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Decoding, Performance Analysis, and Optimal Signal Designs for
Coordinate Interleaved Orthogonal Designs

Dũng Ngo.c Ðào, Member, IEEE, and Chintha Tellambura, Senior Member, IEEE

Abstract— Space-time block codes (STBC) using coordinate
interleaved orthogonal designs (CIOD) proposed recently by
Khan and Rajan allow single-complex symbol decoding and
offer higher data rates than orthogonal STBC. In this paper,
we present the channel decoupling property of CIOD codes. A
new general maximum likelihood method is derived, enabling the
calculation of the symbol pair-wise error probability and union
bound (UB) on symbol error rate (SER). Extensive simulation
results show that the UB is within 0.1 dB from the simulated SER
when SER < 10−2. The UB thus can be used to accurately predict
and optimize the performance of CIOD codes. Furthermore, a
new signal design combining signal rotation and power allocation
is presented for constellations with uneven powers of real
and imaginary parts such as rectangular quadrature amplitude
modulation.

Index Terms— Space-time block codes, coordinate interleaved
orthogonal designs, performance analysis.

I. INTRODUCTION

ORTHOGONAL space-time block codes (OSTBC) [1],
[2] are one of the most attractive space-time coding

techniques to exploit the spatial diversity of the multiple-input
multiple-output (MIMO) fading channels. The channel decou-
pling property of OSTBC implies that maximum likelihood
(ML) detection of a vector of input symbols is equivalent to
solving a set of scalar detection problems, one for each input
symbol with minimal detection complexity. However, the code
rate OSTBC is low when there are more than 2 transmit (Tx)
antenna [1]–[3].

Recently, some alternative code designs have been intro-
duced to improve the code rate of OSTBC, while the low
decoding complexity is maintained. These codes are (1) STBC
using coordinate interleaved orthogonal designs (CIOD) [4]–
[6] and (2) minimum decoding complexity (MDC) quasi-
orthogonal space-time block code (QSTBC) [7], [8]. The two
codes are single (complex) symbol decodable. The maximal
code rates of OSTBC, MDC-QSTBC, and CIOD codes are
summarized in Table I for 2, . . . , 8 Tx antennas. Since CIOD
codes offer equal or higher rates than the other codes, it is of
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TABLE I

CODE RATES OF SINGLE-SYMBOL DECODABLE STBC

Codes M = 2 M = 3, 4 M = 5, 6 M = 7, 8

OSTBC 1 3/4 2/3 5/8

MDC-QSTBC 1 3/4 3/4

CIOD 1 6/7 4/5

interest to derive further properties of CIOD codes, which are
unexplored in [4]–[6].

To achieve full diversity for CIOD codes, modulation sym-
bols, such as quadrature amplitude modulation (QAM), need
to be rotated an angle α [6]. The authors in [6] use the
coding gain metric [9] to derive the optimal α for QAM.
However, maximizing the coding gain is amount to minimizing
the worst-case codeword pair-wise error probability (CPEP),
which provides no guarantee for minimization of the symbol
error rate (SER).

In this paper, we extent the methodology, which has been
proposed in [10] to analyze the performance of MDC-QSTBC
codes, and to provide new insights on CIOD codes. We first
derive an equivalent channel representation for CIOD codes
over MIMO channels. A new ML metric is also presented,
enabling the derivation of symbol pair-wise error probability
(SPEP). Hence the union bound on the symbol error rate
(SER) can be easily evaluated. For all the tested cases, the
union bound is within 0.1 dB of the simulated SER at
medium and high signal-to-noise ratio (SNR). Therefore, this
bound can be used to accurately analyze the performance of
CIOD codes, and moreover, to optimize the signal rotation for
arbitrary constellation. We furthermore present a new approach
to design signal transformation for signals with unbalanced
powers of real and imaginary parts such as rectangular QAM
(QAM-R)1. The new method combines signal rotation and
power (re)allocation yielding better performance than the
existing ones in [6], [12] for QAM-R.

The rest of the paper is organized as follows. Section II
briefly reviews the construction and properties of CIOD codes.
The new equivalent channels and ML decoder of CIOD codes
are introduced in Section III. The union bound on SER is
presented in Section IV. Optimal signal rotations in terms of
minimizing the union bound for various constellations are
calculated. In Section V, the new signal transformation is
proposed and optimized for QAM-R. Finally, conclusions are
summarized in Section VI.

1A rectangular QAM is constructed by two different m1-ary and m2-ary
pulse amplitude modulation (m1PAM and m2PAM) [11].
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II. PRELIMINARIES

A. System Model

We consider data transmission over a uncorrelated MIMO
channel with M -transmit (Tx) and N -receive (Rx) antennas.
The channel gain hik (i = 1, · · · , M ; k = 1, · · · , N) between
the (i, k)-th Tx-Rx antenna pair is assumed CN (0, 1)2 and
it is quasi-static frequency-flat fading channel [9], [13]. The
receiver, but not the transmitter, completely knows the channel
gains.

The space-time encoder parses data symbols into a T ×M
code matrix X of an STBC X as X =

[
cti

]
t=1,...,T

i=1,...,M
, where

cti is the symbol transmitted from antenna i at time t. The
average energy of code matrices is constrained such that EX =
E[||X ||2F ] = T , where E[·] denotes average.

The received signals ytk of the kth antenna at time t can
be arranged in a matrix Y of size T × N . Thus, one can
represent the Tx-Rx signal relation as Y =

√
ρXH + Z ,

where H = [hik] i=1,...,M

k=1,...,N
, and Z = [ztk] t=1,...,T

k=1,...,N
, and ztk are

independently, identically distributed CN (0, 1). The Tx power
is scaled by ρ so that the average SNR at each Rx antenna is
ρ, independent of the number of Tx antennas.

A block of K data symbols (s1, s2, · · · , sK) can be mapped
into a T × M space-time matrix as [1], [13]:

X =
K∑

k=1

(akAk + bkBk) (1)

where Ak and Bk, (k = 1, 2, · · · , K) are T × M complex-
valued constant matrices, ak and bk are the real and imaginary
parts of the symbol sk. We sometimes use the notation
XM (s1, s2, . . . , sK) to emphasize the transmitted symbols and
the number of Tx antennas.

B. Construction of CIOD Codes

Since CIOD codes are constructed from OSTBC, for the
readers’ reference, we highlight several important properties
of OSTBC [1], [2] that are essential for CIOD designs.

The dispersion matrices of an OSTBC OM designed for M
Tx antennas satisfy [14]:

A†
iAi = B†

i Bi = IM , i = 1, 2, · · · , K (2a)

A†
iAj + A†

jAi = 0M , 1 ≤ i �= j ≤ K (2b)

B†
i Bj + B†

jBi = 0M , 1 ≤ i �= j ≤ K (2c)

A†
iBj + B†

jAi = 0M , 1 ≤ i, j ≤ K. (2d)

We can use the set of parameters {M, T, K} to describe an
OSTBC [1]–[3].

The maximal code rate of existing OSTBC for M = 2a−1
or M = 2a, where a is any positive integer, is RO,M =

2A mean-m and variance-σ2 circularly complex Gaussian random variable
is written by CN (m, σ2). From now on, superscripts T, ∗, and † denote
matrix transpose, conjugate, and transpose conjugate, respectively. An n× n
identity and all-zero m × n matrices are denoted by In and 0m×n,
respectively. The diagonal matrix with elements of vector x on the main
diagonal is denoted by diag(x) and ⊗ denotes Kronecker product. �(X) and
||X||F represent the real part and Frobenius norm of matrix X, respectively.

a+1
2a [2]. To guarantee the Tx power constraint, the space-time

matrices of OSTBC are scaled by
√

κ. We can prove that

κ =
1

MRO,M
. (3)

For example, the Alamouti code has κ2 = 1/2. However, for
notational brevity, κ is not always shown.

The CIOD code for M Tx antennas is constructed from
two OSTBC components, OM1 and OM2 , where M = M1 +
M2, with parameter sets {M1, T1, K1} and {M2, T2, K2},
respectively [6]. The matrices OM1 and OM2 are scaled by
constants κ1 and κ2 to satisfy the power constraint.

Let K̄ be the least common multiple (lcm) of K1 and K2,
n1 = K̄/K1, n2 = K̄/K2, T̄1 = n1T1, T̄2 = n2T2. A block
of K = 2K̄ data (information) symbols si = ai + j bi (j2 =
−1), i = 1, 2, . . . , K is mapped to the intermediate symbols
xk (k = 1, 2, . . . , K) as follows:

xk =
{

ak + j bk+K̄ , k = 1, 2, . . . , K̄;
ak + j bk−K̄ , k = K̄ + 1, K̄ + 2, . . . , K .

(4)

By this encoding rule, the coordinates of the symbols
s1, s2, . . . , sK̄ are interleaved with the coordinates of the
symbols sK̄+1, sK̄+2, . . . , s2K̄ . Now we construct n1 OSTBC
code matrices OM1,i (i = 1, 2, . . . , n1) and n2 OSTBC code
matrices OM2,j (j = 1, 2, . . . , n2) and arrange them in the
intermediate matrices C1 and C2 as

C1 =

⎡
⎢⎢⎢⎣

OM1,1(x1, x2, . . . , xK1)
OM1,2(xK1+1, xK1+2, . . . , x2K1)

...
OM1,n1(x(n1−1)K1+1, x(n1−1)K1+2, . . . , xK̄)

⎤
⎥⎥⎥⎦ ,

C2 =

⎡
⎢⎢⎢⎣

OM2,1(xK̄+1, xK̄+2, . . . , xK̄+K2
)

OM2,2(xK̄+K2+1, xK̄+K2+2, . . . , xK̄+2K2
)

...
OM2,n2(xK̄+(n2−1)K2+1, xK̄+(n2−1)K2+2, . . . , x2K̄)

⎤
⎥⎥⎥⎦ .

Hence, the size of C1 and C2 are T̄1 × M1 and T̄2 × M2,
respectively. The CIOD code matrix is formulated by

C =
[√

κ1 C1 0T̄1×M2

0T̄2×M1

√
κ2 C2

]
. (5)

Thus the size of the CIOD code matrices are T × M , where
T = T̄1 + T̄2 = n1T1 + n2T2, M = M1 + M2.

The real and imaginary parts of symbols are separately
transmitted over M1 and M2 antennas, respectively. Thus full
diversity gain cannot be achieved. The solution is to rotate the
real and imaginary parts of the input symbols and then to map
the rotated symbols to CIOD code matrices. This ensures that
the real and imaginary parts of the input symbols are spread
over all Tx antennas. In the next section, we optimize the
rotation angle based on a tight union bound on SER. As a
preliminary step, we derive a new simplified Tx-Rx signal
relation of CIOD codes, in which the equivalent channel can
be shown explicitly.

III. EQUIVALENT CHANNELS AND ML DECODER

Since the mapping rules of the real and imaginary parts of
symbols sk are known, one can write explicitly the dispersion
matrices of these symbols. For notational convenience, we
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reserve capital letters A and B for the dispersion matrices
of OSTBC and use capital letters E and F for the dispersion
matrices of CIOD codes. We also write Ai(OMj ) or Bi(OMj )
to denote the dispersion matrices of OSTBC OMj (j = 1, 2).

There are K = 2K̄ pairs of such matrices Ek, Fk (i =
1, 2, . . . , K); they can be explicitly written though they are
quite lengthy. For example, the dispersion matrices of symbol
s1 are:

E1 =

⎡
⎢⎢⎣

A1(OM1) 0T1×M2

0(n1−1)T1×M1 0(n1−1)T1×M2

0T2×M1 0T2×M2

0(n2−1)T2×M1 0(n2−1)T2×M2

⎤
⎥⎥⎦ ,

F1 =

⎡
⎢⎢⎣

0T1×M1 0T1×M2

0(n1−1)T1×M1 0(n1−1)T1×M2

0T2×M1 B1(OM2)
0(n2−1)T2×M1 0(n2−1)T2×M2

⎤
⎥⎥⎦ .

We can write the CIOD codes using the dispersion form (1)
as C =

∑K
k=1 (akEk + bkFk).

To simplify our analysis, we first consider the number of
Rx antennas is N = 1 and generalize for N > 1 later.

Let the channel vector be h =
[
h1 h2 . . . hM

]T
, the

Rx vector be y =
[
y1 y2 . . . yT

]T
, the data vector d =[

a1 b1 a2 b2 . . . aK bK

]T
, the additive noise vector

be z =
[
z1 z2 . . . zT

]T
. Let C be a CIOD code matrix,

the Tx-Rx signals becomes

y =
√

ρCh + z =
√

ρ

K∑
k=1

(akEkh + bkFkh) + z

=
√

ρ
[
E1h F1h E2h F2h . . . EKh FKh

]
d + z.

(6)

In (6), the scalars κ1 and κ2 are not included for brevity. We
can rewrite (6) equivalently as[
y
y∗

]
=

√
ρ

[
E1h F1h . . . EKh FKh
E∗

1h∗ F ∗
1 h∗ . . . E∗

Kh∗ F ∗
Kh∗

]
d +

[
z
z∗

]
.

(7)

Let H̄k =
[
Ekh Fkh
E∗

kh∗ F ∗
k h∗

]
for k = 1, 2, . . . , K , it follows

H̄†
kH̄k = diag

(
ĥ1, ĥ2

)
� Ĥ1, for 1 ≤ k ≤ K̄, (8a)

H̄†
kH̄k = diag

(
ĥ2, ĥ1

)
� Ĥ2, for K̄ < k ≤ K, (8b)

H̄†
kH̄l = 02×2, for k �= l. (8c)

where ĥ1 = 2
∑M1

i=1 |hi|2, ĥ2 = 2
∑M2

i=1 |hi|2.
Thus if the two sides of (7) are multiplied by H̄†

k, one gets

H̄†
k

[
y
y∗

]
︸ ︷︷ ︸

ȳk

=
√

ρĤp

[
ak

bk

]
︸︷︷ ︸

dk

+ H̄†
k

[
z
z∗

]
︸ ︷︷ ︸

z̄k

. (9)

where p = 1 if 1 ≤ k ≤ K̄ and p = 2 if K̄ < k ≤ K .
The matrix H̄†

k plays the role of the spatial signature of the
data vector dk. Since the data vectors dk can be completely
decoupled, (9) can be used for ML detection. However, the
noise vector z̄k is correlated with covariance matrix Ĥp, it

needs to be whitened by a matrix Ĥ−1/2
p [15]. After this

whitening step, (9) becomes

Ĥ−1/2
p ȳk =

√
ρĤ1/2

p dk + Ĥ−1/2
p z̄k. (10)

The matrices H1 = Ĥ1/2
1 and H2 = Ĥ1/2

2 can be considered
the equivalent channels of CIOD codes.

The ML solution of (10) is

d̂k = argmin
dk

(ρdT
kĤpdk − 2

√
ρ�(ȳT

k)dk). (11)

The result in (11) can be generalized for multiple Rx
antennas. To this end, we include the scalars κ1 and κ2 for
completeness. We can show that ĥ1 = 2κ1

∑N
j=1

∑M1
i=1 |hi,j |2,

ĥ2 = 2κ2

∑N
j=1

∑M2
i=1 |hi,j |2, ȳk =

∑N
j=1 H̄†

k,n

[
yn

y∗
n

]
, where

yn is the Rx vector of nth antenna, H̄k,n =
[
Ekhn Fkhn

E∗
kh∗

n F ∗
k h∗

n

]
,

hn is the nth column of the channel matrix H .
From (9), the decoding of the real symbols ak and bk

can be decoupled. However, since the symbols ak and bk

are not transmitted over M channels, full diversity cannot be
achievable. Hence, we need to spread out these symbols over
M channels by applying a real unitary rotation Rp as

Rp =
[
cos(αp) sin(αp)
sin(αp) − cos(αp)

]
, (p = 1, 2),

to the data vectors dk [6], [12]. Including the rotation matrix
to (10) and (11), we have

Ĥ−1/2
p ȳk =

√
ρĤ1/2

p Rpdk + Ĥ−1/2
p z̄k, (12)

and

d̂k = argmin
dk

(ρdT
kRT

pĤpRpdk − 2
√

ρ�(ȳT
k)Rpdk). (13)

Some interesting facts can be drawn from the newly pro-
posed decoder of CIOD codes. First, with OSTBC, the MIMO
channel is decoupled into single-input single-output (SISO)
channels and the equivalent channel gain is the Frobenius
norm of the MIMO channel [16]. On the other hand, the
MIMO channel becomes 2× 2 diagonal channels with CIOD
codes; the two entries of the diagonal are simply Frobenius
norms of the first M1 and the other M2 columns of the MIMO
channel matrix, where respectively, the real and imaginary
parts of the rotated signal are transmitted on. Second, in
contrast to the scalar detection of OSTBC, the detection
of CIOD codes involves vector detection. Therefore, exact
SER calculation becomes difficult. However, the calculation
of symbol PEP is relatively simple as we will see in the next
section.

IV. UNION BOUND ON SER AND OPTIMAL SIGNAL

DESIGNS

We first consider the data vectors dk = [ak bk]T for
1 ≤ k ≤ K̄. These data vectors are sent over the same
equivalent channel Ĥ1/2

1 and therefore they have the same
error probability; we thus drop the subindex k for short. Let
d = [a b]T and d̂ = [â b̂]T be the transmitted and the erroneous
detected vectors, let δ1 = a−â, δ2 = b−b̂, Δ = [δ1 δ2]T. From
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(12), the SPEP of the symbol pair d and d̂ can be expressed
by the Gaussian tail function as [17]

P (d → d̂|Ĥ1) = Q

⎛
⎝

√
ρ|Ĥ1R1Δ|2

4N0

⎞
⎠ (14)

where N0 = 1/2 is the variance of the real part of the elements
of the white noise vector Ĥ−1/2

p z̄ in (12). Let
[
β1 β2

]T =
R1Δ. We can apply the approach to derive the exact SPEP
for MDC-QSTBC [10] to obtain the SPEP of CIOD codes as
follows:

P1(d → d̂) =

1
π

∫ π/2

0

(
1 +

ρκ1β
2
1

4 sin2 θ

)−M1N (
1 +

ρκ2β
2
2

4 sin2 θ

)−M2N

dθ.

(15)

The above SPEP is given for symbols sent over the equiv-
alent channel H1. For the symbols sk (K̄ < k ≤ K)
transmitted over the equivalent channel H2, the SPEP can be
found similarly as

P2(d → d̂) =

1
π

∫ π/2

0

(
1 +

ρκ2β̄
2
1

4 sin2 θ

)−M2N (
1 +

ρκ1β̄
2
2

4 sin2 θ

)−M1N

dθ

(16)

where
[
β̄1 β̄2

]T = R2

[
δ1 δ2

]T
.

Assume that di, dj , dm, dn, (i, j, m, n = 1, 2, . . . , L), are
signals drawn from a constellation S of size L. From the SPEP
expression (15) and (16), we can find the union bound on SER
of CIOD codes with constellation S as

Pu(S) = Pu,1(S) + Pu,2(S) (17)

where Pu,1(S) = 1
L

∑L−1
i=1

∑L
j=i+1 P (di → dj) and

Pu,2(S) = 1
L

∑L−1
m=1

∑L
n=i+1 P (dm → dn).

For a fixed SNR, the union bound Pu(S) depends on the
constellation S and the rotation angles α1 and α2. Thus one
can find the optimal values of α1 and α2 to minimize the
union bound on SER.

Note that α1 and α2 can be optimized separately. We can
run computer search to find the optimal values of α1 and α2.
The run time for searching optimal values of α1 and α2 of
a given constellation is only few minutes. However, we can
further reduce the searching time by considering the following
observation. In practice, S is usually symmetric via either
horizontal or vertical axis of the Cartesian coordinate system.
We can assume that S is symmetric via the vertical axis. If S
is symmetric via the horizontal axis, we can always rotate the
whole constellation an angle of π/2 to make it symmetric via
the vertical axis.

Assume that α2 = π/2−α1. Then, for each pair of symbols
(di, dj) =

(
[ai, bi]T, [aj , bj ]T

)
, we can find one and only

one pair (dm, dn) =
(
[ai, −bi]T, [aj , −bj]T

)
so that P1(di →

dj) = P2(dm → dn). Therefore, Pu,1(S) = Pu,2(S); and if
αopt is the optimal value of α1, then π/2 − αopt is optimal
for α2. Hence, we just write the value of α1 and imply that
the value of α2 = π/2 − α1.
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Fig. 1. Comparison of the union bound and simulated SER of a CIOD code
with rate of 6/7 symbol pcu for 6 Tx antennas (M1 = 2, M2 = 4), using 1
Rx antennas.

TABLE II

OPTIMAL ROTATION ANGLES OF POPULAR CONSTELLATIONS

Signal (2, 1)a (2, 2) (2, 3) (2, 4) (3, 3)

4QAM 28.939◦ 30.417◦ 29.698◦ 29.003◦ 30.778◦

4TRI 20.142◦ 13.883◦ 71.739◦ 68.687◦ 75.836◦

8PSK 37.690◦ 39.216◦ 38.808◦ 38.534◦ 39.857◦

8APSK 10.316◦ 11.528◦ 11.181◦ 11.000◦ 12.015◦

8TRI 20.309◦ 45.000◦ 11.061◦ 9.430◦ 45.000◦

8QAM-R 33.037◦ 31.834◦ 29.658◦ 28.626◦ 31.737◦

8QAM-SR 12.234◦ 13.036◦ 12.925◦ 12.701◦ 13.173◦

16PSK 3.485◦ 2.570◦ 2.832◦ 2.964◦ 2.200◦

16TRI 19.236◦ 45.000◦ 47.116◦ 70.690◦ 45.000◦

16QAM 31.436◦ 31.677◦ 31.557◦ 31.462◦ 31.704◦

aThe numbers in the parenthesis denote the values of M1 and M2.

The union bound on SER is plotted in Fig. 1 for a CIOD
code for M = 6 Tx antennas (M1, M2) = (2, 4). For
the two examined constellations (4QAM, and 16QAM), and
α1 = 31.7175◦, the union bound becomes tight when SER
< 10−1 and even converges to the simulated SER at high
SNR. Similar results can be found for different number of Tx
antennas; details are omitted for brevity.
Numerical Examples

Since the union bound is very tight for SER < 10−2, it can
be used to optimize the values of rotation angles α1 and α1.
The new optimal signal rotations for the popular constellations
based on minimizing the SER union bound are summarized in
Table II. Only the optimal values of α1 are listed, the optimal
values of α2 = π/2 − α1. The geometrical shapes of 8-ary
constellations can be found in [10, Fig. 2]. Note that in Table
II, the αopt varies with the number of antennas M1 and M2.

It is of interest to examine which constellations have the
best performance in term of SER; the tight SER union bound
can be used for comparison. In Fig. 2, performances of
different constellations are plotted for (M1, M2) = (2, 4).
Obviously, QAM signals yield the best performance compared
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with other constellations of the same size. On the other hand,
TRI constellations have the best minimum Euclidean distance;
however, their performance is inferior to that of QAM signals.
This observation is also confirmed for another combination of
(M1, M2) = (3, 3) in Fig. 3.

Our newly proposed rotation angles are only slightly dif-
ferent from the optimal rotation angles for QAM in terms
of coding gain derived in [6]. Therefore the performance
improvement is marginal, but note that [6] does not cover
constellations other than QAM. Nevertheless, the SER upper
bound is an useful tool to accurately analyze the performance
of different constellations with signal rotations.

The unitary rotation has been used and optimized for
various constellations. Nevertheless, non-unitary signal trans-
formation can also be used and provides better performance
for some signals as we will investigate in the next section.

V. OPTIMAL SIGNAL ROTATION WITH POWER

ALLOCATION

For QAM-R, e.g. 8QAM-R in [10, Fig. 2(a)], the average
powers of the real and imaginary parts of the signal points are
different. We may change the power allocation to the real and
imaginary parts of QAM-R signals to get better overall SER.

To change the power allocation, the real and imaginary
of QAM-R signals are multiplied by constants σ1 and σ2,
respectively. For example, let S be a constellation with signal
set S = {d | d = a+ j b, a, b ∈ R}, the new constellation with
new power allocation is S̄ = {d̄ | d̄ = σ1a + j σ2b; a, b ∈ R}.
The average energy of the constellation S̄ is kept the same as
that of S, i.e. unitary. For example, the 8QAM-R with signal
points {(±3 ± j,±1 ± j)/

√
48} has constraint equation for

coefficients σ1 and σ2 as 5σ2
1 + σ2

2 = 6. Hence, if the value
of σ1 is given, the value of σ2 is known explicitly.

We still use (17) to calculate the union bound on SER of
CIOD codes with signal rotation and power re-allocation; (15)
can be rewritten to include the effects of power re-allocation
as [

β1

β2

]
=

[
cos(α1) sin(α1)
sin(α1) − cos(α1)

] [
σ1 0
0 σ2

]
︸ ︷︷ ︸

R̄1

[
δ1

δ2

]
. (18)

The total effect of signal rotation and power re-allocation
is the non-unitary signal transform R̄1. Now the minimization
of the union bound is based on two variables: σ1 (or σ2) and
α1. We run exhaustive computer search to find the optimal
values of σ1 and α1. In fact, there is only single value
of σ1 so that the union bound is minimized; this value of
σ1 is the global solution of the union bound minimization.
The optimal values of σ1, σ2 and α1 are found as follows:
(σ1, σ2, α1) = (0.9055, 1.3784, 45.0◦) for 8QAM-R and
(σ1, σ2, α1) = (0.8972, 1.3487, 43.0◦) for 32QAM-R.

In Fig. 4, we compare the union bounds on SER of 8QAM-
R and 32QAM-R using signal rotation of Khan-Rajan with
α1 = 31.7175◦ [6], signal transformation of Wang-Wang-
Xia [12, Theorem 6], and our new signal transformation for
CIOD codes with M = 4 (M1 = 2, M2 = 2), N = 1. At
SER = 10−6, our new signal transformation yields 0.2 dB

0 5 10 15 20 25 30 35 40
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

S
E

R
 u

ni
on

 b
ou

nd

SNR [dB]

16PSK
16TRI
16QAM
8PSK
8APSK
8TRI
8QAM−R
8QAM−SR
4TRI
4QAM

Fig. 2. SER union bound a CIOD code with rate of 6/7 symbol pcu for 6
Tx antennas ((M1, M2) = (2, 4)), using 1 Rx antennas.
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Fig. 3. SER union bound a CIOD code with rate of 3/4 symbol pcu for 6
Tx antennas (M1 = 3, M2 = 3), using 1 Rx antennas.

and 0.4 dB gains compared with the signal designs of Wang-
Wang-Xia and Khan-Rajan, respectively. The BER of 8QAM-
R also confirms the improvement of our newly proposed
transformation over the existing ones.

The success of the new signal design comes from the fact
that the powers of the real and imaginary parts of QAM-R are
significantly different. We found that for other constellations
with more balanced powers of the real and imaginary parts,
new signal design even though can improve the performance,
but insignificant.

VI. CONCLUSION

We have presented the equivalent channels for CIOD codes,
enabling their decoding readily. The union bound on SER has
been calculated, which is found to be within 0.1 dB of the
simulated SER at medium and high SNR. Thus, it can be
used to analyze the performance of CIOD codes and, more
important, to optimize the signal rotation for any constellation
with an arbitrary geometrical shape. Performances of CIOD
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Fig. 4. BER and Union bound on SER of the rate-one CIOD code with
rectangular 8QAM and 32QAM for 4 Tx antennas (M1 = 2, M2 = 2),
using 1 Rx antennas.

codes with different constellations such as QAM, PSK, TRI
have been compared; among these signals, QAM yields the
best performance. We further present a new approach to design
signal transformation for signal with uneven powers of the real
and imaginary parts such as QAM-R. The new signal designs
for QAM-R outperform the existing ones. We have analyzed
the performance of CIOD codes in uncorrelated Rayleigh
channels. However, our results can be extended for correlated
channels or other channel models with different distributions,
such as Rician and Nakagami.
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