB larger than CGS with eight iterations at ,
and is the same at (about 5.9 dB). Tone reser-
vation requires a 0.42-dB average power increase, leading to a
BER increase, while CGS does not change the average power. In
this experiment, the performance of tone reservation (in terms of
PAR reduction, complexity, and average power) is roughly the
same as that of CGS. However, note that in tone reservation, the
reserved tones are randomly selected, giving rise to the best PAR

Fig. 3. PAR reduction comparison of CGS with �� and adaptive size of� , SLM,
PTS, derandomization, and tone reservation, where � � ���, and 64QAM is
used.

reduction performance. In practice, tone reservation is subject to
certain constraints (e.g., reserved tones must be on the two ends
of the OFDM band), and the PAR reduction is decreased.

An advantage of CGS is that its PAR reduction seems inde-
pendent of the size of signal constellation. Thus, if a larger con-
stellation is used, the redundancy of CGS is reduced. On the
other hand, the PAR reduction of tone reservation replies on the
amount of redundancy (i.e., the ratio between the number of re-
served tones and ) [30]. Thus, if a large constellation is used,
CGS obtains larger PAR reduction than tone reservation with
the same amount of redundancy.

At , the PAR reduction of CGS with eight it-
erations is about 2.1 dB larger than that of SLM with 16 can-
didates, 1.4–dB larger than that of PTS with eight randomly
partitioned subgroups, and 0.9 dB larger than that of the deran-
domization algorithm. In this experiment, both SLM and CGS
require 16 FFTs per OFDM block.4 PTS must test
combinations.

CGS with one iteration obtains a 3.2-dB PAR reduction, a
0.3-dB gain over SLM with four candidates. In this experiment,
CGS and SLM require two and four FFTs per OFDM block.

The average computation time of these algorithms is listed in
Table I for a Pentium IV 3.40G computer with Matlab R14 Ser-
vice Pack 2. The time complexity of CGS with eight iterations
is only 89% of SLM with 16 candidates, 9.4% of PTS with eight
subgroups, and 1.4% of the derandomization algorithm.

SLM, PTS, derandomization, and CGS are now compared in
terms of the power spectrum density (PSD) of the output of the
OFDM transmitter. As before, 64QAM is used. The peak-re-
duced OFDM signal is passed through a solid-state power am-
plifier (SSPA) [1]

4This is a loose complexity upperbound for CGS. The actual complexity of
CGS is lower than that of SLM (see Table I).
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TABLE I
TIME COMPLEXITY (� � ��� AND 64QAM)

Fig. 4. Power spectrum density of SLM, PTS, derandomization, and CGS,
where � � ���, and 64QAM is used.

Fig. 5. BER of SLM, PTS and CGS, where � � ���, 64QAM is used for
CGS and 32QAM is used for SLM and PTS.

where is the input, and is the output of
SSPA. Usually, for practical SSPA. In our simulations,
we choose . Fig. 4 shows the result. CGS with eight
iterations leads to only out of band radiation, which is
1 dB lower than derandomization, 8 dB lower than PTS with
eight subgroups, 9 dB lower than SLM with 16 candidates, and
12 dB lower than that obtained without using any PAR reduction
techniques, respectively.

Fig. 5 compares the BER performance of CGS, SLM, and
PTS for a 256-subcarrier OFDM system. 64QAM is used for

Fig. 6. PAR reduction comparison of different configurations of CGS, where
� � ���, and 16QAM is used.

CGS where one bit per subcarrier is sacrificed for PAR reduc-
tion, and 32QAM is used for SLM and PTS. For SLM and
PTS, we assume the receiver has perfect side information, and
ignore the throughput loss due to side information. Thus, the
throughput of CGS is the same as that of SLM and PTS. In this
experiment, we choose a tight SSPA saturation point .
For reference purpose, the BER when the SSPA is used but no
PAR reduction technique is applied to the OFDM signal, and the
BER when an ideal HPA is used are also simulated.

Without PAR reduction, the received OFDM signal exhibits
an error floor at the BER of . The BER is reduced when
PAR reduction techniques are applied. Although the BERs of
SLM and PTS are smaller than the BER of CGS at the low
signal-to-noise ratio (SNR) region,5 the BER of CGS is smaller
than those of SLM and PTS when . The error
floor due to the nonlinearity of HPA when CGS is used is much
smaller than that when SLM or PTS is used.

Fig. 6 compares Algorithm 2 to different configurations in-
cluding average size of , adaptive size of ,
average size of , and adaptive size of . Two hundred
fifty-six subcarriers and 16QAM symbols are used. The use of
the adaptive size of provides a larger PAR reduction than that
obtained by the use of the average size of . On the other hand,
using leads to virtually the same PAR reduction as that
obtained by using . Note that the complexity is three FFTs per
iteration when is used, but, two FFTs per iteration when

is used.

5This is because the channel noise is much larger than the nonlinear distortion
of the SSPA at the low SNR region.
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Fig. 7. PAR reduction comparison of CGS with � � � and different�, where
� � ���, and 16QAM is used.

Fig. 8. PAR reduction comparison of CGS and SLM for 16QAM input and
different � , where� � �� for SLM, � � �, and � � � �	 for CGS.

Fig. 7 shows the performance of Algorithm 2 with fixed eight
iterations and different clipping levels. Two hundred fifty-six
subcarriers and 16QAM symbols are used, and the CGS con-
figuration is adaptive size of . Note that pro-
vides the largest PAR reduction. Other choices of lead to per-
formance degradation. However, since the largest performance
degradation is only about 0.9 dB, the proposed CGS algorithm
is not overly sensitive to the choice of .

Fig. 8 compares CGS with adaptive size of and SLM
for OFDM systems with different number of subcarriers, where
other parameters are same. When the number of subcarriers dou-
bles, the PAR reduction of both algorithms decreases by about
0.4 dB.

V. CONCLUSION

Clipping-noise guided sign-selection for PAR reduction has
been considered. We proposed criteria for choosing the number
of signs that should be flipped and for choosing which subcarrier
signs should be flipped. Using these two criteria, two CGS PAR

reduction algorithms have been derived to handle unitary and
nonunitary signal constellations. The simulation results show
that the PAR reduction of CGS is about 1 dB larger than that
of derandomization and tone reservation for a 256-subcarrier
system, and is about 1–2 dB larger than that of PTS and SLM.
CGS also removes the error floor due to the nonlinearity of the
HPA.

APPENDIX

COMPLEXITY ANALYSIS: We only analyze the complexity
of Algorithm 1 only. Algorithm 2 can be analyzed similarly.

The complexity of our algorithm6 is determined mainly by (8)
and (12) while the complexity of other calculations involved in
our algorithm is and is independent of .

Equation (12) can be calculated by using an FFT. The average
number of nonzero samples in can be calculated as [30]

where is the mean power of the OFDM signal.
is usually small; e.g., for and .
Since most samples of are 0, the complexity of (12) is much
lower than that of a length- FFT.

Equation (8) also involves a small-size . The average size of
can be calculated as

where is the size of for

and . By using the approximate PAR cumulative
distribution function (CDF) [32]

where is empirically obtained as 2.8, the probability density
function (pdf) of PAR can be found as

Then

When and , for 4QAM and
for 16QAM, where the simulated results are 7.9

and 8.4, respectively. If the adaptive size of was used,
would be a little larger. For example, for ,
and 16QAM symbol input, the mean of the adaptive size of
obtained by simulation is 12.6. In any case, the complexity of
(8) is much less than that of a length- FFT.

To simplify the complexity comparison, we loosely upper
bound the complexity of Algorithm 1 as two FFTs per itera-

6Here, the Runtime Step 1 is excluded because it is required in all OFDM
systems with or without PAR reduction techniques.
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tion. With similar analysis, it can be shown that the complexity
upper-bounds of Algorithm 2 and its simplification are three and
two FFTs per iteration, respectively.
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