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Infinite Series Representations of the Trivariate and
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Abstract— In this paper, using Miller’s approach and Dougall’s
identity, we derive new infinite series representations for the
quadrivariate Nakagami-m joint density function, cumulative
distribution function (cdf) and characteristic functions (chf).
The classical joint density function of exponentially correlated
Nakagami-m variables can be identified as a special case of the
joint density function obtained here. Our results are based on
the most general arbitrary correlation matrix possible. Moreover,
the trivariate density function, cdf and chf for an arbitrary
correlation matrix are also derived from our main result. Bounds
on the series truncation error are also presented. Finally, we
develop several representative applications: the outage probabil-
ity of triple branch selection combining (SC), the moments of
the equal gain combining (EGC) output signal to noise ratio
(SNR) and the moment generation function of the generalized
SC(2,3) output SNR in an arbitrarily correlated Nakagami-m
environment. Simulation results are also presented to verify the
accuracy of our theoretical results.

Index Terms— Characteristic function (chf), constant correla-
tion, exponential correlation, fading, quadrivariate Nakagami-m
distribution, trivariate Nakagami-m distribution.

I. INTRODUCTION

S INCE multipath fading (or simply fading) is an important
radio propagation mechanism affecting wireless commu-

nications, several statistical models have been used to describe
the received envelope. For example, the Rayleigh, Rician and
Weibull distributions are used to characterize the received
envelope over a small geographical area (distances on the
order of half the signal wavelength) and the log normal
distribution, over large areas. The Nakagami-m distribution [1]
is a more general model which includes a variety of fading
environments. Furthermore, [2], [3] demonstrate that it is more
flexible and fits more accurately to the experimental data for
many physical propagation channels than other distributions.

The joint probability density function (pdf) of N correlated
Nakagami variables occurs frequently in many performance
analysis problems [4]-[8]. The bivariate Nakagami density
function is given in [1]. Tan and Beaulieu [9] derive an infinite
series representation for bivariate Nakagami cdf. Blumenson
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and Miller [10] derive the joint pdf of p generalized Rayleigh
variables when the underlying Gaussian variables have tridiag-
onal form of inverse covariance matrix. Miller in [11] derives
the joint pdf of three generalized Rayleigh variables when the
underlying Gaussian variables have an arbitrary covariance
matrix. Karagiannidis et al. extend Blumenson and Miller’s
result [10] to come up with the multivariate Nakagami-m
distribution function for exponentially correlated underlying
Gaussian variables [12]. Green’s matrix approach is used in
[13] to approximate an arbitrary correlation matrix to a matrix
with a tridiagonal form of inverse such that the results given
in [12] can be harnessed for applications. A comprehensive
analysis of the multivariate Rayleigh distribution can be found
in [14]. Recently, Chen and Tellambura [15] derive new infi-
nite series for quadrivariate Rayleigh distribution for possibly
the most general correlation matrix using Miller’s approach
[16].

In this paper, we use Miller’s approach [11] and Dougall’s
identity [17] to obtain new infinite series representations for
the joint pdf, cdf and chf of four correlated Nakagami-m
variables when m is either an integer or half integer such that
m ≥ 3/2. Careful study of the related literature reveals that in
all of the above studies, a restriction is placed on the inverse
correlation matrix. The restriction is that a certain number of
off-diagonal terms of the inverse correlation matrix must be
zero. The inverse correlation matrix used in this paper is the
most general arbitrary matrix that appears to be analytically
tractable - just one off-diagonal term of the inverse correlation
matrix must be zero - and it is the same restriction considered
in [15]. The trivariate joint pdf, cdf and chf for an arbitrary
correlation matrix are presented as special cases of our more
general result. The trivariate scenario is discussed in detail
with respect to the exponential [4] and constant correlation
models since no result for trivariate Nakagami-m distribution
for constant correlation model appears in the open literature.
However, obtaining the quadrivariate Nakagami-m distribution
for an arbitrary correlation matrix seems intractable. The
bound on the series truncation error and numerical results are
presented to show the convergence behavior of the series. Fur-
thermore, the outage probability of three branch SC, moments
of the three branch EGC output SNR and the output moment
generation function of the generalized SC (2,3) receiver are
derived as applications.

This paper is organized as follows. The main derivation of
quadrivariate Nakagami-m distribution is given in Section II.
The cdf, chf and simplifications to existing cases are also

1536-1276/07$25.00 c© 2007 IEEE

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 18, 2009 at 17:04 from IEEE Xplore.  Restrictions apply. 

ctlabadmin
2007



DHARMAWANSA et al.: INFINITE SERIES REPRESENTATIONS OF THE TRIVARIATE AND QUADRIVARIATE NAKAGAMI-M DISTRIBUTIONS 4321

presented. Section III discusses the trivariate Nakagami-m
distribution with emphasize on the exponential and constant
correlation models. In addition, brief numerical results are
presented to show the infinite series’ convergence behavior
as a function of the fading and correlation parameters. Sec-
tion IV deals with the applications of the new results and the
numerical and simulation results. Finally, concluding remarks
are made in Section V.

II. QUADRIVARIATE DISTRIBUTION

Let {X1,X2,X3,X4} be four zero mean Gaussian vectors
with Xi = (x1i x2i . . . . . . x2mi)

T for all 1 ≤ i ≤ 4.
Here (·) denotes the transpose of a matrix. Let Vj =
(xj1 xj2 xj3 xj4), 1 ≤ j ≤ 2m be independent four di-
mensional zero mean Gaussian vectors composed of the jth
components of Xi. In this display, the columns are the 2m-
dimensional Gaussian vectors

X1 X2 X3 X4

V1 x11 x12 . . . x14

V2 x21 x22 . . . x24

. . . . . . . . . . . .
V2m x2m,1 x2m,2 . . . x2m,4

(1)

and the rows Vj are independent from each other and with
identical covariance matrix M4. The inverse correlation matrix
of Vj is

W4 = M−1
4 =

⎛
⎜⎜⎝
w11 w12 w13 w14

w12 w22 w23 w24

w13 w23 w33 w34

w14 w24 w34 w44

⎞
⎟⎟⎠ . (2)

The derivation of the joint pdf becomes analytically tractable
when one or more off-diagonal terms of W4 are zero. For
example, in the following previous work [7], [8], [10], [12],
[13], the inverse correlation matrix is restricted to be tri-
diagonal, i.e., wkl = 0 for |k − l| > 1.

In our results, the restriction is only w14 = 0 [15]. This
appears to be the most general inverse covariance matrix that
can be handled by the Miller’s approach. Clearly, our results
are more general than [7], [8], [10], [12], [13]. However, the
solution for an arbitrary covariance matrix (i.e., not subject to
w14 = 0) seems intractable.

The amplitudes ri = |Xi| (1 ≤ i ≤ 4), being the square
root of sum of squares of 2m zero mean i.i.d. Gaussian

random variables, are Nakagami-m random variables [1]. Here
| · | denotes the norm of a column vector . The joint pdf of
{X1,X2,X3,X4} is clearly given by

f(X1,X2,X3,X4) =
2m∏
j=1

f(Vj)

=
Wm

4

(2π)4m
exp
{
−1

2

2m∑
j=1

VjW4VT
j

}
.

(3)

Expanding the quadratic form in (3) and interchanging Vj ’s
by Xi (see the display in (1)), we find that

f(X1,X2,X3,X4) =
Wm

4

(2π)4m
exp
{
−1

2

4∑
i=1

wiir
2
i

}

× exp
(−w23XT

2 X3

)
exp

{−XT
1 (w12X2 + w13X3)

}
× exp

{−XT
4 (w24X2 + w34X3)

}
. (4)

>From this pdf (4), we need to integrate out Xi, 1 ≤ i ≤
4, subject to the constraints ri = |Xi|, which will yield the
joint pdf of correlated Nakagami variables {r1, r2, r3, r4} [11].
Consequently, we write the joint Nakagami pdf as given in (5),
where dσxi

1, 1 ≤ i ≤ 4 are the elements of surface area and
W4 is the determinant of the square matrix W4. The second
integral in (5) can be evaluated as [11, eq.2.2.9]∫

|X1|=r1
exp

{−XT
1 (w12X2 + w13X3)

}
dσx1 = (2πr1)

m

× |w12X2 + w13X3|1−mIm−1 (r1|w12X2 + w13X3|) (6)

where In(x) is the nth order modified Bessel function of the
first kind [18], and the third integral follows the same form.
Furthermore, the right hand side of (6) can be rewritten using
the generalized Neumann addition formula [18, p. 365] when
m ≥ 3/2 being an integer or half integer, as given in (7),
where Γ (x) is the gamma function [19], Cλn(x) denotes the
Gegenbauer or ultraspherical polynomials [19] and θ is the
angle between the vectors X2 and X3. The ultraspherical
polynomials of degree n are the coefficients of rn in the

1If X = {x1, x2, · · · , xn} is an n-dimensional vector, then
�
|X|=r

dσx

represents the surface area of the sphere of radius r. The integral is taken
over the surface of the sphere where dσx is the element of surface area.

f (r1, r2, r3, r4) =
Wm

4

(2π)4m
exp
{
−1

2

(
w11r

2
1 + w22r

2
2 + w33r

2
3 + w44r

2
4

)}∫
|X2|=r2

exp
(−w23XT

2 X3

)
dσx2

×
∫
|X1|=r1

exp
{−XT

1 (w12X2 + w13X3)
}
dσx1

∫
|X4|=r4

exp
{−XT

4 (w24X2 + w34X3)
}
dσx4

∫
|X3|=r3

dσx3 . (5)

(2πr1)
m |w12X2 +w13X3|1−mIm−1 (r1|w12X2 + w13X3|) =

2m−1(2π)mΓ(m− 1)r1
(w12w13r2r3)

m−1

∞∑
k=0

(m+ k − 1)Im+k−1 (w12r1r2)

× Im+k−1 (w13r1r3)Cm−1
k (cos θ) . (7)
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power-series expansion given by [19]

(
1 − 2xr + r2

)−λ
=

∞∑
n=0

Cλn(x)rn

where λ > − 1
2 . The following closed-form expression is

available:

Cλn(cos θ) =
n∑

k,l=0
k+l=n

Γ(λ+ k)Γ(λ+ l)
k!l![Γ(λ)]2

cos(k − l)θ.

The fourth integral in (5) represents the surface are of a
2m dimensional sphere, which can be evaluated using [11,
eq.1.5.19]. Upon the evaluation of these integrals, (5) can be
written as shown in (8) at the bottom. The product of two
ultraspherical polynomials can be written using the Dougall’s
identity given in [17, eq.6.8.4] as

Cλp (x)Cλq (x) =
min(p,q)∑
n=0

a(n, p, q)Cλp+q−2n(x)

where

a(n, p, q) =
(p+ q + λ− 2n)(λ)n(λ)p−n(λ)q−n

(p+ q + λ− n)n!(p− n)!(q − n)!(λ)p+q−n

× (2λ)p+q−n(p+ q − 2n)!
(2λ)p+q−2n

with (λ)n = Γ(λ+n)
Γ(λ) denotes the Pochhammer symbol [19]

and min(p, q) selects the minimum of p, q. We make use of
the Dougall’s identity in (8) to yield (9). The integral in (9)
may be solved using [11, eq.2.2.26] to yield the quadrivariate
Nakagami-m density as given in (10), where (nr ) = n!

r!(n−r)! .
To the best of our knowledge (10) is a novel result. The above
result would have been impossible unless w14 = 0 and in

general it is possible to obtain results analogous to (10) if
at least one of the elements w12, w13, w14, w23, w24, w34 is
zero. In [12] and [13] the authors make the three elements
w13, w14 and w24 equal to zero simultaneously to come up
with tridiagonal form of inverse covariance matrix. So it is
evident that our formulation includes all those scenarios as
special cases. This makes our result best possible with the
available tools.

The quadrivariate Rayleigh density derived by Chen and
Tellambura [15] for the same scenario can be considered as the
case when m = 1. But, their result cannot be obtained directly
from (10) due to the fact that (8) does not hold for m = 1
[19]. However, the degenerated cases of (10) are valid for all
m ≥ 1 as shown below. Moreover, if a given covariance matrix
does not match with the criteria mentioned above, we can use
a constrained least square approach as given by [15] to find
the best approximate matrix. Similar kind of arguments based
on Green’s matrix approach are used in [13] to approximate a
given covariance matrix with a matrix having tridiagonal form
of inverse.

As a sanity check, we next consider several special cases
of (10).

A. Independent Nakagami-m Distributions

It is obvious that W4 is a diagonal matrix having
{w11, w22, w33, w44} along the main diagonal if all Nakagami
variables are independent. Since all off-diagonal elements are
zero, letting k, l, n equal to zero and using the following
identity involving the modified Bessel function of the first
kind

lim
α→0

In(αx)
αn

=
xn

2nΓ(n+ 1)
(11)

f (r1, r2, r3, r4) =
Wm

4 2m−1Γ2(m− 1)r1r3r4 exp
{− 1

2

(
w11r

2
1 + w22r

2
2 + w33r

2
3 + w44r

2
4

)}
(2π)mΓ(m) (w12w13w24w34)

m−1
r2m−2
2

∞∑
k=0

∞∑
l=0

(m+ k − 1)

× (m+ l − 1)Im+k−1 (w12r1r2) Im+k−1 (w13r1r3) Im+l−1 (w24r2r4) Im+l−1 (w34r3r4)

×
∫
|X2|=r2

exp
(−w23XT

2 X3

)
Cm−1
k (cos θ)Cm−1

l (cos θ) dσx2 . (8)

f (r1, r2, r3, r4) =
Wm

4 2m−1Γ2(m− 1)r1r3r4 exp
{− 1

2

(
w11r

2
1 + w22r

2
2 + w33r

2
3 + w44r

2
4

)}
(2π)mΓ(m) (w12w13w24w34)

m−1
r2m−2
2

∞∑
k=0

∞∑
l=0

min(k,l)∑
n=0

a(n, k, l)

× (m+ k − 1)(m+ l − 1)Im+k−1 (w12r1r2) Im+k−1 (w13r1r3) Im+l−1 (w24r2r4)

× Im+l−1 (w34r3r4)
∫
|X2|=r2

exp
(−w23XT

2 X3

)
Cm−1
k+l−2n (cos θ) dσx2 . (9)

f (r1, r2, r3, r4) =
Wm

4 2m−1Γ2(m− 1)r1r2r3r4 exp
{− 1

2

(
w11r

2
1 + w22r

2
2 + w33r

2
3 + w44r

2
4

)}
Γ(m) (w12w13w23w24w34)

m−1 (r2r3)
m−1

∞∑
k=0

∞∑
l=0

min(k,l)∑
n=0

(−1)k+la(n, k, l)

× (m+ k − 1)(m+ l − 1)
(
k + l + 2m− 2n− 3

2m− 3

)
Im+k−1 (w12r1r2) Im+k−1 (w13r1r3) Im+l−1 (w24r2r4)

× Im+l−1 (w34r3r4) Im+k+l−2n−1 (w23r2r3) . (10)
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we can simplify (10) as

f (r1, r2, r3, r4) =
4∏
i=1

2
Γ(m)

(wii
2

)m
r2m−1
i exp

(
−wii

2
r2i

)
.

(12)
Therefore, we get a product of four Nakagami-m probability
density functions.

B. Exponentially Correlated Nakagami-m Variables

The covariance matrix of this model is given as [4], [12]
mi,j = ρ|i−j|, where 0 ≤ ρ < 1. Since W4 is tridiagonal,
w24 = w13 = 0, w11 = w44 = 1

1−ρ2 , w22 = w33 = 1+ρ2

1−ρ2 and
w12 = w23 = w34 = −ρ

1−ρ2 . Substituting those values in (10)
and using (11), we can write the joint pdf of exponentially
correlated quadrivariate Nakagami variables as

f (r1, r2, r3, r4) =
rm1 r

m
4 r2r3

2m−1Γ(m)ρ3(m−1) (1 − ρ2)3

× exp

{
− r21 + r24

2 (1 − ρ2)
−
(
1 + ρ2

) (
r22 + r23

)
2 (1 − ρ2)

}

× Im−1

(
ρr1r2
1 − ρ2

)
Im−1

(
ρr2r3
1 − ρ2

)
Im−1

(
ρr3r4
1 − ρ2

)
. (13)

This expression exactly matches with the result given in [12,
eq.3].

The quadrivariate cdf is given by definition [20]

F (r1, r2, r3, r4) =
∫ r1

0

∫ r2

0

∫ r3

0

∫ r4

0

f (y1, y2, y3, y4)

× dy1dy2dy3dy4. (14)

Substituting (10) in (14), followed by expansion of the Bessel
function terms with equivalent infinite series and subsequent
term by term integration assuming uniform convergence, we

get the cdf as given in (15), where

κ1 = i1 + i2 +m+ k

κ2 = i1 + i3 + i5 + k +m+ l − n

κ3 = i2 + i4 + i5 + k +m+ l − n

κ4 = i3 + i4 +m+ l

and γ(a, x) =
∫ x
0 t

a−1 exp(−t)dt is the incomplete gamma
function [19]. The joint chf of quadrivariate Nakagami distri-
bution is defined as [20]

ψ (v1, v2, v3, v4) = E {exp j (v1r1 + v2r2 + v3r3 + v4r4)}
(16)

where j =
√−1 and E {·} denotes the mathematical expec-

tation. Following the same line of arguments as for the cdf
derivation and using [21, eq.3.462.1], the chf can be written as
given in (17), where Dv(x) is the parabolic cylinder function
[21]. Equations (15) and (17) can easily be simplified to
the respective cdf and chf for independent and exponential
correlation cases.

C. Truncation Error

Let us assume that the cdf series (15) is truncated with
K,L, I1, I2, I3, I4, I5 in the variables k, l, i1, i2, i3, i4 and i5
respectively. Then the remaining terms comprise the truncation
error, ET , which can be expressed using the approach given
in [15]. After some manipulations and when ξ is given by

ξ =
Wm

4 Γ2(m− 1)a(n, k, l)(m+ k − 1)(m+ l− 1)
Γ(m)i1!i2!i3!i4!i5!Γ (i1 +m+ k) Γ (i2 +m+ k)

×
(
k+l+2m−2n−3

2m−3

)
w2i1+k

12 w2i2+k
13 w2i3+l

24 w2i4+l
34 w2i5+k+l−2n

23

Γ (i3 +m+ l) Γ (i4 +m+ l) Γ (i5 +m+ k + l − 2n)

× Γ (κ1) Γ (κ2) Γ (κ3) Γ (κ4)
wκ1

11w
κ2
22w

κ3
33w

κ4
44

F (r1, r2, r3, r4) =
Wm

4 Γ2(m− 1)
Γ(m)

∞∑
k,l=0

min(k,l)∑
n=0

∞∑
i1,i2,i3,i4,i5=0

(−1)k+la(n, k, l)(m+ k − 1)(m+ l − 1)
i1!i2!i3!i4!i5!wκ1

11w
κ2
22w

κ3
33w

κ4
44

×
(
k+l+2m−2n−3

2m−3

)
w2i1+k

12 w2i2+k
13 w2i3+l

24 w2i4+l
34 w2i5+k+l−2n

23

Γ (i1 +m+ k) Γ (i2 +m+ k) Γ (i3 +m+ l) Γ (i4 +m+ l) Γ (i5 +m+ k + l− 2n)
γ

(
κ1,

w11r
2
1

2

)
γ

(
κ2,

w22r
2
2

2

)

× γ

(
κ3,

w33r
2
3

2

)
γ

(
κ4,

w44r
2
4

2

)
(15)

ψ (v1, v2, v3, v4) =
16Wm

4 Γ2(m− 1)
Γ(m)

exp
{
−1

4

(
v2
1

w11
+

v2
2

w22
+

v2
3

w33
+

v2
4

w44

)} ∞∑
k,l=0

min(k,l)∑
n=0

∞∑
i1,i2,i3,i4,i5=0

(−1)k+l

× a(n, k, l)(m+ k − 1)(m+ l − 1)
(
k+l+2m−2n−3

2m−3

)
Γ (2κ1) Γ (2κ2) Γ (2κ3) Γ (2κ4)

i1!i2!i3!i4!i5!Γ (i1 +m+ k) Γ (i2 +m+ k) Γ (i3 +m+ l) Γ (i4 +m+ l) Γ (i5 +m+ k + l − 2n)

× w2i1+k
12 w2i2+k

13 w2i3+l
24 w2i4+l

34 w2i5+k+l−2n
23

2κ1+κ2+κ3+κ4wκ1
11w

κ2
22w

κ3
33w

κ4
44

D−2κ1

(
− jv1√

w11

)
D−2κ2

(
− jv2√

w22

)
D−2κ3

(
− jv3√

w33

)
D−2κ4

(
− jv4√

w44

)
(17)
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the truncation error can be expressed as

|ET | <
K−1∑
k=0

L−1∑
l=0

min(k,l)∑
n=0

I1−1∑
i1=0

I2−1∑
i2=0

I3−1∑
i3=0

I4−1∑
i4=0

∞∑
i5=I5

ξ

+
K−1∑
k=0

L−1∑
l=0

min(k,l)∑
n=0

I1−1∑
i1=0

I2−1∑
i2=0

I3−1∑
i3=0

∞∑
i4=I4

∞∑
i5=0

ξ

+
K−1∑
k=0

L−1∑
l=0

min(k,l)∑
n=0

I1−1∑
i1=0

I2−1∑
i2=0

∞∑
i3=I3

∞∑
i4=0

∞∑
i5=0

ξ

+
K−1∑
k=0

L−1∑
l=0

min(k,l)∑
n=0

I1−1∑
i1=0

∞∑
i2=I2

∞∑
i3=0

∞∑
i4=0

∞∑
i5=0

ξ

+
K−1∑
k=0

L−1∑
l=0

min(k,l)∑
n=0

∞∑
i1=I1

∞∑
i2=0

∞∑
i3=0

∞∑
i4=0

∞∑
i5=0

ξ

+
K−1∑
k=0

∞∑
l=L

min(k,l)∑
n=0

∞∑
i1=0

∞∑
i2=0

∞∑
i3=0

∞∑
i4=0

∞∑
i5=0

ξ

+
∞∑
k=K

∞∑
l=0

min(k,l)∑
n=0

∞∑
i1=0

∞∑
i2=0

∞∑
i3=0

∞∑
i4=0

∞∑
i5=0

ξ. (18)

Further simplification of (18) is a difficult task. A tighter
bound can be obtained with the approach due to Tan and
Beaulieu [9] at the expense of more mathematical rigor.

III. TRIVARIATE DISTRIBUTION

Here we obtain the trivariate Nakagami-m density for an
arbitrary correlation matrix from (10) since it is not available
in the open literature. If {r1, r2, r3} are independent from r4,
then we can write the quadrivariate density as a product of
trivariate and a univariate density function. Equating w24, w34

to zero and using (10) with l = n = 0, the trivariate Nakagami
density for m ≥ 3/2 can be written as

f (r1, r2, r3) =
Wm

3 r1r2r3

(m− 1) (w12w13w23)
m−1

× exp
{
−1

2
(
w11r

2
1 + w22r

2
2 + w33r

2
3

)}

×
∞∑
k=0

(−1)k(m+ k − 1)
(

2m+ k − 3
2m− 3

)

× Im+k−1 (w12r1r2) Im+k−1 (w13r1r3)
× Im+k−1 (w23r2r3) (19)

where W3 denotes the determinant of the inverse covariance
matrix corresponding to the trivariate case. It should be noted
that no restriction is imposed on the covariance matrix in this
derivation. Our result is exactly equivalent to the previous re-
sult given in [11, eq.2.2.18] for trivariate generalized Rayleigh
density function. The trivariate joint density for an arbitrary
covariance matrix with m = 1 is given in [16].

A. Joint cdf and chf

Following the same line of arguments as for the derivation
of trivariate cdf from quadrivariate case, we can obtain the

trivariate cdf from (15) as

F (r1, r2, r3) =
Wm

3

(m− 1)

∞∑
k,p,q,r=0

(−1)k(m+ k − 1)
p!q!r!Γ(p+m+ k)

×
(
k+2m−3
2m−3

)
w2p+k

12 w2q+k
13 w2r+k

23

Γ(q +m+ k)Γ(r +m+ k)wε111w
ε2
22w

ε3
33

γ

(
ε1,

w11r
2
1

2

)

× γ

(
ε2,

w22r
2
2

2

)
γ

(
ε3,

w33r
2
3

2

)
(20)

where

ε1 = p+ q +m+ k

ε2 = p+ r +m+ k

ε3 = q + r +m+ k.

The joint characteristic function can also be derived in similar
manner as

ψ (v1, v2, v3) =
8Wm

3 Γ(m− 1)
Γ(m)

× exp

{
−1

4

3∑
i=1

v2
i

wii

} ∞∑
k,p,q,r=0

(−1)k(m+ k − 1)
p!q!r!2ε1+ε2+ε3

×
(
2m+k−3
2m−3

)
Γ (2ε1) Γ (2ε2) Γ (2ε3)w

2p+k
12 w2q+k

13 w2r+k
23

Γ(m+ k + p)Γ(m+ k + q)Γ(m+ k + r)wε111w
ε2
22w

ε3
33

×D−2ε1

(−jv1√
w11

)
D−2ε2

(−jv2√
w22

)
D−2ε3

(−jv3√
w33

)
.

(21)

Next we consider (20) with respect to the exponential and
constant correlation models.

1) Exponential Correlation Model: The inverse covariance
matrix of this model given in [4], [12] can be described as
w13 = 0 and w11 = w33 = 1

1−ρ2 , w22 = 1+ρ2

1−ρ2 , w12 =
w23 = −ρ

1−ρ2 . Hence (20) can be simplified to

F (r1, r2, r3) =

(
1 − ρ2

)m
Γ(m)

×
∞∑
k=0

∞∑
l=0

ρ2(k+l)

k!l!Γ(k +m)Γ(l +m) (1 + ρ2)k+l+m

× γ

(
k +m,

r21
2 (1 − ρ2)

)
γ

(
k + l +m,

(
1 + ρ2

)
r22

2 (1 − ρ2)

)

× γ

(
l +m,

r23
2 (1 − ρ2)

)
(22)

which agrees with the result given in [12, eq.6].

2) Constant Correlation Model: The correlation among
closely placed diversity antennas may be approximated with
this correlation model [4]. The correlation matrix of this model
is described by mi,j = ρ(i �= j) and mi,i = 1, where
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− 1
2 < ρ < 1. Hence, (20) can be simplified to

F (r1, r2, r3) =
(1 − ρ)m(1 + 2ρ)2m

(m− 1)(1 + ρ)3m

×
∞∑

k,p,q,r=0

(m+ k − 1)
(
k+2m−3
2m−3

)
p!q!r!Γ(p+m+ k)Γ(q +m+ k)Γ(r +m+ k)

×
(

ρ

1 + ρ

)ε1+ε2+ε3−3m

γ

(
ε1,

(1 + ρ)r21
2(1 − ρ)(1 + 2ρ)

)

× γ

(
ε2,

(1 + ρ)r22
2(1 − ρ)(1 + 2ρ)

)
γ

(
ε3,

(1 + ρ)r23
2(1 − ρ)(1 + 2ρ)

)
.

(23)

It should be noted that the expression for joint cdf given in
[12] is not valid for the constant correlation case. The result
corresponding to m = 1 is given in [15, eq.8].

B. Truncation Error

For brevity, we consider the consequences of the truncation
of (20) only. The truncation error of the cdf series (20) can
be found by limiting the variables k, p, q, r to K,P,Q and R
terms respectively. Following the approach given in [15], the
truncation error ET can be expressed as

|ET | <
K−1∑
k=0

P−1∑
p=0

Q−1∑
q=0

∞∑
r=R

ε(k, p, q, r)

+
K−1∑
k=0

P−1∑
p=0

∞∑
q=Q

∞∑
r=0

ε(k, p, q, r)+
K−1∑
k=0

∞∑
p=P

∞∑
q=0

∞∑
r=0

ε(k, p, q, r)

+
∞∑
k=K

∞∑
p=0

∞∑
q=0

∞∑
r=R

ε(k, p, q, r) (24)

where

ε(k, p, q, r) =
Wm

3 (m+ k − 1)
(
k+2m−3
2m−3

)
Γ (ε1) Γ (ε2) Γ

(m− 1)p!q!r!Γ(p+m+ k)Γ(q +m+ k)

× (ε3)w
2p+k
12 w2q+k

13 w2r+k
23

Γ(r +m+ k)wε111w
ε2
22w

ε3
33

.

The error bound (24) may be loose for some r1, r2, r3 since we
upper bound the incomplete Gamma function with γ(a, x) ≤
Γ(a). More tighter bound, which reflects the effect of r1, r2, r3
on the convergence rate of (20) can be derived following the
approach of Tan and Beaulieu [9]. We do not mention that
bound here due to the high complexity involved.

We now give numerical results to illustrate the convergence
behavior of the cdf series (20). For simplicity we assume
the constant correlation model here, and Table I lists the
number of the terms needed in (23) to achieve an accuracy
of five significant figures. The dependency of the convergence
on r1, r2, r3 is obvious from Table I. The number of terms
needed for a given accuracy increases as r1, r2, r3 increase.
The increase of correlation also results in the number of terms
to be increased. However, the dependency on m is not trivial.
As can be seen from the Table I, for some values of r1, r2, r3,
the number of terms decreases as m increases. On the contrary,
the number of terms increases as m increases after some
threshold values of r1, r2, r3.

TABLE I

NUMBER OF TERMS NEEDED IN (23) TO ACHIEVE FIVE SIGNIFICANT

FIGURE ACCURACY WHEN r1 = r2 = r3 = r.

m ρ r = 2 r = 3 r = 5
K,P, Q,R K, P, Q, R K, P, Q, R

0.1 2, 2, 2, 2 2, 3, 3, 3 2, 3, 3, 3
0.3 2, 2, 2, 2 4, 4, 4, 4 4, 6, 5, 5

2 0.7 3, 3, 3, 3 7, 10, 10, 10 10, 14, 14, 14
0.9 9, 12, 12, 12 13, 22, 22, 22 18, 42, 42, 42
0.1 1, 2, 2, 2 2, 3, 3, 3 3, 4, 4, 4
0.3 1, 2, 2, 2 3, 4, 4, 4 4, 6, 6, 6

3 0.7 3, 4, 4, 4 6, 9, 9, 9 11, 15, 15, 15
0.9 9, 12, 12, 12 13, 22, 22, 22 20, 44, 44, 44
0.1 1, 2, 2, 2 1, 3, 3, 3 3, 4, 4, 4
0.3 2, 2, 2, 2 3, 4, 4, 4 4, 6, 6, 6

5 0.7 2, 3, 3, 3 7, 9, 9, 9 12, 17, 17, 17
0.9 9, 12, 12, 12 14, 21, 21, 21 24, 47, 47, 47
0.1 1, 2, 2, 2 2, 3, 3, 3 3, 4, 4, 4
0.3 2, 2, 2, 2 3, 4, 4, 4 5, 7, 7, 7

8 0.7 2, 3, 3, 3 7, 9, 9, 9 12, 18, 18, 18
0.9 9, 12, 12, 12 14, 21, 21, 21 27, 48, 48, 48

IV. APPLICATIONS

The new results developed in Section III enable the per-
formance analysis of 3-branch diversity systems in arbitrarily
correlated Nakagami fading channels. This section presents
three possible applications with numerical results. We also
present the outage probability of four branch SC for the special
covariance matrix given in [15].

A. Outage Probability of 3-Branch SC

Outage probability is a standard and widely-used perfor-
mance measure of diversity systems. It is defined as the
probability that the output instantaneous SNR γ falls below
a certain given threshold γth. For independent fading, outage
expressions have been fully developed (for example see [22]
and references therein). This is not however true for correlated
fading. Here, we use the joint tri-variate Nakagami cdf (20) to
evaluate the outage probability of 3-branch SC in correlated
fading channels.

We assume that the noise components at different diversity
branches are additive white Gaussian noise (AWGN) with
identical power spectral density. Let γk and γ̄k denote the
instantaneous and the average SNR at the k-th branch (k =
1, 2, 3). In SC, the branch with the largest instantaneous SNR
is selected as the output, γsc = max(γ1, γ2, γ3). Using the
relation γk = γ̄k

E(r2k)
r2k = γ̄k

2mψkk
r2k , where rk is the amplitude

of the received signal at the k-th branch, we may obtain the
outage probability as

Pout = Pr(0 ≤ γsc ≤ γth)

=F

(√
2mγthψ11

γ̄1
,

√
2mγthψ22

γ̄2
,

√
2mγthψ33

γ̄3

)

(25)

where F (λ1, λ2, λ3) is the joint cdf of the branch amplitudes
(20). Note that the covariance matrix Ψ specifies the correla-
tion (fading correlation) between three Gaussian samples. The
relationship between the envelope correlation and the fading
correlation can be found [23, eq.1.5.26]. Thus, the outage can
be evaluated in terms of envelope correlation and the average
branch SNR.
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Fig. 1. Outage probability of SC versus the normalized average branch SNR
γ̄/γth in correlated Nakagami-m fading channel.

Let us consider the constant correlation model described
by mij = ρ(i �= j) and mii = 1, where − 1

2 < ρ < 1.
Now, using (24), the outage probability of three branch SC
can be found. Fig 1. depicts the impact of correlation on the
outage probability of three SC over correlated Nakagami-m
environment for various values of m. As can be seen from
the graphs, the correlation among the branches degrades the
performance of SC. The inverse of the covariance matrix

M =

⎛
⎜⎜⎝

1 0.2920 0.2988 0.1121
0.2920 0.6602 0.2031 0.1585
0.2998 0.2031 0.7625 0.1888
0.1121 0.1585 0.1888 0.6431

⎞
⎟⎟⎠ (26)

given in [15] satisfies the condition w14 = 0. Hence the
outage probability of four branch SC can be calculated using
(16), as shown in Fig. 2. Simulated outage probabilities are
also shown. There is an excellent agreement between the
theoretical results and the simulation results.

B. Moments of the 3-Branch EGC Output SNR

The moments of the output of a diversity combiner can be
used as alternative performance measures to the conventional
error-rate analysis. However, a single moment such as the
mean SNR is not sufficiently informative and higher order
moments can furnish additional information for system design.
For example, the variability of the output of a diversity
combiner is indicated by the variance. A common moment
based measure is known as the amount of fading or coefficient
of variation. The new expression (21) enables us to evaluate
the moments of the output SNR of a 3-branch EGC system,
the output of which can be written as

γegc =
(r1 + r2 + r3)2Es

3N0
(27)

where Es is the transmitted signal energy and N0 is the noise
power spectral density per branch. The moments of output
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Fig. 2. Outage probability of SC versus the normalized average branch SNR
γ̄/γth in correlated Nakagami-m fading channel.

SNR can be obtained as

E(γnegc) =
(
Es
3N0

)n
E[(r1 + r2 + r3)2n]

=
(

γ̄1

6mψ11

)n 2n∑
k1,k2,k3=0

k1+k2+k3=2n

(2n)!
k1! k2! k3!

E(rk11 rk22 rk33 )

(28)

where E(rk11 rk22 rk33 ) can be computed using (21). To the best
of our knowledge, (28) is a new result and provide high
order moments of the 3-branch EGC output SNR for the most
general case.

C. Output Mgf of 3-Branch GSC

GSC(M,L) achieves a good tradeoff between performance
and implementation complexity [24], [25]. However, The
distribution theory for order statistics of arbitrarily correlated
RVs is not fully developed. Consequently, not many theoretical
results are known on how GSC performs over correlated
fading channels. For example, Mallik and Win [26] analyze the
performance of GSC(M,L) in equally correlated Nakagami
fading. Our new result (20) enables the performance analysis
of 3-branch GSC in arbitrarily correlated Nakagami fading
channels.

Since GSC(1,3) and GSC(3,3) are simply SC and MRC,
these cases are not treated here. Instead, we consider the
GSC(2,3) system, which combines the largest two branch
SNRs to form the output:

γgsc = γ(2) + γ(3) (29)

where γ(1) ≤ γ(2) ≤ γ(3). We derive the joint cdf of γ(2) and
γ(3) via the first principles as [27]

Fγ(2),γ(3)(α, β) = Pr(γ1 ≤ β, γ2 ≤ α, γ3 ≤ α)

+ Pr(γ1 ≤ α, γ2 ≤ β, γ3 ≤ α)
+ Pr(γ1 ≤ α, γ2 ≤ α, γ3 ≤ β)
− 2 Pr(γ1 ≤ α, γ2 ≤ α, γ3 ≤ α)

(30)

where β ≥ α > 0.
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Applying (20) and differentiating (30) with respect to α and
β yield the joint pdf of γ(2) and γ(3) as

pγ(2),γ(3)(x, y) =
Wm

3

(m− 1)

∞∑
k,p,q,r=0

(−1)k(m+ k − 1)
p!q!r!Γ(p+m+ k)

×
(
k+2m−3
2m−3

)
w2p+k

12 w2q+k
13 w2r+k

23

Γ(q +m+ k)Γ(r +m+ k)wε111w
ε2
22w

ε3
33

×
3∑

u,v,w=1
u�=v �=w

γ(εw, dwx)dεu
u d

εv
v

× [xεu−1yεv−1e−(xdu+ydv)]
(31)

where y ≥ x > 0 and dk = mψkkwkk/γ̄k for k = 1, 2, 3.
Using (31), we can obtained the output mgf of GSC(2,3) as

Mgsc(s) =E(e−sγgsc)

=
∫ ∞

0

∫ ∞

x

pγ(2),γ(3)(x, y)e
−(x+y)s dy dx

=
Wm

3

(m− 1)

∞∑
k,p,q,r=0

(−1)k(m+ k − 1)
p!q!r!Γ(p+m+ k)

×
(
k+2m−3
2m−3

)
w2p+k

12 w2q+k
13 w2r+k

23

Γ(q +m+ k)Γ(r +m+ k)wε111w
ε2
22w

ε3
33

×
3∑

u,v,w=1
u�=v �=w

(
dv

dv + s

)εv

dεu
u g(u, v, w)

(32)

where

g(u, v, w) =
∫ ∞

0

xεu−1e−x(du+s)γ(εw, xdw)

× Γ[εv, (dv + s)x] dx

=
dεw
w

εw

[
(εu + εw − 1)!(εv − 1)!

(du + dw + s)εu+εw

× 2F1

(
εu + εw, 1; εw;

dw
dw + du + s

)

+
(ε− 1)!(dv + s)εv

εv(d+ 2s)ε

FA

(
ε; 1, 1; εw + 1, εv + 1;

dw
d+ 2s

,
dv + s

d+ 2s

)]
(33)

where ε = ε1 + ε2 + ε3, d = du + dv + dw, Γ(a, x) is the
complementary incomplete gamma function, 2F1(a, b; c; z) is
the Gauss hypergeometric function which is defined as [21,
eq.9.100] and FA(α;β1, . . . , βn; γ1, . . . , γn; z1, . . . , zn) is the
n-th order Appell hypergeometric function [21, (9.180.2)].
Eq. (33) follows from [21, eq.9.236.4] and [28, eq.C.1].
Using the output mgf (32), the performance of various digital
modulations with GSC(2,3) may be evaluated.

V. CONCLUSION

In this paper, we have derived new pdf and cdf for trivariate
and quadrivariate Nakagami-m distributions. Miller’s classical
approach and Dougall’s identity have been used in deriving the
former results. The newly derived trivariate densities are valid
for any arbitrary correlation matrix, while the quadrivariate

densities are valid for the most general arbitrary class of
correlation matrices as mentioned before. Furthermore, the
series expressions developed for the joint distributions can be
used to analyze the performance of several diversity schemes
in correlated fading environments as well as the performance
of transmit antenna selection in spatially correlated multiple-
input multiple-output wireless systems. For brevity, we con-
sider only a limited number of representative applications
including the outage probability of the triple branch SC
receiver, the output SNR of triple branch EGC receiver and the
moment generating function of the output SNR of generalized
SC (2,3) receiver over a correlated Nakagami environment.
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