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Generalized Feedback Detection for
Spatial Multiplexing Multi-Antenna Systems

Tao Cui and Chintha Tellambura, Senior Member, IEEE

Abstract— We present a unified detection framework for spa-
tial multiplexing multiple-input multiple-output (MIMO) systems
by generalizing Heller’s classical feedback decoding algorithm for
convolutional codes. The resulting generalized feedback detector
(GFD) is characterized by three parameters: window size, step
size and branch factor. Many existing MIMO detectors are
turned out to be special cases of the GFD. Moreover, different
parameter choices can provide various performance-complexity
tradeoffs. The connection between MIMO detectors and tree
search algorithms is also established. To reduce redundant
computations in the GFD, a shared computation technique is
proposed by using a tree data structure. Using a union bound
based analysis of the symbol error rates, the diversity order
and signal-to-noise ratio (SNR) gain are derived analytically as
functions of the three parameters; for example, the diversity
order of the GFD varies between 1 and N . The complexity of
the GFD varies between those of the maximum-likelihood (ML)
detector and the zero-forcing decision feedback detector (ZF-
DFD). Extensive computer simulation results are also provided.

Index Terms— MIMO, feedback decoding, decision feedback
detector.

I. INTRODUCTION

SPATIAL multiplexing multiple-input multiple-output
(MIMO) systems with rich scattering wireless channels

are capable of providing enormous capacity improvements
without increasing the bandwidth or transmitted power. A
popular system is the Bell-Labs layered space-time (BLAST)
architecture [1]. However, the complexity of the maximum-
likelihood detector (MLD) increases exponentially with the
number of transmit antennas, and researchers have proposed
several reduced-complexity suboptimal detectors. The zero-
forcing (ZF) decision feedback detector (DFD) with optimal
ordering or the V-BLAST detector is proposed in [1]. By using
the minimum mean square error (MMSE) principle, the ZF-
DFD can be extended to the MMSE-DFD [2], offering a com-
promise between interference suppression and noise enhance-
ment. Nevertheless, since such detectors perform worse than
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the MLD, and since the MLD is complex, recent research has
focused on developing high-performance reduced-complexity
MIMO detectors.

For example, in [3], a combined detector (ML-DFD) is
proposed to detect the first few symbols by using a MLD
and the remaining symbols by using a ZF-DFD. In [4], the
sphere decoder (SD) is proposed as a MLD, which has low
complexity with a high signal-to-noise ratio (SNR). A soft
version of SD for coded layered space-time (LST) systems is
proposed in [5]. However, with a low SNR or for systems with
a large number of transmit antennas, the SD complexity can
be high. The Chase decoder for linear block codes has been
adopted for MIMO detection in [6]. The performance of the
Chase detector varies between those of ML and ZF-BLAST.
For instance, the Chase detector achieves a diversity order of 1
or N in an N ×N system, but nothing in between. In [7], the
group detector, originally proposed for code-division multiple-
access (CDMA) systems [8], is applied to MIMO detection.
The group detector still needs an exhaustive search in each
group. A new DFD BLAST algorithm is proposed in [9]. The
diversity order of this detector is limited to one, but it can
achieve different SNR gains. Moreover, linear detectors using
the relaxation approach have also been developed. For CDMA
systems, a generalized MMSE (GMMSE) detector is proposed
[10], where the binary phase shift-keying (BPSK) vectors
are relaxed so that they lie inside the smallest hypersphere
containing the unit hypercube. In [11], a tighter relaxation is
used to develop a constrained least squares (CLS) detector for
orthogonal frequency division multiplexing (OFDM) / spatial
division multiple access (SDMA) systems employing unitary
signal constellations. A similar detection problem also arises
for systems over both scalar and vector frequency selective
channels [12]–[14].

This paper develops a unified detection framework for
spatial multiplexing systems such as the V-BLAST. We refor-
mulate the MIMO detection problem as a set of overlapping
subdetection problems; the feedback decoder of Heller [15] for
convolutional codes is then extended to the new generalized
feedback MIMO detector (GFD) with three characteristic para-
meters: window size, step size and branch factor. Although the
subdetection problems can, of course, be solved by exhaustive
search, we propose using Schnorr and Euchner’s SD (SESD)
for improved computational efficiency [16]. With different pa-
rameter values, appropriate channel matrix ordering and sub-
detectors, the GFD provides various performance-complexity
tradeoffs and also yields many well-known algorithms such
as the ZF-BLAST [1], the SD [4], the combined ML and ZF-
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DFD [3], the B-Chase detector [6], and the group detector
[7], [8] as special cases. Moreover, all these detectors can be
explained as tree search algorithms. If linear subdetectors are
employed, the GFD also generalizes the L-Chase detector in
[6]. A reduced-complexity shared computation technique is
also proposed, ensuring the GFD complexity varies between
those of the ZF-DFD and the MLD. Using the union bound
(UB) on the symbol error probability, we analytically derive
the diversity order and SNR gain of the GFD. For example, the
diversity order of the GFD varies between 1 and N . Extensive
simulation results are also provided.

This paper is organized as follows. Section II describes
the system model and reviews feedback decoding. Section
III develops the new generalized feedback detector and the
computation-sharing technique. Section IV analyzes the diver-
sity order and SNR gain of the GFD. The simulation results
and conclusions are given in Sections V and VI.

Notation: Bold symbols denote matrices or vectors.
(·)T ,(·)H and (·)∗ denote the transpose, conjugate transpose
and conjugate, respectively. (·)† denotes the pseudo-inverse.
‖(·)‖2 is the 2-norm of (·). E{(·)} is the expectation of (·).
P [(·)] is the probability of (·). The set of all complex K × 1
vectors is denoted by CK . A circularly complex Gaussian
variable with mean μ and variance σ2 is z ∼ CN (μ, σ2). Ac

denotes the complement event of A. The N×N identity matrix
is denoted by IN . The Matlab notation is used to represent the
elements of a vector.

II. SYSTEM MODEL AND FEEDBACK DECODING

A. Problem formulation

We consider a spatial multiplexing n transmit antenna and
m receive antenna MIMO system. The input bit stream is
demultiplexed into n independent streams which are modu-
lated by the same complex constellation Q. We consider a rich
scattering flat-fading MIMO channel. The baseband received
signals at a given discrete time instant can thus be written as

r = Hx + n, (1)

where x = [x1, . . . , xn]T , xi ∈ Q is the transmitted signal
vector, r = [r1, . . . , rm]T , ri ∈ C is the received signal
vector, H = [hi,j ] ∈ Cm×n is the channel matrix, and
n = [n1, . . . , nm]T , ni ∈ CN (0, σ2

n) is an additive white
Gaussian noise (AWGN) vector, and ni’s are independent and
identically distributed (i.i.d.), as are the components of H; i.e.,
hi,j ∼ CN (0, 1).

The channel is known to the receiver, and the MLD is given
by

x̂ = arg min
x∈Qn

‖r − Hx‖2. (2)

Due to the discrete alphabet Q, linear detectors such as least-
squares detectors generally do not give the optimal solution.
If Q is a subset of the integer set Z , (2) is known as the
closest vector problem (CVP) in lattice theory and is known
to be NP-hard [17], [18]. The exhaustive search for (2) has
a complexity exponential in n. We assume that the number
of transmit antennas is less than or equal to the number of
receive antennas (n ≤ m). If n > m, the system becomes

rank-deficient, and our proposed GFD may be extended to
this case via the method in [19].

For practical purposes, the MLD problem (2) is often
transformed by column reordering so that initial detector
decisions will be as error free as possible. Column reordering
can be by using V-BLAST or other ordering schemes [2], [4],
and the resulting channel matrix is G = HΠ, where Π is
the column permutation matrix. Let the QR factorization of
G = QR, where R is an n × n upper-triangular matrix, and
Q is unitary. Eq. (2) is equivalent to

x̂ = arg min
x∈Qn

‖y − Rx‖2, (3)

where y = QHr. Eq. (3) is the basis for our GFD and other
detectors [1], [3], [4], [6].

B. Feedback decoding

Three classical decoding algorithms are known for convo-
lutional codes [20]: Viterbi decoding, sequential decoding and
feedback decoding. Heller’s feedback decoder [15] sacrifices
performance in exchange for complexity reduction. However,
to the best of our knowledge, has not been applied yet
to MIMO detection. Our generalization of this decoder not
only provides a unified framework for describing virtually all
existing MIMO detectors, but also enables new ones.

In binary systems, Heller’s feedback decoder makes a hard
decision on (j + 1)-th bit based on metrics computed from
stage (j + 1) to stage (j + w), where w is a positive integer.
The decoder then proceeds to the (j + 2)-th bit, and metrics
computed from stage (j + 2) to stage (j + 1 + w) are used to
make a hard decision. The same procedure is repeated for all
the bits. A smaller w requires less complexity and memory,
but results in a larger performance loss.

We next show how Heller’s decoder can be adapted for
MIMO detection.

III. GENERALIZED FEEDBACK DETECTOR

A. Basic algorithm with one parameter

The GFD is now developed for (3). For simplicity, a single
parameter case is treated first. The first parameter to be
considered is window size w, which is a preselected positive
integer. The cost metric to be minimized in (3) can be written
as

n∑
i=1

⎛
⎜⎝
∣∣∣∣∣∣yi −

n∑
j=i

ri,jxj

∣∣∣∣∣∣
2
⎞
⎟⎠ , (4)

where ri,j is the (i, j)-th entry of matrix R. Since R is upper-
triangular, the i-th term in (4) depends only on xi, . . . , xn,
1 ≤ i ≤ n. The detector starts from xn. In the k-th step,
using the hard decisions x̂i, n − k + 1 < i ≤ n, the detector
makes a decision on xn−k+1 based on metrics computed from
yn−k−w+2 to yn−k+1. We first determine the subvector x(k) =
[xn−k−w+2, . . . , xn−k+1]T by using (5).

In principle, an exhaustive search can solve (5), and the
resulting x̂(k) contains w hard decisions. However, we discard
w − 1 of them in order to improve the overall error rate.
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x̂(k) = arg min
x(k)∈Qw

n−k+1∑
i=n−k−w+2

⎛
⎜⎝
∣∣∣∣∣∣yi −

n−k+1∑
j=i

ri,jxj −
n∑

j=n−k+2

ri,j x̂j

∣∣∣∣∣∣
2
⎞
⎟⎠ (5)

Consequently, the hard decision on xn−k+1 is made to be
x̂n−k+1 = x̂(k)(w), where x̂(k)(w) denotes the w-th element
in x̂(k). The same procedure is performed for xk−1 based on
the metric computed from yk−w to yk−1. The GFD can also
be considered as a sliding window detector of size w, making
a decision on each xk based on the minimum metric within the
window. Note that this version of the GFD which has only one
parameter (namely, the window size) is essentially identical to
Heller’s original feedback decoder.

At this point, it is worth mentioning several special cases
of the GFD. When the window size is unity (w = 1), GFD
reduces to the ZF-DFD or the V-BLAST detector. When the
window size increases to n, GFD becomes equivalent to the
MLD. When the window size varies between 1 and n, the
performance of the GFD is between those of the MLD and
the ZF-DFD.

B. Two additional parameters

The above GFD in now generalized in two steps. First, the
detection process is divided into K stages, and the window
size can (possibly) change in each stage. So the constant
parameter w is replaced by the set {w1, w2, . . . , wK}. Second,
the number of hard decisions made in the kth stage is set to
sk (step size). That is, instead of making a single decision at
each stage, hard decisions x̂lk−sk+1, . . . , x̂lk are made at the
k-th stage, where lk = n−∑k−1

k′=1 sk′ and sk′ is the step size
at the k′-th stage. The subvector x(k) = [xlk−wk+1, . . . , xlk ]T

is detected by using

x̂(k) = arg min
x(k)∈Qwk

lk�
i=lk−wk+1

�
�
������yi −

lk�
j=i

ri,jxj −
n�

j=lk+1

ri,j x̂j

������
2�
� ,

(6)
where wk is the window size in the k-th stage. Hard decisions

are made as [x̂lk−sk+1, . . . , x̂lk ]T = x̂(k)(wk − sk + 1 : wk).
Proceeding to the (k+1)-th stage, the window size is changed
to wk+1. The group of symbols xlk+1−sk+1+1, . . . , xlk+1 is
decided in this stage. If the detector has K stages,

∑K
k=1 sk =

n. The basic algorithm with different wk and sk is illustrated
in Fig. 1, where the shadowed regions correspond to hard
decisions.

In (6), sk hard decisions are made at the k-th stage.
However, if this number is large, the overall error performance
degrades rapidly. To overcome this problem, we suggest one
more generalization of the GFD. The key idea is to generate
a list of candidates for x(k) that minimize (6), instead of
returning the best candidate. The size of the list is bk, named
the branch factor. For example, for k = 1, generate b1

best candidates minimizing (6) and store the corresponding
different postfix vectors x(1)(w1 − s1 + 1 : w1) in a list L1

with q1 elements. Note that 1 ≤ q1 ≤ b1 because there may
be repeated postfix vectors. For each [x̃n−s1+1, . . . , x̃n]T in
L1, the candidate list L2 in the second stage is generated. The

w1

w2
s1

s2

wK

sK

Fig. 1. Basic algorithm illustration of the GFD with different wk and sk .

same procedure is performed iteratively. Note that bk may vary
in different stages. This algorithm in fact shrinks the search
space from Qn to a new space A(w, s, b), which depends on
the window size, step size and branch factor. The detection
problem is then

x̂ = arg min
x∈A(w,s,b)

‖y − Rx‖2
. (7)

If bk = 1 for k = 1, . . . ,K, (7) reduces to the detector in the
second case. If bk = 1, sk = 1 and wk = w, (7) reduces to
the original feedback detection algorithm. Note in the K-th
stage, bK = 1 and sK = wK as imposed by the end state
condition.

Both (6) and (7) entail an exhaustive search in a reduced
space. The SD [4] efficiently solves (6) and (7) without the
exhaustive search. In particular, Schnorr and Euchner’s SD
(SESD) [16] removes the dependence on the initial radius and
hence may be preferred. When bk �= 0, the list sphere decoder
(LSD) [21] may also be used to create the candidate list.

Clearly, if wk = 1, sk = 1 and bk = 1, the GFD reduces
to the ZF-DFD [1], and if wk = n, sk = n and bk = 1, the
GFD is equivalent to solving the MLD via the SD [4]. When
w1 = p, wk = 1 (k > 1), s1 = p, sk = 1 (k > 1) and
bk = 1, the GFD reduces to a combination of the MLD and
the ZF-DFD [3]. When wk = 1, sk = 1, b1 = q and bk = 1
(k > 1), the GFD becomes the B-Chase detector proposed
in [6] by using a different column permutation matrix. When
wk = sk, bk = 1 and MLD is used as the subdetector, the GFD
becomes the group detector [7], [8]. Table I summarizes the
relationship between these detectors and the GFD. Different
detectors are also characterized by the subdetector used in
each stage. For example, all these detectors use an exhaustive
search for subdetection problems. Clearly, all these exhaustive
searches can be replaced by SDs, as in our GFD framework.

Remarks:
• The proposed GFD uses an SD for the subproblem (6) in

each stage. Of course, the complexity further reduces if a
suboptimal detector such as LS, MMSE or GMMSE [10],
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TABLE I

SPECIAL CASES OF THE GENERALIZED FEEDBACK DETECTOR.

Detector Window size wk Step size sk Branch factor bk

ZF-DFD wk = 1 sk = 1 bk = 1
SD wk = n sk = n bk = 1

ML-DFD
w1 = p,

wk = 1, k > 1
s1 = p,

sk = 1, k > 1
bk = 1

B-Chase wk = 1 sk = 1
b1 = q,

bk = 1, k > 1
Group detector wk = sk wk = sk bk = 1

or CLS [11] is used in each stage. More generally, the
GFD may flexibly employ K1 SDs and K − K1 linear
detectors. For example, as shown in Section IV, since
reliable detection of the first few stages is critical to the
overall system performance, they can employ the SD,
with remaining stages using linear detectors to reduce
the overall complexity. For example, if w1 = s1 = 1,
w2 = s2 = n − 1, b1 = q, and b2 = 1, and an SD is
used in the first stage, and a linear detector is used in the
second stage, our GFD reduces to the L-Chase detector
in [6]. Our GFD thus generalizes [6] and provide flexible
complexity and performance tradeoffs.

• Our proposed generalizations involving step size and
branch factor parameter can be adapted in Heller’s feed-
back decoder as well. That would result in a new class
of decoders for convolutional codes. With appropriate
w, s, b, the GFD can also be used for candidate-list gener-
ation in the MIMO system capacity-achieving algorithm
in [21].

• The detector in [9] is a special case of our GFD with
unit step size. The diversity order of the detector [9] is
only one, but it can achieve different SNR gains.

C. Tree interpretation

Many MIMO detectors [1], [3], [4], [6] are equivalent to a
tree search. The detectors traverse through a |Q|-ary tree of n
levels, where |Q| is the cardinality of constellation Q. Except
for the leaf nodes, |Q| branches stem from each node, and
each branch is labeled by an element from Q. A node at the
k-th level is assigned a metric,

mk(xk) =

∣∣∣∣∣∣yn−k+1 −
n∑

j=n−k+1

rn−k+1,jxj

∣∣∣∣∣∣
2

, (8)

where xk = [xn−k+1, . . . , xn]T are the symbols labeling the
path from the root to this node. The accumulated path metric
associated with path xk is thus defined as

c(xk) =
n∑

i=n−k+1

mi(xi) =
n∑

i=n−k+1

∣∣∣∣∣∣yi −
n∑

j=i

ri,jxj

∣∣∣∣∣∣
2

. (9)

The MLD performs an exhaustive tree search by computing
the accumulated path metric (9) for all possible tree paths from
the root to leaf nodes. The path with a minimum accumulated
metric is output as the ML solution.

The complexity of the MLD is reduced by the SD [4], which
explores only a subset of the tree by discarding nodes that
cannot lead to the MLD solution. In the SESD, the processing
order depends on the accumulated metric. Thus, the child node
with a minimum accumulated metric is expanded first. This
ordering ensures that whenever the SESD reaches a leaf node,
its path cost is as small as possible, and thus the optimal path
is found as rapidly as possible.

Our proposed GFD expands only a set of partial trees
instead of the full tree in the MLD. At the k-th stage,
for xlk , . . . , xn, the GFD searches through a wk level tree
stemming from xlk . The qk best partial paths from the root to
the leaf nodes of the partial tree with a minimum accumulated
metric are chosen, where qk is the size of the candidate list.
The xlk−1, . . . , xlk−sk

symbols are chosen corresponding to
each partial path. The window shifts sk symbols, and a partial
tree is searched again. In fact, our GFD forms a reduced tree
with K levels. At the k-th level, there are qk branches from
a node, which is assigned a metric,

m̃k(xk) =
lk−1∑

i=lk−sk

∣∣∣∣∣∣yi −
n∑

j=i

ri,jxj

∣∣∣∣∣∣
2

, (10)

where xk = [xlk−sk
, . . . , xn]T are the symbols labels on the

path from the root to this node. The SD and DFDs can be
applied to the reduced tree. If bk = 1, the GFD reduces to
ZF-DFD, or the SD can be used to search through the new
tree.

Fig. 2 illustrates the GFD on a tree with 4 levels (i.e.,
n = 4) and binary phase shift keying (BPSK). The left
side is the full tree expanded by an exhaustive search. The
GFD parameters are w1 = 3, s1 = 2 and b1 = 2. An
exhaustive search or LSD is used to traverse the first partial
tree; [x4, x3, x2]T = {[+1,+1,−1]T , [−1,+1,+1]T } are the
b1 subvectors that make the partial accumulated metric from
x4 to x2 a minimum. For each subvector, [x4, x3]T is stored
in a list: L1 = {[+1,+1]T , [−1,+1]T }. The b1 elements form
b1 branches in the new tree in the right side of Fig. 1. In the
second stage, the window is shifted by s1 = 2 to the second
rectangle, and the window size, step size and branch factor are
changed to s2 = w2 = 2 and b2 = 1. Therefore, the original
4-level tree with 16 leaf nodes is reduced to a 2-level tree with
2 leaf nodes by using the GFD. The SD or the SESD can be
used to find the path with a minimum accumulated metric in
the reduced tree. The corresponding path of the new tree is the
output sequence. The ZF-DFD expands only a single branch
tree (see Fig. 2 (c)).
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Fig. 2. Comparison of exhaustive search, GFD and ZF-DFD in tree
representation for n = m = 4 and BPSK.

The B-Chase detector [6] with list size q and a ZF-
DFD subdetector forms a 2-level tree with q leaf nodes; an
exhaustive search will find the minimum path metric in the
tree.

Our GFD forms different trees with different parameters
wk, sk and bk. Different parameter sets provide different
performances and complexities (Section IV).

D. Computation-sharing technique

The simple case with bk = 1 is considered first. The
discussion can be readily extended to other cases. A detailed
complexity analysis is given in Section IV, Subsection B.

The basic GFD constitutes K − 1 SDs and a ZF-DFD on
a wK level tree. The complexities of the SD and the DFD
for an n × n system are denoted by CSD(n) and CDFD(n),
respectively. Thus, the complexity of the GFD can be written
as

CGFD(n) =
K−1∑
k=1

CSD(wk) + CDFD(wK), (11)

where the last term is due to the use of the DFD in the last
stage.

In the high SNR, CSD(wk) � w2
k [17], [18]. In this region,

it is possible that the complexity of the GFD exceeds that
of the SD. To eliminate this possibility, we introduce a shared
computation technique that eliminates redundant computations
in the basic GFD. In the k-th stage, if wk �= sk, there will
be wk − sk symbols’ overlap between the k-th window and
the (k + 1)-th window. The basic GFD uses two SDs in the
two windows. However, due to the overlap, some nodes of
the partial tree in the (k + 1)-th stage have been visited by
the sphere decoder in the k-th stage. We thus propose to
store all the metrics for the visited nodes in the k-th SD

to avoid repeated computations. The tree is a suitable data
structure for the visited nodes storage since the SD forms a
tree during the search. When using the SD for the (k + 1)-th
partial tree, the SD traverses the search tree and the storage
tree at the same time. Only the subtree corresponding to the
selected [xlk−sk+1, . . . , xlk ]T is kept, and the other subtrees
are pruned. If the node has not been visited as indicated in
the storage tree, the branch metric is computed, and the node
is added to the storage tree.

IV. PERFORMANCE AND COMPLEXITY ANALYSIS

A. Performance analysis

The case of the equal number of transmit and receive
antennas is considered. In the GFD, we assume wk = w,
sk = s and bk = 1. The analysis can be easily extended
to n �= m and general GFDs. To make the performance
analysis tractable, a system without channel matrix ordering
is analyzed. Since any reasonable channel matrix ordering
improves the detector performance, our analysis gives an upper
bound on the error rate and hence a lower bound on the
performance.

To guide the reader, it is worthwhile to mention the basic
theme of the whole performance analysis. First of all, the
diversity order and SNR gain are meaningful only in the high
SNR region. In this region, a detector’s error probability, say,
Ps, has the following approximate behavior as a function of
the SNR:

Ps ≈ [αSNR]−β

where α is the SNR gain and β is the diversity order. To find
Ps in this format, the conditional probabilities are expressed
in terms of the Q-function and averaged over the appropriate
distribution.

From [22], the squared norm of the entries of upper-
triangular matrix R have χ2 distribution with different degrees
of freedom, specifically, |ri,i|2 ∼ χ2(2i), for i = 1, . . . , n and
|ri,j |2 ∼ χ2(2), for j > i, where χ2(k) denotes the chi-
squared distribution with k degrees of freedom. Let v = Qn,
where Q is defined as in (3). As Q is unitary, v is also an
i.i.d. complex Gaussian vector with mean zero and variance
σ2

n.
In the first stage of the GFD, ML decoding is performed

with y1 = R1x1 + v1 to detect x1 = [xn−w+1, . . . , xn]T ,
where y1 = [yn−w+1, . . . , yn]T , v1 = [vn−w+1, . . . , vn]T and
R1 = R(n−w+1 : n, n−w+1 : n). Denote the block error
event in the k-th stage by Ek. The union bound for the block
error probability of x1, Pb(E1), is given by

Pb(E1) ≤ E
R1

E
x

(1)
1

⎡
⎢⎣ ∑

x̂1,x
(2)
1

P
(
x̂1 = x(2)

1 |x(1)
1 ,R1

)⎤⎥⎦ , (12)

where x(2)
1 are all the possible vectors other than x(1)

1 , and

P
�
x̂1 = x

(2)
1 |x(1)

1 ,R1

�
= Q

	
���R1

�
x

(2)
1 − x

(1)
1

����2

/2σ2
n

�
,

(13)
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where Q(·) is the Q-function. Let H2 be a w × w matrix
with each entry complex Gaussian and its QR decomposi-
tion be H2 = Q2R2. Since R2 has the same distribution
as R1, ‖R2

(
x(2)

1 − x(1)
1

)
‖2 has the same distribution as

‖R1

(
x(2)

1 − x(1)
1

)
‖2. Since Q2 is unitary, the norm can be

rearranged as∥∥∥R2

(
x(2)

1 − x(1)
1

)∥∥∥2

=
∥∥∥Q2R2

(
x(2)

1 − x(1)
1

)∥∥∥2

=
∥∥∥H2

(
x(2)

1 − x(1)
1

)∥∥∥2

= a1

∥∥∥x(2)
1 − x(1)

1

∥∥∥2

, (14)

where a1 ∼ χ2(2w), and (14) follows from the fact that a
linear combination of independent Gaussian variables is also
Gaussian. Eq (13) thus reduces to

P
(
x̂1 = x(2)

1 |x(1)
1 , a1

)
= Q

(√
a1

∥∥∥x(2)
1 − x(1)

1

∥∥∥2

/2σ2
n

)
.

(15)
By using the Chernoff bound for the Q-function [20], Pb(x1)
can be bounded as

Pb(E1) ≤ E
a1

E
x

(1)
1

⎡
⎢⎣∑

x
(2)
1

exp
(
−a1

∥∥∥x(2)
1 − x(1)

1

∥∥∥2

/4σ2
n

)⎤⎥⎦
= E

x
(1)
1

∑
x

(2)
1

1(
1 +

�
�
�x

(2)
1 −x

(1)
1

�
�
�

2

4σ2
n

)w

≤
( |Q|

1 + d2
min/4σ2

n

)w

,

(16)

where dmin is the minimum distance between x(1)
1 and

x(2)
1 . In the high SNR, a block error results from a single

symbol error in x1. Therefore, the bound for the symbol error
probability is Ps(xi) = Pb(E1)/w, i = n − s + 1, . . . , n,
and the bound for the block error probability of
x̃1 = [xn−s+1, . . . , xn]T is Pb(Ẽ1) = Pb(E1)s/w, where
Ẽ1 is the block error event in x̃1. In the k-th stage, let
x̃k = [xn−(k−1)s−w+1, . . . , xn−(k−1)s]T , and denote Ẽk

as the block error event in x̃k. The probability for the

event Ek conditional on
(
∪k−1

i=1 Ẽi

)c

is equal to the error
probability of ML decoding of xk from yk = Rkxk + vk,
where xk = [xn−(k−1)s−w+1, . . . , xn−(k−1)s]T ,
yk = [yn−(k−1)s−w+1, . . . , yn−(k−1)s]T , vk =
[vn−(k−1)s−w+1, . . . , vn−(k−1)s]T , and Rk = R(n − (k −
1)s−w+1 : n−(k−1)s, n−(k−1)s−w+1 : n−(k−1)s).
yk is obtained by cancelling the contribution of x̃i,
i = 1, . . . , k − 1, from y. The union bound for

P
(
Ek|

(
∪k−1

i=1 Ẽi

)c)
can thus obtained as

P
(
Ek|

(
∪k−1

i=1 Ẽi

)c)
≤ E

x
(1)
k

⎡
⎢⎣∑

x
(2)
k

P
(
x̂k = x(2)

k |x(1)
k ,Rk

)⎤⎥⎦ ,

(17)
where x(2)

k are all the possible vectors other than x(1)
k , and

P
�
x̂k = x

(2)
k |x(1)

k ,Rk

�
= Q

	
���Rk

�
x

(2)
k − x

(1)
k

����2

/2σ2
n

�
.

(18)
Let H2 be a (k−1)s+w×(k−1)s+w matrix with each entry

complex Gaussian and its QR decomposition be H2 = Q2R2.
Define two new vectors x̃(1)

k = [(x(1)
k )H ,0(k−1)s×1]T and

x̃(2)
k = [(x(2)

k )H ,0(k−1)s×1]T . Since R2((k − 1)s + 1 : (k −
1)s+w, (k−1)s+1 : (k−1)s+w) has the same distribution

as Rk, and ‖R2

(
x̃(2)

k − x̃(1)
k

)
‖2 has the same distribution

as ‖Rk

(
x(2)

k − x(1)
k

)
‖2. Since Q2 is unitary, similar to (14),

we have∥∥∥R2

(
x̃(2)

k − x̃(1)
k

)∥∥∥2

=
∥∥∥Q2R2

(
x̃(2)

k − x̃(1)
k

)∥∥∥2

=
∥∥∥H2

(
x̃(2)

k − x̃(1)
k

)∥∥∥2

= ak‖x(2)
1 − x(1)

1 ‖2, (19)

where ak is a random variable, and ak ∼ χ2(2(k−1)s+2w).
We have

P
(
Ek|

(
∪k−1

i=1 Ẽi

)c)
≤
( |Q|

1 + d2
min/4σ2

n

)w+(k−1)s

, (20)

which is similar to (16). Using the total probability the-
orem [22] and noting that the events (∪k−1

i=1 Ẽi)c, Ẽk−1 ∩
(∪k−2

i=1 Ẽi)c, . . . , Ẽ1 are exclusive, we have (21), where the
inequality (a) is obtained by assuming that given an error
event on Ẽi, 1 ≤ i < k, the event Ek has probability 1. The
equality (b) comes from the Bayes’ theorem [22]. By using the
chain rule for conditional probability, (b) can be computed in
closed form. However, it is complicated and does not provide
an insight into the diversity order and SNR gain of the detector.
Note that with a high SNR, P

(
∩j−1

i=1 Ẽc
i

)
is close to 1. We

can thus further simplify Pb(Ek) as

Pb(Ek) ≤P
(
Ek|

(
∪k−1

i=1 Ẽi

)c)
+

k−1∑
j=1

P
(
Ẽj | ∩j−1

i=1 Ẽc
i

)
.

(22)

Similarly, with a high SNR, we have

P (Ẽj | ∩j−1
i=1 Ẽc

i ) =
s

w
Pb(Ej | ∩j−1

i=1 Ẽc
i ) =

s

w
Pb(E1)εj−1,

(23)

where ε =
(

|Q|
1+d2

min/4σ2
n

)s

. Substituting (23) into (22), we can
obtain

Pb(Ek) ≤Pb(E1)εk−1 +
s

w
Pb(E1)

(
1 + ε + · · · + εk−2

)
≤ s

w
Pb(E1)(1 + δ),

(24)

where δ =
∑k−2

i=1 εi + w
s εk−1. With a high SNR, where δ is a

small positive number, (s/w)Pb(E1) dominates (24). There-
fore, the average symbol error probability can be approximated
as

Ps =
1
n

(
s

w
Pb(E1) +

s

w

K−1∑
k=2

Pb(Ek) + Pb(EK)

)

� 1
n

(
2s

w
+ (K − 2)

s2

w2

)( |Q|
1 + d2

min/4σ2
n

)w

.

(25)
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Pb(Ek) =P
(
Ek|Ẽ1

)
P
(
Ẽ1

)
+ P
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Ek|Ẽ2 ∩ Ẽc

1

)
P
(
Ẽ2 ∩ Ẽc

1

)
+ · · ·

+P
(
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P
(
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)c)
+P

(
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(
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P
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i=1 Ẽi
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a≤P
(
Ẽ1
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+ P

(
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1

)
+ · · · + P

(
Ek|

(
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i=1 Ẽi

)c)
P
((

∪k−1
i=1 Ẽi

)c)
b=

k−1∑
j=1

P
(
Ẽj | ∩j−1

i=1 Ẽc
i

)
P
(
∩j−1

i=1 Ẽc
i

)
+ P

(
Ek|

(
∪k−1

i=1 Ẽi

)c)
P
(
∩k−1

i=1 Ẽc
i

)
,

(21)

Eq. (25) shows that the GFD has a diversity order w and that
different values for the step size and window size provide
different SNR gains. The union bound (25) is loose, and the
actual SNR gain may be different. From further performance
analysis, we can show that if the wk’s are different, the
performance of the GFD is limited by the first window size,
and that the diversity order is w1. The simulations show that
if bk < |Q|, different bk’s achieve different SNR gains, while
choosing bk = |Q| attains a higher diversity order. However,
the case of bk > 1 is not amenable to exact analysis.

B. Computational complexity analysis

The computational complexity may be measured in terms of
the best, worst, or average-case complexity [23]. The average
complexity of the SD derived in [17], [18] is exponential with
n but low with a high SNR. The SD has been realized on VLSI
circuits in [24], [25]. For VLSI circuits implementation, the
throughput is limited by the worst-case complexity. We next
derive the worst-case complexity of the GFD. The average
complexity of the GFD is difficult to derive analytically and
is determined via simulation (Section V).

We assume that elements in both R and Q are complex. A
single complex addition and multiplication take 2 and 7 flops,
respectively. In the first stage, since R is upper triangular, the
number of flops is

C1(w1) =
w1∑
i=1

|Q|i[9(w1 + 1 − i) + 5] = 5
|Q|w1+1 − |Q|

|Q| − 1

+ 9
|Q|w1+2 − (w1 + 1)|Q|2 + w1|Q|

(|Q| − 1)2
. (26)

For the k-th stage (1 < k < K), the accumulated path
metrics for all the combinations of the first tk = wk−1−sk−1

variables have been computed in the (k − 1)-th stage. Due to
the computation sharing, the number of flops in the k-th stage
is

Ck(wk) =
wk∑

i=tk+1

|Q|i[9(w1 +1− i)+5] = C1(wk)−C1(tk).

(27)
In the K-th stage, a hard decision is applied, and the number
of flops is CK(wK) =

∑wK

i=1(9i + 3) = 9wK(wK+1)
2 + 3wK .

Therefore, the total number of flops for the GFD is given by

CGFD =
K∑

k=1

k−1∏
i=1

biCk(wk). (28)

For the special case of wk = w, sk = s and bk = 1, we have

CGFD =C1(w) + (K − 2)(C1(w) − C1(w − s)) + CK(wK)
≤2C1(w) + (K − 2)(C1(w) − C1(w − s))

=2C1(w) +
(

n − wK

s
− 2
)

(C1(w) − C1(w − s)) ,

(29)

where we have used the fact that w ≥ wK and CK(w) ≤
C1(w). Interestingly, (26) and (29) indicate that the worst-
case complexity of the GFD is exponential in window size.
Hence, increasing the diversity order of the GFD also increases
the worst-case complexity exponent. When both n and w
are large, C1(w) scales as |Q|w and the second term in the
last equality in (29) scales as n|Q|w(1−|Q|−s)

s , which is a
decreasing function in s when |Q| > 1 and s ≥ 1. Thus, (29)
suggests that decreasing the step size increases the complexity
but does not change the exponent. This finding agrees with
that of the performance analysis, that changing the step size
changes only the SNR gain.

V. SIMULATION RESULTS

The GFD is simulated for an uncoded MIMO system
with 8 transmit and 8 receive antennas over a flat Rayleigh
fading channel. Comparisons are made with the V-BLAST
and the SD in terms of both performance and complexity.
GFD[α, β, γ] denotes a GFD with a window size α, step size
β, and branch factor γ. The V-BLAST column reordering is
applied in all the detectors. The MATLAB V5.3 command
”flops” is used to count the number of flops. Only the flops of
the search algorithm are counted, and the preprocessing stage
is ignored.

Figs. 3 and 4 show the BER and average number of flops
for different detectors in a BPSK modulated system. In the
GFD, we set wk = w, sk = s and bk = 1. The SESD [16]
is used with an infinite initial radius. The effect of window
size and step size is investigated. Clearly, with different
window sizes, different diversity orders are achieved (Fig. 3).
GFD[2,1,1] has a 3-dB gain over GFD[2,2,1] at BER=10−4.
GFD[4,1,1] performs 0.5 dB better than GFD[4,2,1] and 1.5
dB better than GFD[4,4,1] at BER=10−5. Therefore, the SNR
gain diminishes with the increasing step size. With different
parameter settings, the GFD also has different complexity
levels (Fig. 4). The complexity of the GFD varies between
those of the V-BLAST and the SD. In high SNRs, the average
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Fig. 3. BER comparison of different detectors in an 8 × 8 BPSK MIMO
system. In the GFD, we set wk = w, sk = s and bk = 1.
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Fig. 4. Average complexity comparison of different detectors in an 8 × 8
BPSK MIMO system. In the GFD, we set wk = w, sk = s and bk = 1.

complexity is roughly the same for all these detectors. With
a low SNR, the smaller the step size, the higher complexity
should be. As well, the average complexity is decreased by
increasing the window size with the same step size.

Figs. 5 and 6 compare the BER and average number of
flops for different detectors in a BPSK system. In the GFD,
we also set wk = w, sk = s but bk ≥ 1. Instead of using the
SESD [16], the initial radius is chosen to be proportional to the
noise variance as in [17]. If no solution is found with the initial
radius, the radius repeatedly doubled until a solution is found.
This method of radius selection is the best method because
the SESD may expand redundant branches in the reduced
tree of the GFD, and each branch needs a high complexity
to increase the window size and step size. With the same
window size, the diversity order of the GFD is the same,
but a different SNR gain is achieved. GFD[2,2,2] has a 5-
dB gain over GFD[2,2,1] at BER= 10−3. The performance
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Fig. 5. BER comparison of different detectors in an 8 × 8 BPSK MIMO
system. In the GFD, we set wk = w, sk = s but bk ≥ 1.
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Fig. 6. Average complexity comparison of different detectors in an 8 × 8
BPSK MIMO system. In the GFD, we set wk = w, sk = s but bk ≥ 1.

gap between GFD[3,3,1] and GFD[2,2,2] reduces to 3 dB
at BER= 10−3. GFD[4,4,4] has only a 0.5 dB gain over
GFD[4,4,2] at BER= 10−4. GFD[4,4,4] performs close to the
SD. If the window size is increased, the SNR gain achieved
by increasing the branch factor also diminishes, but with the
same window size, the SNR gain achieved by increasing the
branch factor is larger than that achieved by decreasing the
step size. With a different window size, step size and branch
factor, the average complexity is also different. With a high
SNR, the complexity of all the detectors is the same. However,
with a low SNR, due to the use of the noise variance’s
initial radius, the average complexity approaches the worst-
case complexity. The complexity of GFD[4,3,2] is higher than
that of GFD[4,4,2] because the former forms a 3-level tree
while the latter forms only a 2-level tree. With a low SNR,
GFD[4,4,4] has a lower complexity than the SD but almost
the same performance.
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Fig. 7. BER comparison of different detectors in an 8 × 8 4QAM MIMO
system. In the GFD, we set wk = w, sk = s and bk = 1.

5 10 15 20 25

10
3

10
4

SNR (dB)

A
ve

ra
ge

 n
um

be
r 

of
 fl

op
s

V−BLAST
w=2, s=1
w=2, s=2
w=3, s=1
w=3, s=2
w=3, s=3
w=4, s=1
w=4, s=2
w=4, s=4
SD

Fig. 8. Average complexity comparison of different detectors in an 8 × 8
4QAM MIMO system. In the GFD, we set wk = w, sk = s and bk = 1.

In Figs. 7 and 8, we compare different detectors in a 4-
quadrature amplitude modulation (QAM) system with Gray
mapping and wk = w, sk = s and bk = 1. The SESD [16]
with an infinite initial radius is used. Both the performance
and complexity results are similar to those of BPSK systems.
The SNR gain achieved by decreasing the step size reduces
with the constellation size. For example, for the BPSK system,
GFD[2,1,1] has a 3-dB gain over GFD[2,2,1] at BER=10−4.
However, the SNR gain is reduced to 2.4 dB for 4QAM at
BER=10−3.

Finally, in Figs. 9 and 10, the BER and average number
of flops for different detectors in a 4QAM system with Gray
mapping is shown. The SESD is not used as in Figs. 5 and
6. We fix the window size and step size, and observe the
effect of the branch factor. The performance of the B-Chase
detector [6] is also evaluated. GFD[2,2,2] has a 4-dB gain over
GFD[2,2,1] at a BER of 10−3. GFD[3,3,2] has a 3-dB gain
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Fig. 9. BER comparison of different detectors in an 8 × 8 4QAM MIMO
system. In the GFD, we set wk = w, sk = s but bk ≥ 1.
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Fig. 10. Average complexity comparison of different detectors in an 8 × 8
4QAM MIMO system. In the GFD, we set wk = w, sk = s but bk ≥ 1.

over GFD[3,3,1] at BER=2×10−4. The gain is reduced to 2 dB
with w = 3 and s = 3 at BER=10−4, but all the performance
gaps become constant with a high SNR. GFD[4,4,4] performs
close to the SD. The SNR gain achieved by increasing the
branch factor diminishes with an increase of the constellation
size. The B-Chase detector with q = 3 performs better than
the V-BLAST but much worse than the other detectors. The B-
Chase detector with q = 4 has a significant performance gain
over that with q = 3 and performs identically as GFD[2,2,2]
at SNR= 20 dB. We cannot determine the diversity order of
the B-Chase detector with q = 4 from the SNR region in
Fig. 9, but the ordering in [6] indeed provides a significant
performance gain. The complexity results are similar to those
in Fig. 6. We do not count the complexity of preprocessing
for the B-Chase detector. The complexity of all the detectors
decreases with an increase of the SNR. GFD[4,4,4] has a
lower complexity than the SD but achieves almost the same
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performance. GFD[2,2,2] has a better performance than the
B-Chase detector with q = 4, but with lower complexity,
especially in high SNRs. The GFD appears to achieve a better
performance-complexity tradeoff than the Chase detector [6].

VI. CONCLUSION

We have proposed a unified MIMO signal detection frame-
work by generalizing the classical feedback decoding. The
proposed GFD employs a set of sub-detectors, which can be
chosen depending on performance and complexity constraints.
The GFD performance and complexity vary between those
of SD and V-BLAST. By deriving the union bound for the
symbol error probability of the GFD, we show that the
GFD achieves an arbitrary diversity order between 1 and n
(the number of antennas) and different SNR gains. We also
establish the connection between MIMO detectors and the tree
search algorithms. Moreover, a computation-sharing technique
is proposed to further reduce the complexity. Our proposed
GFD provides a flexible performance-complexity tradeoff for
MIMO detection and can be extended to applications such
as decoding convolutional codes and equalization in MIMO
frequency-selective channels [13]. Interesting further work
could include performance analysis of the GFD when channel
matrix ordering is applied.
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