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A Statistical Pruning Strategy for Schnorr-Euchner Sphere Decoding
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Abstract— The high computational complexity of maximum
likelihood (ML) decoding can impact many applications such
as code division multiple access (CDMA) and multiple-input
multiple-output (MIMO) systems. The sphere decoder (SD) as an
efficient ML decoder has therefore received significant attention
in the wireless research community. This letter presents a new
statistical method to reduce the complexity of the Schnorr and
Euchner sphere decoder (SESD) [1]. The method uses a set of
bounds, which are computed using the conditional probability
based on the minimum metric of the current solution. A lookup
table for the bounds can be computed offline. The proposed
method is effective for any number of antennas with complexity
savings about 50% or more over the conventional SD approach.

Index Terms— MIMO, sphere decoding, closest point, lattice
decoding.

I. INTRODUCTION

IN code division multiple access (CDMA) and multiple
antenna systems, optimum maximum likelihood (ML) de-

coding is, in general, NP-hard [1]. Nevertheless, in many
cases, for a certain range of system parameters such as signal-
to-noise ratio (SNR) and system dimension, the average com-
plexity of some algorithms implementing or approximating
ML decoding is polynomial in system dimensions. This fact
has been shown by theoretical analysis [2] for the basic sphere
decoder (SD) known as the Fincke-Pohst sphere decoder
(FPSD) [3].

Recently, the basic SD has been modified to reduce the com-
putational complexity, specially in low SNR, while keeping
the system performance close to ML. Since the SD involves
a tree search, the complexity reduction requires pruning the
search tree. In [4], two statistical pruning methods have been
proposed for the FPSD that are effective for large dimensions
only. In both methods, instead of a single bound, a set of
bounds is used for metric comparisons at all levels of the
search tree. The more effective method of these two is called
the Increasing Radii Algorithm (IRA).

This letter focuses on pruning methods for the Schnorr
and Euchner SD (SESD). Since the SESD is more efficient
than the basic FPSD [1], it makes sense to develop pruning
strategies for the SESD. The SESD adopts an ordered set for
the search of nodes of each level on the search tree, and this
choice of the search order leads to computational efficiency
improvements over the basic FPSD [1]. In the SESD, the cost
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metric of the current best solution (minimum metric) is used
as a bound during the decoding. To reduce the complexity of
SESD, we propose to limit the node metrics and/or differential
metrics of two successive nodes of the search tree by using
conditional probabilities based on the minimum metric. The
simulation results show that our new statistically pruned (SP)-
SESD reaches the ML performance in any arbitrary SNR
region with a complexity less than other methods including
IRA.

II. SYSTEM MODEL AND SD ALGORITHMS

Consider the equivalent real multiple-input multiple-output
(MIMO) linear model [5]:

r = Hs + z (1)

where r ∈ R
M is the equivalent received vector, z ∈ R

M is the
equivalent additive noise vector, H ∈ R

M×N is the equivalent
channel matrix and s ∈ QN is the equivalent transmitted
vector. The noise components are independent and identically
distributed (i.i.d.) zero-mean Gaussian random variables with
common variance σ2, denoted by N (0, σ2), the channel gains
are i.i.d. N (0, 1/2), and the transmitted signals are selected
from the set Q = {2q−(Q−1)|q = 0, 1, ..., Q−1}. The SNR
per transmitted symbol is defined as SNR = Es/σ2 where Es

is the average energy of the transmitted symbols.
We consider the QR decomposition of the channel matrix,

H = QR, where Q ∈ R
M×N is an orthogonal matrix and

R ∈ R
N×N is an upper triangular matrix with non-negative

diagonal entries. The following equivalent MIMO model is
then obtained:

y = Rs + v (2)

where y = QTr, and v = QTz is an i.i.d. noise vector with
the same statistical properties as z. The ML decoder may be
written as

xML = arg min
x∈QN

‖y − Rx‖2. (3)

(We call ‖y − RxML‖2, the ML metric.)
The SD searches only over lattice points that lie in a hyper-

sphere of radius
√

B to reduce the search space. Thus, it
examines all x ∈ QN that satisfy

‖y − Rx‖2 � B. (4)

The cost metric in (3) may be expanded as

‖y − Rx‖2 = (yN − rN,NxN )2

+ (yN−1 − rN−1,N−1xN−1 − rN−1,NxN )2

+ · · · + c(N) � B . (5)

Since the first term in (5) depends on xN only, the second term
depends on {xN , xN−1} and so on, a tree can be constructed
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with depth N . In the nth level of the tree, each node has a
partial metric (cost) for {xN , ..., xN−n+1} given by

c(n) =

(
yN−n+1 −

N∑
i=N−n+1

rN−n+1,ixi

)2

, n = 1, ..., N

(6)
and therefore the total metric of each nth level node is

C(n) =
n∑

i=1

c(i) , n = 1, ..., N. (7)

For the metric of the actual transmitted vector s, we use cn

and Cn instead of c(n) and C(n) respectively. The total metric
of the actual transmitted vector is

CN = ‖y − Rs‖2 = v2
N + v2

N−1 + v2
N−2 + · · · + v2

1 (8)

= c1 + c2 + c3 + · · · + cN

where vn’s are the elements of v in (2).
The search tree has QN end nodes corresponding to all

possible transmitted vectors. The SD discards unnecessary
nodes by comparing the successive node metrics with the
bound B. Two basic ideas have been proposed for the selection
of B. The first one, the Fincke-Pohst (FP) strategy, is based
on the fact that CN (8) is a central chi-square random variable
with N degrees of freedom, denoted by χ(N,σ2). Thus, B is
selected such that with a high probability, CN is less than B.
With this choice of B, if the algorithm fails to find at least
one end node, B is increased and the algorithm is executed
again. The process is repeated until at least one valid solution
is found. The second strategy for selection of B, the Schnorr-
Euchner (SE) strategy, uses the QR (Babai) point metric as the
initial bound B [1]. The QR point is found by minimizing the
metric terms in (5) successively. Whenever the SESD finds a
new solution with a smaller metric, it is stored as the minimum
cost solution xmin, and the new metric is substituted in Bmin.
The SESD also uses a zigzag search order for xn in (5) which
makes it faster than FPSD (see [1] for more details).

III. STATISTICAL PRUNING

A. Pruning based on node metrics

Statistical pruning uses a set of bounds B =
{B1, ..., Bn, ..., BN} instead of only one bound B, for
node metrics examinations. The nth level node metrics,
C(n)’s, are compared with Bn. Since Cn is a central chi-
square random variable with n degrees of freedom, χ(n, σ2),
one way to choose B is based on the cdf of χ(n, σ2), or
equivalently Bn is chosen so that

Pr [ Cn � Bn ] � P

where P is a predefined probability. Usually P is defined as:

P = Pα � 1 − 10−α , α = 1, 2, ... (9)

This idea is known as the increasing radii algorithm (IRA)
[4]. In the IRA with the FPSD, for a small α, B is computed.
If the decoder fails to find an end node, α is increased and
the algorithm is executed again.

Since the FPSD is less efficient than the SESD [5], we
propose to use the set of bounds B with the SESD, expecting

a decoder with less complexity than IRA with FPSD. The
current minimum cost solution is xmin, and the corresponding
metric is Bmin = ‖y − Rxmin‖2. Since the ML metric
is the minimum achievable metric during the decoding, i.e.
C(N) � Bmin, the following conditional probability is used
to determine B:

Pr [ Cn � Bn |CN � Bmin ] � Pα. (10)

Note that (10) is reduced to IRA when Bmin = ∞.
Since Cn is χ(n, σ2), the conditional probability can be

evaluated as

Pr [ Cn � Bn |CN � Bmin ]

=
Pr [ Cn � Bn , CN � Bmin ]

Pr [ CN � Bmin ]

=

∫ Bn

0

Pr [ CN � Bmin |Cn = y ] fCn
(y) dy

Pr [ CN � Bmin ]

=

∫ Bn

0

Pr [ CN−n � Bmin − y ] fCn
(y) dy

Pr [ CN � Bmin ]

=

∫ Bn

0

FCN−n
(Bmin − y)fCn

(y) dy

FCN
(Bmin)

(11)

where fCn
(y) and FCn

(y) are the pdf and cdf of χ(n, σ2),
respectively. Finally, from (10) and (11) and by a normaliza-
tion, we obtain the following equation that can be used to find
Bn as a function of Bmin:

Pα =
Γ(N

2 )
Γ(n

2 )Γ(N−n
2 )

×

∫ a1

0

∫ a2

0

u
N−n

2 −1y
n
2 −1 exp(−u − y)dudy∫ a3

0

y
N
2 −1 exp(−y)dy

(12)

where a1 = Bn

2σ2 , a2 = Bmin
2σ2 − y

2σ2 , a3 = Bmin
2σ2 and Γ(·) is the

Gamma function. To find the bound set B, one can numerically
solve (12), by using the normalized minimum metric Bmin

2σ2 .

B. Pruning based on differential metric

Another way to reduce the search over the tree is to limit the
node metric increment from one node to its chid node. This
requires a bound, Bd, for the differential metric, c(n), defined
in (6). Similar to (10), when the minimum metric Bmin is
determined, the following conditional probability can be used
to find Bd:

Pr [ cn � Bd |CN � Bmin ] � Pα (13)

Since cn has χ(1, σ2) distribution, the differential bound Bd

can be extracted using equation (12) for n = 1 and normalized
minimum metric Bmin

2σ2 . Since the probability is conditioned
on the minimum metric, Bd must be updated whenever the
minimum metric is changed during the decoding.
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Fig. 1. Symbol error rate and average operations for MIMO(4,4,64) system
using SP-SESD with α = 1, ..., 5.

IV. SIMULATION RESULTS

Since (12) depends on the choice of α and the normalized
minimum metric Bmin

2σ2 , B can be pre-computed for some
discrete values of the normalized minimum metric and α. For
our simulations, we calculated B for α = {1, 2, ..., 5} and
Bmin
2σ2 = {1, 1.5, 2, 2.5, ..., Bmax} where Bmax is calculated

from Pr [ χ(N, 1/2) � Bmax ] � P10. During the decoding,
the minimum metric Bmin is normalized to Bmin

2σ2 , then the set
of bounds corresponding to the �Bmin

σ2 �/2 is loaded and this
set multiplied by 2σ2 is used as B where always BN = Bmin

and Bd = B1. For all simulations, an uncoded MIMO system
with 4 transmit and 4 receive antennas is considered, where the
transmitted symbols are selected from a 82-QAM constellation
(we refer to this system as MIMO(4,4,64)). Considering the
equivalent real system model (1), the channel matrix is H ∈
R

M×N where M = N = 8 and x ∈ {±7,±5,±3,±1}8.
Our simulation results show that pruning with the total

metric (7) or the differential metric (6) have almost the same
performance and complexity for different α. Consequently,
statistical pruning is used with the differential metric and
the SESD, because although both methods have the same
complexity, the use of absolute node metrics needs more
resources (memory) for implementation. Fig. 1 shows the
performance and complexity of MIMO(4,4,64) system, using
statistical pruning with differential metric, for different α.
Since in this case �Bmax� = 64, we used a pre-calculated
vector of 128 bounds for Bd. The simulation results show
that for each α, the SP-SESD algorithm has the ML per-
formance up to a certain SNR. When α is increased, the
complexity of the SP-SESD is increased in low SNR, but

10 12 14 16 18 20 22 24 26 28 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

SNR(dB)

A
ve

ra
ge

 O
pe

ra
tio

ns

SESD
SP−SESD(α=5)
FPSD(α=1,2,...)
IRA(α=0.5,1.5,...)

Fig. 2. Average operations for MIMO(4,4,64) system with different decoding
methods.

still the complexities are close to each other for different
values of α. The interesting point is that for a wide range of
SNR, particularly for SNR�18 dB where the performance is
acceptable for a wireless link, the complexity of the SP-SESD
is almost independent of α.

Fig. 2 shows the average complexity of SP-SESD,
SESD, FPSD and IRA algorithms for the decoding of a
MIMO(4,4,64) system. As expected, in the whole SNR re-
gion, the SP-SESD has the minimum complexity compared
to the others. The simulation results show that the average
complexity of SP-SESD and SESD algorithms are almost 60%
lower than FPSD and IRA at high SNR (SNR�24 dB). Fig.
2 shows that the complexity of the SESD has been reduced
almost 50% in low to moderate SNRs by augmenting with
statistical pruning.

V. CONCLUSION

This letter proposed a statistical pruning method for the
SESD. The method uses a set of bounds which are computed
using the conditional probability based on the minimum metric
of the current solution. A lookup table for the bounds can be
computed offline. The proposed method is effective for any
number of antennas with complexity savings about 50% or
more over the IRA (which is based on the FPSD), which tends
to be effective for large dimensions only [4].
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