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for which the required threshold �02 can be computed as

�02 = erfc�1(2�2)
p
2�2n : (33)

To obtain an approximate threshold �02 we first generate a set of L
equidistant numbers fnl : nl = @min + (l � 1)�n; l = 1; . . . ; Lg,
where �n = (@max � @min)=(L � 1). For each l, l = 1; . . . ; L,
we assume that nl = ne and compute the threshold using (33). This
threshold is next substituted in (20) and (21) to compute the corre-
sponding probability P (Hp;r

0
jHp;r

1
). As the result a set of probabilities

for the range of admissible thresholds is obtained, and �02 is selected as
the threshold for which the corresponding probability is closest to the
required �2.

REFERENCES

[1] D. Carevic, “Automatic estimation of multiple target positions and ve-
locities using passive TDOA measurements of transients,” IEEE Trans.
Signal Process., vol. 55, no. 2, pp. 424–436, Feb. 2007.

[2] N. Ueda and R. Nakano, “Deterministic annealing EM algorithm,”
Neural Netw., vol. 11, no. 2, pp. 271–282, 1998.

[3] S. M. Kay, Fundamentals of Statistical Signal Processing—Detection
Theory. Upper Saddle River, NJ: Prentice-Hall PTR, 1998.

[4] J. L. Spiesberger, “Identifying cross-correlation peaks due to multi-
paths with the application to optimal passive localization of transient
signals and tomographic mapping of the environment,” J. Acoust. Soc.
Amer., vol. 100, pp. 910–917, 1996.

[5] D. Carevic, “Robust estimation techniques for target-motion analysis
using passively sensed transient signals,” IEEE J. Ocean. Eng., vol. 28,
no. 2, pp. 250–261, 2003.

[6] D. Carevic, “Tracking target in cluttered environment using multilateral
time-delay measurements,” J. Acoust. Soc. Amer., vol. 115, no. 3, pp.
1198–1206, 2004.

[7] B. G. Ferguson and J. L. Cleary, “In situ source level and source po-
sition estimates of biological transient signals produced by snapping
shrimp in an underwater environment,” J. Acoust. Soc. Amer., vol. 109,
no. 6, pp. 3031–3037, 2001.

[8] Y. Bar-Shalom and T. E. Fortman, Tracking and Data Association.
New York: Academic, 1988.

[9] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Func-
tions With Formulas, Graphs, and Mathematical Tables. New York:
Dover, 1964.

[10] D. B. Reid, “An algorithm for tracking multiple targets,” IEEE Trans.
Autom. Control, vol. 24, no. 6, pp. 843–854, 1979.

[11] R. P. S. Mahler, “Multitarget Bayes filtering via first-order multitarget
moments,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4, pp.
1152–1178, 2003.

[12] B. Vo, S. Singh, and A. Doucet, “Sequential Monte Carlo methods
for multi-target filtering with finite random sets,” IEEE Trans. Aerosp.
Electron. Syst., vol. 41, no. 4, pp. 1224–1245, 2005.

[13] R. Mahler, Statistical Multisource-Multitarget Information Fusion.
Norwood, MA: Artech House, 2007.

[14] W. K. Ma, B. Vo, S. Singh, and A. Baddley, “Tracking an unknown
time-varying number of speakers using TDOA measurements: A
random finite set approach,” IEEE Trans. Signal Process., vol. 54, no.
9, pp. 3291–3304, Sep. 2006.

Four-Group Decodable Space–Time Block Codes
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Abstract—Two new rate-one full-diversity space–time block codes
(STBCs) are proposed. They are characterized by the lowest decoding
complexity among the known rate-one STBC, arising due to the complete
separability of the transmitted symbols into four groups for maximum
likelihood detection. The first and the second codes are delay-optimal if the
number of transmit antennas is a power of 2 and even, respectively. The
exact pairwise error probability is derived to allow for the performance
optimization of the two codes. Compared with existing low-decoding
complexity STBC, the two new codes offer several advantages such as
higher code rate, lower encoding/decoding delay and complexity, lower
peak-to-average power ratio, and better performance.

Index Terms—Orthogonal designs, performance analysis, quasi-orthog-
onal space–time block codes, space–time block codes (STBC).

I. INTRODUCTION

Space–time block codes (STBC1) have been extensively studied
since they exploit the diversity and/or the capacity of multiple-input
multiple-output (MIMO) channels. Among various STBC, orthogonal
STBC (OSTBC) [1]–[3] offer the minimum decoding complexity and
full diversity. However, they have low code rates when the number
of transmit (Tx) antennas is more than 2 [3]. The rate of one symbol
per channel use (pcu) only exists for two Tx antennas and the rate
approaches 1/2 for a large number of Tx antennas [1]–[3].

To improve the low rate of OSTBC, several quasi-orthogonal STBC
(QSTBC) have been proposed (see [4]–[7] and references therein).
They allow joint maximum-likelihood (ML) decoding of pairs of
complex symbols. However, the rate-one QSTBC exist for four Tx
antennas only, and the code rate is smaller than 1 for more than four Tx
antennas. Several rate-one STBC have been proposed (e.g., [8]–[10]),
in which the transmitted symbols can be completely separated into two
groups for ML detection. However, for more than four Tx antennas,
the decoding complexity of the rate-one STBC in [8]–[10] increases
significantly compared with OSTBC and QSTBC.
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TABLE I
COMPARISON OF SEVERAL LOW COMPLEXITY STBC FOR SIX AND EIGHT

ANTENNAS. THE NUMBERS IN THE PARENTHESES INDICATE THE CODES’
PARAMETERS FOR EIGHT Tx ANTENNAS

In this paper, we propose two new rate-one STBC for any number
of Tx antennas. Compared with the existing rate-one STBC, our
new codes have lowest decoding complexity since the transmitted
symbols can be decoupled into four groups (4Gp) for ML detection.
The first code is called 4Gp-QSTBC. The second code is derived
from semiorthogonal algebraic space–time (SAST) codes [10] and
thus called 4Gp-SAST codes. The first and the second codes are
delay-optimal when the number of Tx antennas is a power of 2 and
even, respectively. The equivalent transmit–receive signals are derived
so that sphere decoders [11] can be applied for data detection. To
achieve full diversity, signal rotations are required for the two codes.
The exact pairwise error probability (PEP) of the two codes is derived
to optimize the signal rotations.

We compare the main parameters of our new codes, and several ex-
isting STBC for six and eight Tx antennas in Table I. Clearly, the new
codes offer several distinct advantages such as higher code rate, low
decoding complexity, and lower encoding/decoding delay. The two
new codes also have lower peak-to-average power ratio (PAPR) than
OSTBC, QSTBC, and minimum decoding complexity (MDC) QSTBC
[12]. Moreover, simulation results show that our new codes also yield
significant SNR gains compared with the existing codes.

Notation: Superscripts , �, and y denote matrix transpose, conju-
gate, and transpose conjugate, respectively. The identity and all-zero
square matrices of proper size are denoted by III and 0. The diagonal
matrix with elements of vector xxx on the main diagonal is denoted by
diag(xxx). kXk stands for the Frobenius norm of matrix X and 
 de-
notes Kronecker product [13]. A mean-m and variance-�2 circularly
complex Gaussian random variable is written by CN (m;�2). <(X)
and =(X) denote the real and imaginary parts of X , respectively.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

We consider data transmission over a MIMO quasi-static Rayleigh
flat-fading channel with M Tx and N receive (Rx) antennas [14]. The
channel gain hmn (m = 1; 2; . . . ;M ; n = 1; 2; . . . ; N ) between the
(m;n)th Tx–Rx antenna pair is assumed CN (0; 1) and remains con-
stant over T time slots. We assume no spatial correlation at either Tx
or Rx array. The receiver, but not the transmitter, completely knows the
channel gains.

A T�M STBC can be represented in a general dispersion form [14]
as follows:

X =

K

k=1

(akAk + bkBk) (1)

where Ak and Bk , (k = 1; 2; � � � ; K) are T �M constant matrices,
commonly called dispersion matrices; ak and bk are the real and imag-
inary parts of the symbol sk . We can use an equivalent form of STBC
as

X =

L

l=1

clCl (2)

where L is the number (not necessarily even) of transmitted symbols,
cl are real-value transmitted symbols, Cl are dispersion matrices.
The average energy of code matrices is constrained such that
EX = [kXk2] = T .

The received signals ytn of the nth antenna at time t can be arranged
in a matrix Y of size T �N . Thus, one can represent the Tx–Rx signal
relation as [14], [15]

Y =
p
�XH + Z (3)

where H = [hmn] is the channel matrix; Z = [ztn] is the noise ma-
trix of size T �N , its elements ztn are independently, identically dis-
tributed (i.i.d.) CN (0; 1). The Tx power is scaled by � so that the av-
erage signal-to-noise ratio (SNR) at each Rx antenna is �, independent
of the number of Tx antennas.

Let the data vector be ccc = [c1 c2 . . . cL] . The ML decoding of
STBC is to find the solution ĉcc so that

ĉcc = argmin
ccc
kY �XHk2: (4)

B. Algebraic Constraints of QSTBC

The key idea of QSTBC is to divide theL (real) transmitted symbols
embedded in a code matrix into � groups, so that the ML detection of
the transmitted symbol vector can be decoupled into� submetrics; each
metric involves the symbols of only one group [6], [8], [10], [16]. We
provide a definition of STBC with this feature to unify the notation in
this paper as follows.

Definition 1: An STBC is said to be �-group decodable STBC if the
ML decoding metric (4) can be decoupled into a linear sum of � inde-
pendent submetrics, each submetric consists of the symbols from only
one group. The �-group decodable STBC is denoted by � Gp-STBC
for short.

In the most general case, we assume that there are � groups; each
group is denoted by 
i (i = 1; 2; . . . ;�) and has Li symbols. Thus,
L = �

i=1
Li. Let �i be the set of indexes of symbols in the group


i.
Yuen et al. [16, Theorem 1] have shown a sufficient condition for an

STBC to be�-group decodable. In fact, this condition is also necessary.
We will state these results in the following theorem without proof for
brevity.

Theorem 1: The necessary and sufficient conditions, so that an
STBC is �-group decodable, are

C
y
pCq + C

y
qCp = 0 8p 2 �i 8q 2 �j ; i 6= j: (5)

Note that Theorem 1 covers [17, Theorem 9] (single-symbol decod-
able STBC) and can be shown similarly.

III. FOUR-GROUP DECODABLE STBC DERIVED FROM QSTBC

A. Encoding

In this section, we will study the new 4Gp-QSTBC. As we will see
later, the general form of STBC in (1) is convenient for studying 4Gp-
QSTBC; hence Theorem 1 can be restated as follows.
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Lemma 1 ([18]): The necessary and sufficient conditions for an
STBC in (1) to become �-group decodable are a) Ay

pAq+Ay
pAq = 0,

b)By
pBq+B

y
pBq = 0, and c)Ay

pBq+B
y
pAq = 0, 8p 2 �i, 8q 2 �j ,

1 � i 6= j � �.
We next consider another sufficient condition so that an STBC is

four-group decodable.
Theorem 2: Given a 4Gp-STBC forM Tx antennas with code length

T and K sets of dispersion matrices (Ak; Bk; 1 � k � K), a 4Gp-
STBC with code length 2T for 2M Tx antennas, which consists of 2K
sets of dispersion matrices denoted as ( �Ai; �Bi), 1 � i � 2K , can be
constructed using the following mapping rules:

�A2k�1 =
Ak 0

0 Ak

; �A2k =
Bk 0

0 Bk

�B2k�1 =
0 Ak

Ak 0
; �B2k =

0 Bk

Bk 0
: (6)

Proof: Theorem 2 can be proved by showing that if the dis-
persion matrices (Aq; Bq)(1 � q � K) satisfy Lemma 1 with
(Ap; Bp)(1 � p � K), where q 62 �p, then the dispersion matrices
( �A2q�1; �B2q�1; �A2q; �B2q) constructed from (Aq; Bq) using (6) will
satisfy Theorem 2 with ( �A2p�1; �B2p�1; �A2p; �B2p) constructed from
(Ap; Bp) using (6). The detailed proof is omitted here, as the steps are
routine.

The recursive construction of 4Gp-STBC specified in Theorem 2
suggests that we can start with the MDC-QSTBC for four Tx antennas
proposed in [12] to construct 4Gp-STBC for eight, 16 Tx antennas, and
so on, because MDC-QSTBC is one of the STBC satisfying Lemma 1;
the resulting STBC is thus called 4Gp-QSTBC. For practical interest,
we will illustrate the encoding process of 4Gp-QSTBC for eight Tx
antennas from the MDC-QSTBC for four Tx antennas [12]. The code
matrix of MDC-QSTBC for four Tx antennas is

F4 =

a1 + a3 a2 + a4 b1 + b3 b2 + b4
�a2 + a4 a1 � a3 �b2 + b4 b1 � b3
b1 + b3 b2 + b4 a1 + a3 a2 + a4

�b2 + b4 b1 � b3 �a2 + a4 a1 � a3

(7)

where 2 = �1.
The code matrix of 4Gp-QSTBC for eight Tx antennas from F4

using mapping rules in (6) is given in (8), shown at the bottom of the
page.

The code rate of 4Gp-QSTBC for eight Tx antennas is one symbol
pcu. In general, by construction, the rate of 4Gp-QSTBC for 2M Tx
antennas is the same as the rate of MDC-QSTBC for M Tx antennas.
The maximal rate of MDC-QSTBC is one symbol pcu [12], the max-
imal achievable rate of 4Gp-QSTBC is also one symbol pcu for 2m Tx

antennas. If the number of Tx antennas is M < 2m (m = 2; 3; . . .),
then (2m�M) columns of the code matrix for 2m Tx antennas can be
deleted to obtain the code for M antennas. Thus, the maximum rate of
4Gp-QSTBC is one symbol pcu, and it is achievable for any number of
Tx antennas. In addition, the 4� 4 code matrix F4 is square. By recur-
sive construction (6), the code matrices of 4Gp-QSTBC are also square
for 2m Tx antennas; and therefore, 4Gp-QSTBCs are delay optimal if
the number of Tx antennas is 2m [17].

B. Decoding

We know that the symbols s1; s2; s3; s4 of F4 can be separately
detected [12]. Therefore, from Theorem 2, the four groups of eight
symbols of F8 can be detected independently. These four groups are
(s1; s2), (s3; s4), (s5; s6), and (s7; s8). The ML metric given in (4)
can be derived to detect the four groups of symbols of F8. However, to
provide more insights into the decoding of 4Gp-QSTBC, we will de-
rive an equivalent code and the equivalent channel of F8. Furthermore,
using the equivalent channel of F8, we can use a sphere decoder [11]
to reduce the complexity of the ML search.

The equivalent code of F8 is obtained by column permutations for
the code matrix of F8 in (8): the order of columns is changed to (1, 3, 5,
7, 2, 4, 6, 8). This order of permutations is also applied for the rows of
F8. Lettingx1 = a1+ a5, x2 = a2+ a6, x3 = b1+ b5,x4 = b2+ b6,
x5 = a3 + a7, x6 = a4 + a8, x7 = b3 + b7, and x8 = b4 + b8 be
the intermediate variables, we obtain a permutation-equivalent code of
F8, as follows:

D =
D1 D2

�D�
2 D�

1

(9)

where

D1 =

x1 x2 x3 x4
x2 x1 x4 x3
x3 x4 x1 x2
x4 x3 x2 x1

; D2 =

x5 x6 x7 x8
x6 x5 x8 x7
x7 x8 x5 x6
x8 x7 x6 x5

: (10)

The submatricesD1 andD2 have a special form called block-circulant
matrix with circulant blocks [13].

We next show how to decode the code D. For simplicity, a single
Rx antenna is considered. The generalization for multiple Rx antennas
is straightforward. Assume that the Tx symbols are drawn from a con-
stellation with unit average power; the Tx–Rx signal model in (3) for
the case of STBC D follows:

yyy = �=8Dhhh+ zzz: (11)

F8 =

a1 + a5 a3 + a7 a2 + a6 a4 + a8 b1 + b5 b3 + b7 b2 + b6 b4 + b8
�a3 + a7 a1 � a5 �a4 + a8 a2 � a6 �b3 + b7 b1 � b5 �b4 + b8 b2 � b6
a2 + a6 a4 + a8 a1 + a5 a3 + a7 b2 + b6 b4 + b8 b1 + b5 b3 + b7

�a4 + a8 a2 � a6 �a3 + a7 a1 � a5 �b4 + b8 b2 � b6 �b3 + b7 b1 � b5
b1 + b5 b3 + b7 b2 + b6 b4 + b8 a1 + a5 a3 + a7 a2 + a6 a4 + a8

�b3 + b7 b1 � b5 �b4 + b8 b2 � b6 �a3 + a7 a1 � a5 �a4 + a8 a2 � a6
b2 + b6 b4 + b8 b1 + b5 b3 + b7 a2 + a6 a4 + a8 a1 + a5 a3 + a7

�b4 + b8 b2 � b6 �b3 + b7 b1 � b5 �a4 + a8 a2 � a6 �a3 + a7 a1 � a5

: (8)
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Let xxx = [x1 x2 . . . x8] , ŷyy = [y1 . . . y4 y
�
5 . . . y�8 ] ,

ẑzz = [z1 . . . z4 z
�
5 . . . z�8 ] , and

H1 =

h1 h2 h3 h4
h2 h1 h4 h3
h3 h4 h1 h2
h4 h3 h2 h1

; H2 =

h5 h6 h7 h8
h6 h5 h8 h7
h7 h8 h5 h6
h8 h7 h6 h5

: (12)

We have an equivalent expression of (11) as

ŷyy =
�

8

H1 H2

H�
2 �H�

1

�H

xxx+ ẑzz: (13)

Note thatH1 andH2 are block-circulant matrices with circulant-blocks
[13]. Thus, they are commutative and so do H�

1 and H�
2 . We can mul-

tiply both sides of (13) with �Hy to get

�Hyŷyy

�yyy

=
�

8

H�
1H1 +H

�
2H2 0

0 H�
1H1 +H

�
2H2

xxx+ �Hyẑzz

�zzz

: (14)

It can be shown that the noise elements of vector �zzz are correlated with
covariance matrix �Hy �H. Thus, this noise vector can be whitened by
multiplying both side of (14) with the matrix ( �Hy �H)�1=2. Let Ĥ =
H�

1H1 +H�
2H2. After the noise whitening step, (14) is equivalent to

the following equations:

Ĥ�1=2�yyyi =
�

8
Ĥ1=2xxxi + �zzzi; (i = 1; 2) (15)

where �yyyi = [�y4i�3 �y4i�2 �y4i�1 �y4i] ,xxxi = [x4i�3 x4i�2 x4i�1 x4i] ,
the noise vectors �zzzi = [Ĥ�1=2�z4i�3 �z4i�2 �z4i�1 �z4i] are uncorre-
lated and have elements � CN (0; 1).

At this point, the decoding of the eight transmitted symbols of the
code D can be readily decoupled into two groups. However, since the
code is a 4Gp-STBC, we can further decompose them into four groups
in the following.

Denote the 2 � 2 (real) discrete Fourier transform (DFT) matrix by

F2 =
1 1

1 �1
:

The block-circulant matrices H1 and H2 can be diagonalized by a
(real) unitary matrix � = (1=2)F2 
F2 [13, Theorem 5.8.2, p. 185].
Note that �y = �, therefore, H1 = ��1� and H2 = ��2�, where
�1 and �2 are diagonal matrices, with eigenvalues of H1 and H2 in
the main diagonal, respectively. Thus, Ĥ = �(�y

1
�1 +�y

2
�2)�, and

also Ĥ1=2 = �(�y
1
�1+�y

2
�2)

1=2�. Since Ĥ1=2 is a real matrix, (15)
becomes

Ĥ�1=2<(�yyyi)= �=8Ĥ1=2<(xxxi)+<(�zzzi); i=1; 2; (16a)

Ĥ�1=2=(�yyyi)= �=8Ĥ1=2=(xxxi)+=(�zzzi); i=1; 2: (16b)

Note that <(xxx1) = [a1 a2 b1 b2] := ddd1, i.e., <(xxx1) is only depen-
dent on the complex symbols s1 and s2. Similarly, <(xxx2), =(xxx1), and
=(xxx2) depend on (s3; s4), (s5; s6), and (s7; s8), respectively.

Equation (16) shows that the decoding of eight transmitted symbols
of STBC D is separated into the decoding of four groups, each with

two symbols (thus the search space size has been reduced from Q8 to
4Q2 where Q is the transmit constellation size). A sphere decoder [11]
can also be used to reduce the complexity of the ML search for each
group. The matrix Ĥ1=2 can be considered as the equivalent channel
of the 4Gp-QSTBC D.

C. Performance Analysis

In (16), the PEP of the four transmit symbol vectors are the
same. We thus need to consider the PEP of one of the vectors
ddd1 = <(xxx1) = [a1 a2 b1 b2] . For notational simplicity, the subindex
1 of ddd1 is dropped. In addition, we can introduce redundancy on the
signal space by using a 4� 4 real unitary rotation R to the data vector
[a1 a2 b1 b2] . Thus, the data vector ddd = R[a1 a2 b1 b2] .

From (16a), the PEP of the pair ddd and �ddd can be expressed by the
Gaussian tail function as [19]

P (ddd! �dddjĤ)

= Q
�

8

kĤ1=2R���k2

4N0

= Q
� ��� R � �y

1
�1 + �y

2
�2 �R���

16
: (17)

where ��� = ddd � �ddd, N0 = 1=2 is the variance of the elements of the
white noise vector <(zzz1) in (16a).

Remember that �1 is a diagonal matrix with eigenvalues of H1 on
the main diagonal. Let �i;j (i = 1, 2; j = 1, 2, 3, 4) be the eigenvalues
ofHi. Then �i = diag(�i;1; �i;2; �i;3; �i;4). Let ��� = �R���, we have

P (ddd! �dddjĤ) = Q
� 2

i=1
4

j=1 �
2

j j�i;j j
2

16
: (18)

To derive a closed form of (18), we need to evaluate the dis-
tribution of �i;j . The eigenvectors of H1 is the columns of the
matrix � = (1=2)F2 
 F2. Thus, the eigenvalues of H1 are
[�1;1 �1;2 �1;3 �1;4] = (F2 
 F2)[h1 h2 h3 h4] . Since
hj � CN (0; 1) for (j = 1; . . . ; 4), thus �1;j � CN (0; 4) and
so do �2;j .

We now use the Craig’s formula [20] to derive the conditional PEP
in (18), as follows:

P (ddd! �dddjĤ)

= Q
� 2

i=1
4

j=1 �
2

j j�i;j j
2

16

=
1

�

�=2

0

exp
�� 2

i=1
4

j=1 �
2

j j�i;j j
2

32 sin2 �
d�: (19)

Applying a method based on the moment-generating function [19],
we obtain the unconditional PEP as

P (ddd! �ddd) =
1

�

�=2

0

4

i=1

1 +
��2i

8 sin2 �

�2

d�: (20)
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If �i 6= 0 8i = 1; . . . ; 4, then 1 + (��2i =8 sin
2 �) �

(��2i =8 sin
2 �) at high SNR, the approximation of the exact PEP in

(20) is

P (ddd! �ddd) �
224��8

�

�=2

0

(sin�)16d�

4

i=1

j�ij
�4

=
2716!��8

8!8!

4

i=1

j�ij
�4: (21)

The exponent of SNR in (21) is�8. This indicates that the maximum
diversity order of 4Gp-QSTBC is 8, and it is achievable if the product
distance 4

i=1 �i (see [21] and references therein) is nonzero for all
possible data vectors. Furthermore, at high SNR, the asymptotic PEP
becomes very tight to the exact PEP. Recall that ��� = �R(ddd��ddd); thus,
the product matrix �R is the combined rotation matrix for data vector
ddd. Since � is a constant matrix, we can optimize the matrix R so that
the minimum product distance dp;min = min8ddd ;ddd

4

k=1 j�kj, where
��� = [�R(dddi � dddj)] is nonzero and maximized.

If the complex signals are drawn from QAM, the (real) elements of
ddd are in the set f�1;�3;�5; . . .g. The best known rotations for QAM
in terms of maximizing the minimum product distance are provided in
[21] and [22]. Denoting the rotation matrix in [21] and [22] by RBOV ,
the signal rotation for our 4Gp-QSTBC is given by

R = �RBOV : (22)

Simulations show that the above vector signal rotation perform better
than the symbolwise rotation proposed in [18] (details omitted for
brevity).

We have presented important properties of 4Gp-QSTBC. In the next
section, we will investigate 4Gp-SAST codes.

IV. FOUR-GROUP DECODABLE STBC DERIVED FROM SAST CODES

A. Encoding

The SAST code matrix is constructed for M = 2 �M Tx
antennas using circulant blocks. Two length- �M data vectors
sss1 = [s1 s2 . . . s �M ] and sss2 = [s �M+1 s �M+2 . . . s2 �M ] are
used to generate two �M -by- �M circulant matrices [13]. Note that the
first row of circulant matrix C(xxx) copies the row vector xxx; the ith row
is obtained by circular shift (i� 1) times to the right the vector xxx. The
SAST code matrix is constructed as

S =
C sss1 C sss2

�Cy sss2 Cy sss1
: (23)

By construction, 4Gp-SAST codes have rate of one symbol pcu; the
code matrices for an even number of Tx antennas are square; thus, 4Gp-
SAST codes are delay-optimal for an even number of Tx antennas.

B. Decoder of 4Gp-SAST Codes

Similar to 4Gp-QSTBC, the decoding of 4Gp-SAST codes requires
two steps. First, the two data vectors sss1 and sss2 are decoupled [10]; then,
the real and imaginary parts of vectors sss1 and sss2 are separated. We
provide the detail decoder with only one Rx antenna as generalization
for multiple Rx antennas can be easily done.

We introduce another type of circulant matrix called left circulant,
denoted by CL(xxx), where the ith row is obtained by circular shifts (i�
1) times to the left for the row vector xxx.

Let us define a permutation � on an arbitrary M � M matrix X
such that, the (M � i + 2)th row is permuted with the ith row for
i = 2; 3; . . . ; dM=2e, where d(�)e is the ceiling function. One can
verify that

� (CL(xxx)) = C(xxx): (24)

Let yyy = [yyy1 yyy2 ] , yyy1 = [y1 y2 . . . y �M ] , yyy2 =

[y �M+1 y �M+2 . . . yM ] , hhh = [hhh1 hhh2 ] , hhh1 = [h1 h2 . . . h �M ] ,

hhh2 = [h �M+1 h �M+2 . . . h2 �M ] , zzz = [zzz1 zzz2 ] ,
zzz1 = [z1 z2 . . . z �M ] , zzz2 = [z �M+1 z �M+2 . . . z2 �M ] . We
can write the Tx–Rx signal relation as

yyy1
yyy2

=
�

M

C(sss1) C(sss2)

�Cy(sss2) Cy(sss1)

hhh1
hhh2

+
zzz1
zzz2

: (25)

An equivalent form of (25) is

yyy1
yyy�2

=
�

M

X1 X2

X3 X4

sss1
sss2

+
zzz1
zzz�2

(26)

where X1 = CL(hhh1 ), X2 = CL(hhh2 ), X3 = Cy(hhh2 ), X4 =

�Cy(hhh1 ).
Applying permutation � in (24) for the column matrix yyy1, we obtain

�yyy1
�yyy2

�
=

�(yyy1)

yyy�2

=
�

M

�(X1) �(X2)

X3 X4

sss1
sss2

+
�(zzz1)

zzz�2

=
�

M

H1 H2

Hy
2 �Hy

1

H

sss1
sss2

+
�zzz1
�zzz2

(27)

where H1 = C(hhh1 ), H2 = C(hhh2 ), �zzz1 = �(zzz1), �zzz2 = zzz�2 . The
elements of �zzz1 and �zzz2 are � CN (0; 1), as elements of zzz1 and zzz2. We
now multiplyHy with both sides of (27). Letting Ĥ = Hy

1H1+H
y
2H2,

we get

ŷyy1
ŷyy2

=Hy �yyy1
�yyy2

=
�

M

Ĥ 0 �M

0 �M Ĥ

sss1
sss2

+Hy �zzz1
�zzz2

=
�

M

Ĥ 0 �M

0 �M Ĥ

sss1
sss2

+
ẑzz1
ẑzz2

ẑzz

: (28)

The covariance matrix of the additive noise vector ẑzz is

E[ẑzzẑzzy] =
Ĥ 0 �M

0 �M Ĥ
:

Therefore, the noise vectors ẑzz1 and ẑzzs are uncorrelated and have the
same covariance matrix Ĥ. Thus, sss1 and sss2 can be decoded separately
using ŷyyi = Ĥsssi + ẑzzi, i = 1, 2. The noise vectors ẑzz1 and ẑzzs can be
whitened by the same whitening matrix Ĥ�1=2. The equivalent equa-
tions for Tx–Rx signals are

Ĥ�1=2ŷyyi = �=MĤ1=2sssi + Ĥ�1=2ẑzzi; i = 1; 2: (29)
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At this point, the decoding of SAST codes becomes the detection
of two groups of complex symbols sssi (i = 1, 2); this is similar to the
detection of 4Gp-QSTBC in (15). Our next step is to separate the real
and imaginary parts of vectors sssi to obtain four groups of symbols for
data detection.

Recall that Ĥ = Hy
1
H1+Hy

2
H2, and bothH1 andH2 are circulant.

Hence, Ĥ is also circulant [13]. Let �i = �i;1 �i;2 . . . �i;m be the m
eigenvalues of Hi (i = 1, 2). We can diagonalize Hi by DFT matrix as
Hi = Fy�iF . Thus, Ĥ = Fy(�y

1
�1+�y

2
�2)F . Let�y

1
�1+�y

2
�2 =

�, then � has real and non-negative entries in the main diagonal and
Ĥ1=2 = Fy�1=2F and Ĥ�1=2 = Fy��1=2F .

We assume that sssi is premultiplied (or rotated) by an IDFT matrix
Fy of proper size. Substituting sssi by Fysssi and multiplying both sides
of (29) with the DFT matrix F , we obtain

��1=2Fŷyyi = �=MFĤ1=2Fysssi + ��1=2Fẑzzi

= �=M�1=2sssi +��1=2Fẑzzi

�zzz

: (30)

Since �1=2 is a real matrix, the real and imaginary parts of sssi (i = 1,
2) can now be separated for detection.

��1=2<(Fŷyyi) = �=M�1=2<(sssi) + <(�zzzi) (31a)

��1=2=(Fŷyyi) = �=M�1=2=(sssi) + =(�zzzi): (31b)

We finish deriving the general decoder for 4Gp-SAST codes. Using
(31), one can use a sphere decoder to detect the transmitted symbols.
The equivalent channel of 4Gp-SAST codes is �1=2.

C. Performance Analysis

Note that the eigenvalues of m � m matrices H1 and H2 can be
found easily using unnormalized DFT of the channel vectors hhh1 and
hhh2 [13]. Therefore, the eigenvalues of H1 and H2 have distribution
� CN (0; m).

Similar to the case of 4Gp-QSTBC, we can introduce a real orthog-
onal transformationR to the data vectors<(sssi) and=(sssi) (i = 1, 2) to
improve the performance of 4Gp-SAST codes. Thus, the actual signal
rotation of 4Gp-SAST codes is FyR.

Since the PEP of vectors <(sssi) and =(sssi) (i = 1, 2) are the same,
we only calculate the PEP of the vector <(sss1). Let ddd = <(sss1). The
PEP of distinct vectors ddd and �ddd can be calculated in a similar manner to
that of 4Gp-QSTBC in Section III-C. Details are omitted for brevity.
The PEP of 4Gp-SAST codes is given as

P (ddd! �ddd) =
1

�

�=2

0

m

i=1

1 +
��2i

8 sin2 �

�2

d� (32)

where �1 �2 . . . �m = R(ddd � �ddd). One can find the asymptotic PEP
of 4Gp-SAST codes at high SNR in a similar fashion to the case of
4Gp-QSTBC in (21) as follows:

P (ddd! �ddd) �
26m��2m

�

�=2

0

(sin�)16d�

m

i=1

��4i

=
26m��2m

217
16!

8!8!

m

i=1

��4i : (33)

Fig. 1. Performances of 4Gp-QSTBC and 4Gp-SAST codes compared with
OSTBC, MDC-QSTBC, QSTBC and SAST codes, six Tx antennas and one Rx
antenna, 2 and 3 bits pcu.

Thus, if the product distance m
i=1 �i is nonzero, 4Gp-SAST codes

will achieve full-diversity. Similar to 4Gp-QSTBC, with QAM, the
signal rotations RBOV in [21] and [22] can be used to minimize the
worst-case PEP.

Remark: It is interesting to recognize that, the optimal rotation ma-
trices of 4Gp-QSTBC (R = �RBOV ) and 4Gp-SAST codes (R =
FRBOV ) have a similar formula. The precoding matrices � and F
are added to diagonalize the channels of the two codes. Thus, each real
symbol is equivalently transmitted in a separate channel, but full diver-
sity is not achievable. The real rotation matrix RBOV is applied to the
data vectors so that the real symbols are spread over all the channels,
and thus full diversity is achievable.

V. SIMULATION RESULTS

Simulation results are presented in Fig. 1 to compare the perfor-
mances of 4Gp-QSTBC and 4Gp-SAST codes with OSTBC, MDC-
QSTBC [12], QSTBC [6], and SAST codes [10] for six Tx and one Rx
antennas. To produce the desired bit rates, two 8QAM constellations
are used. The first constellation is rectangular, denoted by 8QAM-R,
and has signal points f�1 � ;�3 � g. The other constellation, de-
noted by 8QAM-S, has the best minimum Euclidean distance; its geo-
metrical shape is depicted in [6, Fig. (2c)].

We compare the performance of our new codes with OSTBC and
SAST codes for a spectral efficiency of 2 bits pcu. To get this bit rate,
8QAM signals are combined with rate-2/3 OSTBC, while 4QAM is
used for the SAST, 4Gp-QSTBC, and 4Gp-SAST codes. Two columns
(4 and 8) of 4Gp-QSTBC for eight Tx antennas are deleted to create
the code for six Tx antennas. From Fig. 1, 4Gp-SAST codes gains
0.8 and 1.6 dB over OSTBC with 8QAM-S and 8QAM-R, respec-
tively, while the decoding complexity slightly increases (see Table I).
The performance improvement of 4Gp-QSTBC is even better: 1 dB
compared with OSTBC (using 8QAM-S) and 0.2 dB compared with
4Gp-SAST codes. Note that for six antennas, the decoding complexity
of 4Gp-QSTBC is slightly higher than that of 4Gp-SAST codes (see
Table I).

In Fig. 1, the performance of 4Gp-QSTBC and 4Gp-SAST codes
with 3 bits pcu is also compared with that of the rate-3/4 QSTBC
and MDC-QSTBC (using 16QAM). 4Gp-SAST code yields a 0.3 dB
improvement over MDC-QSTBC and performs the same as QSTBC.
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Specifically, 4Gp-QSTBC using 8QAM-S performs much better than
the QSTBC; it produces a 1.2 dB gain over QSTBC with the same de-
coding complexity.

Further simulations for five and eight Tx antennas also confirm
that 4Gp-QSTBC and 4Gp-SAST codes perform better than OSTBC,
MDC-QSTBC, QSTBC, and SAST codes. Due to the lack of space,
we omit the details.

VI. CONCLUSION

We have presented two new rate-one STBC with four-group de-
coding, called 4Gp-QSTBC and 4Gp-SAST codes. They offer the
lowest decoding complexity compared with the existing rate-one
STBC. Their closed-form PEP are derived, enabling the optimization
of signal rotations. Compared with other existing low decoding
complexity STBC (such as OSTBC, MDC-QSTBC, CIOD, and
QSTBC), our newly designed STBC have several additional advan-
tages including higher code rate, better BER performance, lower
encoding/decoding delay, and lower peak-to-average power ratio
(PAPR) because zero-amplitude symbols are avoided in the code
matrices. Recent results in [23] present a flexible design of multigroup
STBC. However, the code rate is still limited by 1 symbol pcu. Thus,
the systematic design of a high-rate multigroup STBC is still an open
research problem.
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