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Abstract— There has been considerable research on the design
of space-time block codes (STBCs) that guarantee full diversity
without sacrificing the data rate. The main challenge is to max-
imize the coding gain by maximizing the determinant criterion.
It is shown that the most of previous STBCs with full rate and
full diversity order (FRFD) (e.g. threaded algebraic space-time
(TAST) codes) are constructed via a unitary generator matrix.
However, the unitary matrix has been represented using only a
small number parameters to enable algebraic code design. In
this paper, for a 2 × 2 STBC, we use a more general unitary
matrix with a large number of parameters for STBC design. We
obtain an upper bound on the coding gain and show that the
maximum coding gain is attainable only with PAM signaling.
Since optimum parameters for the case of QAM signaling is
analytically intractable, we search using the genetic algorithm
(GA) method. We also use the union bound criterion for code
parameter search by GA. Our simulation results show that with
both criteria, the optimum code for QAM signaling is the Golden
code. The proposed code significantly outperforms other existing
STBCs with the gains about 2 dB at a symbol error rate of 10−3

for BPSK and 4-PAM. The proposed code performs identically
to the Golden code for QAM.

I. INTRODUCTION

The design of space-time block codes (STBCs) for Multiple-
input multiple-output (MIMO) wireless systems has received
intense attention recently. Full rate and full diversity (FRFD)
codes for a system with two transmit and two receive antennas
are constructed in [1] (called the B2,φ) using algebraic and
number-theoretic methods. Although the B2,φ code had been
proposed for all modulation schemes including pulse ampli-
tude modulation (PAM) and quadrature amplitude modulation
(QAM) constellations of arbitrary size, it was optimized for
4-QAM and 16-QAM only. Following the B2,φ code, threaded
algebraic spacetime (TAST) codes have been developed for an
arbitrary number of transmit antennas [2].

It is shown that linear STBC construction can be equiv-
alently mapped to designing an unitary encoder matrix that
meets the design criteria. Yao et al. [3] considered a simple
subclass of unitary matrices with a block diagonal of two
real rotation matrices. They determined the angles of rotation
matrices such that it leads to non-vanishing coding gain for any
size of constellation. Their proposed STBC achieves full diver-
sity and full rate for any modulation schemes (PAM and QAM)
but not necessarily with better performance (coding gain) than
previously proposed codes for low order of modulation. Note
that the B2,φ and TAST codes were only optimized for low

order modulations (e.g., 4-QAM, 16-QAM and 32-QAM).
Dayal et. al [4] proposed a STBC that exhibits a significant

improvement in performance compared to the B2,φ, Yao’s
code or TAST codes. Interestingly at the same time, the
Golden code was proposed by Belfiore et al. [5] based on
the golden number using the machinery of algebraic number
theory. The Golden code is equivalent to the code in [4]
with the identical performance. The Golden code not only
holds non-vanishing coding gain property (i.e. the coding
gain is independent of the size of constellation) for all PAM
or QAM constellations but also outperforms the previously
known codes. The Golden code is constructed using a unitary
encoder with only two parameters so that analytical derivation
of code parameters becomes tractable. On the other hand, this
raises the question: is it possible to improve the performance
(coding gain) if a general unitary encoder matrix with a large
number of parameters is used for code design?

The main focus of this paper is to investigate the above
question. By using a 4×4 general unitary matrix which has 16
parameters, we obtain an upper bound on the coding gain. We
show that the upper bound is attainable with the PAM signaling
only (Note that the final transmitted signals are complex.) We
propose a STBC that achieves the maximum coding gain that
is not achieved by Golden code. Due to the large number
of design parameters, the extraction of optimum parameters
for the case of QAM signaling is analytically intractable. We
exploit the genetic algorithm (GA) as an exceptional search
method. We also include the union bound criterion along with
the coding gain criterion for the genetic search. Our simulation
results show that with both criteria, the optimum code for
QAM signaling is the Golden code.

The following notations are used in this paper: |x| denotes
the absolute value of x, bold face x and X are used for
vectors and Matrices respectively. (·)H denotes the conjugate
transpose ((·)T ). The trace, determinant and Frobenius norm
of matrix A are tr(A), det(A) and ‖A‖2

F = tr(AAH). A
circularly symmetric complex Gaussian random variable with
mean µ and variance σ2 is denoted by z ∼ CN (µ, σ2).

II. SYSTEM MODEL

Consider a system with M transmit and N receive antennas
with signaling over a quasi-static fading channel. To transmit
a symbol vector s = [s1, . . . , sQ]T where sq’s belong to a
P -PAM or P 2-QAM constellation, i.e. sq = αq + jβq and

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

3406

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 18, 2009 at 17:05 from IEEE Xplore.  Restrictions apply. 

ctlabadmin
2007



αq, βq ∈ {−(P −1),−(P −3), . . . , (P −1)} (for PAM signals
βq = 0), a distinct M × T ST bock code (codeword) X is
constructed and sent over the channel during T consecutive
time intervals. The N × T complex received signal matrix Y
will be

Y =
√

ρ

MEs
HX + W (1)

where the N × M fading channel matrix H and N × T
additive noise matrix W have independent and identically
distributed (i.i.d.) CN (0, 1) elements. When Es is the average
energy of the transmit signals, ρ is the expected SNR for each
received symbol. When the channel is known to the receiver
the Maximum Likelihood (ML) decoding for each received
block matrix is the the minimization of the Euclidean distance:

X̂ = arg min
X

||Y −
√

ρ

M
HX||2F , (2)

where the minimization is performed over all admissible
codeword X.

Although the derivation of general closed-form formula for
exact pairwise error probability (PEP) is not widely reported,
Tarokh et al. [6] have derived a good approximation of PEP for
the asymptotically high SNR region. However, an exact PEP
closed formula exists in the literature for a MIMO system
with two transmit and two receive antennas [7]. Unlike the
approximation of PEP, the exact formula is accurate over all
range of SNR, particularly in the low SNR region. Given Xj is
the decoded codeword instead of the transmitted codeword Xi,
and λi for i = 1, 2 is the i-th eigenvalue of the matrix (Xi −
Xj)(Xi−Xj)H , the exact PEP formula for equal eigenvalues
case (λ1 = λ2 = λ) is expressed as [7]

Pe(Xi → Xj) = (
1 − u

2
)4

3∑
k=0

[(
k + 3

k

)
(
1 + u

2
)k

]
(3)

where u =
√

λρ
4M /(1 + λρ

4M ). For unequal eigenvalues case
PEP is written as

Pe(Xi → Xj) = (
λ1

λ1 − λ2
)2

[
(
1 − u1

2
)2(u1 + 2)

]

+ (
λ2

λ1 − λ2
)2

[
(
1 − u2

2
)2(u2 + 2)

]

− 2λ2
1λ2

(λ1 − λ2)3
(
1 − u1

2
) +

2λ2
2λ1

(λ1 − λ2)3
(
1 − u2

2
)

(4)

where u1 =
√

λ1ρ
4M /(1 + λ1ρ

4M ) and u2 =
√

λ2ρ
4M /(1 + λ2ρ

4M ).

III. EXISTING CODE CONSTRUCTION CRITERIA

A comprehensive design objective is to minimize the error
rate at a given SNR and data rate. Since the minimization
of the error rate is not always easy, one can use the related
measures such as coding gain or union bound.

Typical STBC designs have focused the PEP between Xi

and Xj as a measure of error performance. They minimize the
maximum PEP among all pairs of codewords. This approach

leads to the rank criterion and determinant criterion, which
were proposed in [6] and [8].

In the determinant criterion, the minimum of
∏r

j=1 λj ,
taken over all possible codeword pairs Xi and Xj , is the
coding gain and must be maximized where r is the rank of
the matrix (Xi−Xj). If M = T , the coding gain δ is defined
as

δ = min
Xi,Xj

|det(Xi − Xj) |. (5)

On the other hand, it has been established that the union
bound reflects the actual error performance closer than the
coding gain [9]. The union bound (UB) is an upper bound on
error probability where the average is taken over all possible
transmitted codewords. When all codewords are equally likely
to be transmitted, the UB may be defined as [10]

PU =
1
L

∑
Xi

∑
Xj �=Xi

r(Xi,Xj)Pe(Xi → Xj). (6)

Here L is the number of possible codwords and r(Xi,Xj)
is the error rate from Xi to Xj in terms of bit error rate
(BER) or symbol error rate (SER). Therefore it is advisable
to minimize the union bound rather than maximum PEP or
maximize coding gain. In a 2 × 2 MIMO systems, Pe(Xi →
Xj) can be replaced by either exact PEP in (3) and (4) or by
an approximation of PEP in [6]. However, it is shown that the
latter union bound is a looser bound for both BER and SER
[7]. Although minimizing the union bound makes more sense
than maximizing the coding gain, the computation complexity
of calculating the coding gain is much less than computing
the union bound. In this paper, we consider both criteria for
completeness of our investigation.

IV. FRFD SPACE-TIME CODES

Most of the previous 2 × 2 FRFD codes are linear, i.e.
for each transmission, based on the independent input data
bits, a quadruple of symbols are carved from a PAM or QAM
constellation and form the vector si = [si,1, si,2, si,3, si,4]T .
This vector is transformed (rotated) by the unitary encoder
matrix M to produce

xi = [xi,1, xi,2, xi,3, xi,4]T = Msi (7)

and the rate 2 (symbol per channel use) transmit matrix Xi is
generated as

Xi =
[
xi,1 xi,3

xi,4 xi,2

]
� mat(xi) (8)

where the function mat(b) shapes the 4 × 1 vector b into a
2 × 2 matrix as shown in (8). The encoding matrix M that
completely specifies the STBC, is restricted to unitary matrices
i.e. MHM = I subject to the transmit power constraint. Note
that one may relax the unitary condition on the encoder matrix
to tr{MHM} = 4 which also meets the power constraint
and may obtain better codes [11]. The tradeoff is that in
the unitary encoder case, the total transmit power in each
signaling interval is fixed, while in the second scenario only
the total transmit power in both signaling intervals is fixed not
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in each interval. Therefore, the code constructed by the second
scenario may have better performance but will have pick to
average power ratio problems in practical implementations.
We focus on the case that the encoder matrix in unitary and
so the STBC design problem is reduced to find the optimum
encoder matrix M such that it meets the code construction
criteria. For the coding gain criterion, by substituting (8) into
(5), we have:

δij = |det(Xi − Xj)| = |Mu| (9)

where u � si − sj . Note that the real and imaginary parts of
elements of u are always even integers and also all elements
of u can not be zero simultaneously (u �= 0).

Proposition 1: The maximum possible coding gain for all
PAM and QAM constellations is δmax = 2, where a unitary
encoder matrix is used to construct the transmit matrix.

Proof: As a special case in (9), assume u = [u1, 0, 0, 0]T

and the encoder matrix M has the form of M = [aije
jαij ],

i, j = 1, . . . , 4 where 0 � aij � 1 and 0 � αij < 2π. Thus,

δij =
∣∣∣u2

1a11a21e
j(α11+α21) − u2

1a31a41e
j(α31+α41)

∣∣∣
= |u1|2

∣∣a11a21 − a31a41e
jα

∣∣
where α = α31 + α41 − α11 − α21. Since min u1 = 2,

δ = min
u1

δij =
∣∣a11a21 − a31a41e

jα
∣∣

Since aij � 0, δ is maximized when α = π or equivalently

δmax = max
a2
11+a2

21+a2
31+a2

41=1
|a11a21 + a31a41| (10)

where the condition is because the norm of each column of
unitary matrix M is one. By partial differentiation, it is easy
to verify that δmax = 2 and this maximum is obtained when

a11 = a21 , a31 = a41 , a2
11 + a2

31 =
1
2

(11)

The unitary encoder matrix M has 16 independent parame-
ters that should be optimized based on the coding gain or union
bound criteria. We applied the well-known genetic algorithm
to find the optimum solutions. Our simulation results show
that the optimum code obtained with all 16 parameters of M
is the same as the optimum code obtained by using the block
diagonal unitary structure defined as

M = diag(ejφ11 , ejφ12 , ejφ13 , ejφ14)×
diag(RF (θ1), RF (θ2))×
diag(ejφ21 , ejφ22 , ejφ23 , ejφ24) (12)

where

RF (θi) =
[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]

and θi’s and φij’s are the rotation and phase parameters,
respectively. Note that the unitary structure in (12) potentially
can satisfy the conditions in (11) to reach the maximum coding
gain.

Proposition 2: Considering the encoder matrix M defined
in (12), the parameters φ11, φ12, φ14, φ21 and φ23 can set to
be zero without any effect on the coding gain in (5).

Proof: Using (12) and (9) and factoring, we obtain:

δij =
∣∣∣∣
(
u1 cos(θ1) − u2 sin(θ1) ej(φ22−φ21)

)
(
u1 sin(θ1) + u2 cos(θ1) ej(φ22−φ21)

)
−

ej(φ13+φ14+φ23−φ11−φ12−φ21)(
u3 cos(θ2) − u4 sin(θ2) ej(φ24−φ23)

)
(
u3 sin(θ2) + u4 cos(θ2) ej(φ24−φ23)

) ∣∣∣∣
Clearly, without loss of generality, we can set:

φ11 = φ12 = φ14 = φ21 = φ23 = 0

and by just keeping the rest of angles and defining φ �
φ13, β1 � φ22 and β2 � φ24, we can summarize that

δij =
∣∣ (

u1 cos(θ1) − u2 sin(θ1)ejβ1
)

(
u1 sin(θ1) + u2 cos(θ1)ejβ1

)−
ejφ

(
u3 cos(θ2) − u4 sin(θ2)ejβ2

)
(
u3 sin(θ2) + u4 cos(θ2)ejβ2

) ∣∣ (13)

where the equivalent encoder matrix is

M = diag(1, 1, ejφ, 1)
diag(RF (θ1), RF (θ2))

diag(1, ejβ1 , 1, ejβ2). (14)

Note that the encoder matrix (14) is a general form of all
encoders presented in the literature to design 2 × 2 FRFD
codes. For instance, if φ = β1 = β2 = 0, (14) is equivalent to
the block diagonal encoder in [3], or if θ1 = θ2 and β1 = β2 =
0, (14) is equivalent to the unitary structure of the Golden code
presented in [5] and [4]. The design goal is thus to find the
optimum set of parameters {φ, θ1, θ2, β1, β2}, which yields the
largest coding gain or the smallest union bound (6) depending
on the constellation.

Proposition 3: The optimum design parameters in (14) for
all PAM constellations are θ1 = θ2 = π/4, β1 = β2 = π/2
and φ = π. In this case δ = δmax = 2.

Proof: For all PAM constellations, the elements of u =
si−sj are even integers so that u2

i = |ui|2. On the other hand,
Proposition 1 clearly states in (11) that θ1 = θ2 = π/4 is the
necessary condition to reach the δmax. In this case, from (13)
we have:

δij =
1
2

∣∣∣|u1|2 − |u2|2ej2β1 − |u3|2ejφ + |u4|2ej(2β2+φ)
∣∣∣

By taking β1 = β2 = π/2 and φ = π,

δij =
1
2

∣∣|u1|2 + |u2|2 + |u3|2 + |u4|2
∣∣ � 2
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TABLE I

IMPLEMENTATION PARAMETERS FOR GA

Population size(p) 700 Stall generation limit 200
Time Limit 5 hours Crossover fraction 0.8

Mutation type Uniform Crossover type Scattered
Ng 1e5 Parameters bound LB=0, UB=2π

where the inequality comes from the fact that |ui| � 2 for
nonzero ui. Finally, δ = min δij = 2.

Proposition 4: For all QAM constellations, δmax = 2 is
not attainable

Proof: is omitted due to limited space. It appear in the
journal version.

V. OPTIMUM PARAMETERS FOR QAM SIGNALING

Analytical derivation of the optimum parameters in (14)
is intractable for QAM constellations. Moreover, due to the
number of parameters and the range of parameters in (14),
exhaustive search seems to be practically impossible. There-
fore, we resort to the use of Genetic Algorithm.

A. Genetic Algorithm

The genetic algorithm [12] is an exceptional search tech-
nique inspired from biological processes for finding the op-
timum solutions to the optimization and search problems.
Generation in each iteration inherits properties from the best
precedent solutions. In each iteration, a population of p so-
lutions which are interpreted as the parents are considered.
Assume Zt denotes the parent population in iteration t:

Zt = {z1
t , · · · , zp

t } (15)

where zi
t is a possible solution in optimization function. In

order to form a possible solution manipulated by the GA,
the optimization parameters should be represented in binary
format and concatenated to each other such that a string of
0s and 1s is formed. A fitness function (cost function) is
also required to measure the quality of solutions. The Fitness
function in our case would be either the coding gain in (5)
or the union bound in (6). From set (15), c new solutions are
generated which are interpreted as the children. The children
population may be expressed as

Zt = {z1
t , · · · , zc

t}. (16)

Generally, there are two ways to generate the children:
(a) Crossover: This type of children are created by swapping
parts of two parents. Scattered crossover technique is the most
cited crossover method. This technique first creates a random
binary vector with the same size as parents. Then if the i-th
bit of generated random vector is 0, corresponding gene (bit)
is selected from the first parent, otherwise it is selected from
the second parent. Ultimately, all selected genes are combined
to form a child.
(b) Mutation: Mutation operator creates new children by
randomly changing the bits (genes) of each solution in the
set Zt. In order to mute a parent, a fraction of bits of that

TABLE II

OPTIMUM PARAMETERS OF UNITARY ENCODER MATRIX M FOR BPSK,

4-PAM AND 4-QAM.

Signaling φ [β1, β2] [θ1, θ2]
BPSK / Min PUB 59.031 [90.007, 60.757] [44.723, 134.99]
4-PAM / Min PUB 65.152 [90.146, 147.56] [45.178, 44.914]

4-QAM / Max δ 264.12 [89.989, 2.920] [31.705, 211.69]
4-QAM / Min PUB 286.49 [89.984, 150.93] [353.23, 96.5]

TABLE III

COMPARISON OF THE CODING GAIN OF SOME FRFD STBCS WITH

M = 2, N = 2, T = 2

Signaling δ ST code [3] δ ST code [5] δ-Our code
BPSK 0.8944 1.7889 2.000
4-PAM 0.8944 1.7889 2.000
4-QAM 0.8944 1.7889 1.782

parent is selected and replaced by new uniformly generated
random bits. The aim of mutation and crossover in the GA is
to allow the algorithm to avoid local optima by preventing the
population from becoming too similar to each other.

After generating a population Zt, the new population of
parents Zt+1 for (t+1)’s iteration must be chosen. Typically,
p individuals (solutions) out of p+c parents and children who
have higher fitness values are selected to make the new parent
generation {z1

t+1, · · · , zp
t+1}.

If any of the following conditions happens, GA stops.
(1) Allocated time is reached (Time Limit),
(2) The specified number of generation is reached (Ng),
(3) There is no improvement in the objective function for cer-
tain number of successive iterations (stall generation). Other
implementation parameters, which were used in our program,
have been presented in Table I. Interested reader may refer to
reference [12] for more details.

B. Optimum parameters for QAM from GA

Table II shows the parameter results found by the GA search
based on maximizing the coding gain and minimizing the
union bound for the proposed ST code in (8) with the encoder
matrix in (14). For comparison, the maximum coding gains of
the previous STBCs and the proposed code are presented in
Table III for BPSK, 4-PAM and 4-QAM. Results show that
our proposed code achieves the maximum possible coding gain
δmax for all PAM constellations. This gain is larger than the
coding gains reported previously in the literature [3], [5]. On
the other hand, for QAM signaling, our results are better than
[3] but the same as the Golden code [5].

VI. SIMULATION RESULTS

In this section, we provide simulation results for a multiple
antenna system with 2 transmit antennas, 2 receive antennas
and 2 signaling intervals, using the proposed FRFD STBC in
12 and previously proposed FRFD codes in [4], [13], [3] and
[5].

Fig (1) shows the performance of the proposed code, the
Golden code [5], [4], and Yao’s code [3] for BPSK and 4-PAM.
As expected, the proposed code outperforms significantly other
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Fig. 1. The symbol error rate of different FRFD ST codes for BPSK and
4-PAM signalings.

existing ST codes with the gains of almost 1.5 dB and 2 dB
at the SER of 10−3 for BPSK and 4-PAM, respectively. Note
that the performance of Golden code [5] and Dayal’s code [4]
are the same.

Fig (2) compares the performance of our proposed code
12 with the TAST code in [13], the Golden code [5] and
Yao’s code [3] for 4-QAM and 16-QAM signalings. The
proposed code performs the same as the Golden code [5] and
outperforms the codes presented in [13] and [3].

VII. CONCLUSION

In this paper, we proposed a new FRFD STBC for a system
with two transmit and two receive antennas. This code can be
extended to a larger number of transmit antennas by stacking
it horizontally or vertically [4]. This code structure is more
general than existing codes in that all the previous STBC
designs are found to be special cases of it. We analytically
determined the optimal parameters in the STBC structure (14)
that maximize the coding gain for all PAM constellations.
The maximum possible coding gain with any unitary encoder
matrix M is δmax = 2 which is attainable only in PAM.
Due to the number of parameters in (14), we introduced the
genetic algorithm as a powerful optimization method to find
the best parameters for QAM since analytical optimization is
intractable. Based on theoretical values of coding gain and
simulation results, the proposed STBC offers considerable
performance improvement in comparison to the other known
PAM codes. (Note that the final transmitted symbols are
complex though.) In the case of QAM, the proposed code
shows the same performance as the Golden code. Although
we considered two distinct criteria for optimization, i.e. min-
imizing the union bound and maximizing the coding gain,
simulation results show that the codes designed from both
criteria perform almost the same. Therefore, due to its lower
computational complexity, the coding-gain based optimization
is preferable for obtaining optimal codes.

10 15 20 25 30
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Yao Code
Golden code
Our code,maximizing δ
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Fig. 2. The symbol error rate of different ST Codes for 4-QAM and 16-QAM
signalings.
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