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ABSTRACT

Power control at the base station is typically used in wire-
less cellular networks in order to optimize the transmission
subject to quality of service (QoS) constraints. It has been
shown that the power control problem in the wireless cellu-
lar network framework can be efficiently solved using the so-
called geometric programming. However, in order to enable
the application of geometric programming the signal to inter-
ference ratio (SIR) has been considered instead of signal to
interference plus noise ratio (SINR). Such problem reformu-
lation is imprecise and might be loose because it does not take
into account the noise component, especially for low signal to
noise ratio (SNR) operation. In this paper, we show that the
power control problem for wireless cellular systems can be
efficiently solved via the so-called difference of two convex
functions (D.C.) programming. Numerical simulation exam-
ple demonstrates significant performance advantages of the
proposed approach.
Keywords: Wireless communications, cellular networks,

quality of service (QoS), difference of two convex functions,
D.C. programming

1. INTRODUCTION

The efficient management of radio resource is essential for
wireless networks, which are characterized by scarce radio
spectrum, an unreliable propagation channel, and user mo-
bility. One important issue of the radio resource manage-
ment is power control. Power control and resource allocation
techniques for cellular communication systems have been a
recent focus of intensive studies [1]- [7]. It has been pro-
posed to use the user signal to interference plus noise ratio
(SINR) to adjust the transmitted power [3]. In this way, power
control is used to control interference, and therefore, to con-
trol also individual users’ quality of services (QoS). Various
objectives have been considered for developing power con-
trol algorithms. Particularly, one can maximize the minimum
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SINR, minimize total transmitted power, or minimize outage
probability in a cellular network [3]- [7]. Although various it-
erative methods have been developed to solve the power con-
trol problem in cellular wireless systems, these methods are
not general to allow a diverse set of QoS constraints and ob-
jective functions.
A general framework for the power control based on ge-

ometric programming was developed in [5]- [7]. However,
in order to enable the application of geometric programming,
SINR has to be approximated by the signal to interference ra-
tio (SIR) and sum of log(SIR) is considered as the optimiza-
tion objective function. Unfortunately, such approximation
might be imprecise and loose, especially when the operation
signal-to-noise ratio (SNR) is low. Moreover, note that the
individual user throughput, that is log(1 + SINR), is a mono-
tonic function of the user SINR, and maximization of the ag-
gregate system throughput, that is a sum of log(1 + SINR)
for all users, is the actual target for network optimization.
In this paper, we directly use the the aggregate system

throughput as objective function in solving the power control
problem for cellular systems. We show that the corresponding
optimization problems belong to the class of so-called differ-
ence of two convex functions (D.C.) programming problems
which can be efficiently solved using modern optimization
methods [8]. The D.C. framework can accommodate a vari-
ety of realistic QoS and fairness constraints. Moreover, the
fairness parameters can also be jointly optimized with QoS
criteria using this framework. Note that the D.C. program-
ming has been recently introduced in communication com-
munity to solve the spectral management problem in digital
subscriber line (DSL) [9].

2. SYSTEMMODEL

We consider a downlink channel in a cellular network withK
users (links1) and a single base station.2 Extension to multiple
base stations is straightforward.

1Each link represents a unidirectional path from the transmitter to the
receiver.

2We consider only downlink transmission in this paper since the uplink
case can be treated similarly.
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The effects of three signal strength attenuation factors:
path loss, shadowing, and multipath fading are considered in
the following propagation model. Let Pk be the transmitted
power level of the kth user. Then, the propagation model for
the kth user can be written as [7]

P̃k = PkFk

(
d0

dk

)βk

(1)

where P̃k is the received power, dk is the propagation path
length, d0 is a reference distance for the antenna far-field, Fk

is multipath fading gain, and βk is the path loss exponent for
the kth receiver. Note that in the aforementioned model we ig-
nore the effect of shadowing for brevity. Using (1), the SINR
for the kth receiver can be defined as

SINRk =
PkFkd−βk

k αk∑K
j �=k PjFjD

−1
s d

−βj

j αj + σ2
k

(2)

where the factors αj , j = 1, . . . ,K are introduced to accom-
modate normalization constant d0 and other factors, such as
the effect of beamforming in multiantenna systems, and σ2

k is
the noise power of the kth user. In (2), the decrease of the
interfering users’ power is modeled by the inverse of Ds that
can be viewed, for example, as a spreading gain for CDMA
systems with matched-filter receivers.
Although SINR is often used as a QoS parameter, it is the

network throughput which is of concern. Indeed, it is well
known that the capacity of Gaussian channel with Gaussian
interference is a function of SINR. Then the throughput for
the kth user is given by

Rk =
1
T

log(1 + KberSINRk) (3)

where Kber = −1.5
log(5BER) , BER is the bit error rate, and T is

the symbol duration which we set to be equal to 1, i.e., T = 1,
for the sake of brevity. Let us denoteGj = FjD

−1
s d

−βj

j αj >
0, j = 1, . . . ,K for path attenuation of interfering user j.
One popular power control problem is based on maximizing
the data rate for some particular user under QoS constraints
for other users. Mathematically, this problem can then be for-
mulated as follows.
Problem 1:

maximize Rk = log

(
1+Kber PkGk∑K

j �=k PjGj +σ2
k

)
(4)

subject to Rj ≥ γLB
j , ∀j �= k (5)∑

j∈I1,l

PjGj < cl (6)

0 ≤ Pj ≤ PUB
j , ∀j (7)

where γLB
j is the lower bound on the the required data rate

of jth user, I1,l is the index set including interfering users

for which the assigned QoS values are relatively low, cl is a
positive constant (QoS value), and PUB

j is the upper bound
on the transmitted power Pj .
Note that the constraints (5) are used to guarantee that the

QoS requirements on the minimum data rates are satisfied for
the existing users, while the constraint (6) limits the interfer-
ence from the corresponding group of users I1,l. Finally, the
constraint (7) guarantees that the powers Pj , j = 1, . . . , K
are positive and do not exceed the peak limit powers PUB

j ,
j = 1, . . . ,K.
The optimization problem (4)-(7) is clearly a nonlinear

noncovex optimization problem which is extremely hard to
solve. The goal of the following discussion is to show that the
optimization problem (4)-(7) can be rewritten in the form of
the so-called D.C. programming problem [8].

3. D.C. PROGRAMMING: AN OVERVIEW

Definition 1: A real-valued function f(x) defined on a con-
vex set C ⊆ R

n is called D.C. (difference of two convex func-
tions) on C if, for all x ∈ C, f(x) can be expressed as

f(x) = f1(x) − f2(x) (8)

where f1(x) and f2(x) are convex functions on C. The rep-
resentation (8) is called a D.C. decomposition of f(x). The
class of D.C functions is closed under many operations fre-
quently encountered in optimization. Let f , fi, (i = 1, . . . , m)
be D.C. functions. Then the following functions are also D.C.
[8]:

(i)
∑m

i=1 λifi(x), for any real number λi,

(ii) maxi=1,...,m fi(x) andmini=1,...,m fi(x),

(iii) |f(x)|, f+(x) := max{0, f(x)}, f−(x) := min{0,
f(x)},

(iv) the product
∏m

i=1 fi(x).

Definition 2: A global optimization problem is called a
D.C. programming problem if it has the form

minimize f(x) (9)
subject to gj(x) ≤ 0, ∀j (10)

x ∈ C (11)

where C is a closed convex subset of R
n and all functions

f(x) and gj(x) are D.C. functions.
An important property of D.C. programming is that any

problem of the form (9)-(11) can be reduced to a canonical
problem of minimizing a linear function over the intersection
of a convex set with the complement of an open convex set,
where the complement of an open convex set is usually de-
scribed by a so-called reverse convex constraint which has
the form g(x) ≥ 0 and g(x) is convex.
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4. POWER CONTROL VIA D.C. PROGRAMMING

4.1. Problem Formulations Using D.C. Optimization

The following theorem is in order.
Theorem 1: The optimization problem (4)-(7) is a D.C.

programming problem.
Proof: It is easy to show that the power constraints (6)-

(7) are convex. Using the basic property of the logarithmic
function, that is log(A/B) = log A − log B, the objective
function (4) can be rewritten as

Rk = log

(
1+

KberPkGk∑K
j �=k PjGj +σ2

k

)

= fk
1 (P1, . . . , PK) − fk

2 (P1, . . . , PK) (12)

where

fk
1 (P1, . . . , PK) =− log

( K∑
j �=k

PjGj +σ2
k

)
(13)

fk
2 (P1, . . . , PK)=−log

( K∑
j �=k

PjGj +KberPkGk+σ2
k

)
(14)

are logarithmically convex functions3. The rate constraints
(5) can be also expressed as D.C. constraints on P1, . . . , Pk

in a similar way. Therefore, the problem (4)-(7) is D.C. pro-
gramming problem. �
We can rewrite the optimization problem (4)-(7) in stan-

dard form as follows

minimize fk
2 − fk

1 (15)
subject to f j

2 − f j
1 ≤ −γLB

j , ∀j �= k∑
j∈I1,l

PjGj < cl

0 ≤ Pj ≤ PUB
j , ∀j.

Another power control goal can be to find Pk ≥ 0, k =
1, . . . , K such that the total transmitted power P̃ =

∑K
k=1 Pk

would be minimized while the required QoS is guaranteed for
each user. Then the corresponding optimization problem can
be written as
Problem 2:

minimize P̃ (16)
subject to The constraints (5)-(7)

Power control in wireless cellular networks often has to
take into account the fairness consideration since the fairness
among different users is also a major issue in a QoS policy.
In other words, additionally to providing a preferential treat-
ment to high priority connections, fairness issues must also be

3Note that a function f(z) is logarithmically convex on the interval [a, b]
if f(z) > 0 and log f(z) is convex on [a, b].

taken into account for low priority users. Two types of fair-
ness can be considered: proportional fairness and maximin
fairness. Both these types of fairness can be accommodated in
the framework of D.C. programming. Then, the correspond-
ing problem formulations are given as
Problem 3:

maximize
K∑

k=1

wkRk (17)

subject to The constraints (5)-(7)

where wk, k = 1, . . . ,K are some weights, and

Problem 4:

maximize min
k=1,...,K

Rk (18)

subject to The constraints (6)-(7).

We can see that the power control based on Problem 3 maxi-
mizes weighted sum-rate of the wireless networks, while for
Problem 4 it optimizes the minimum user rate. The maximin
fair power allocation is useful in the situations when the worst
case is of concern to the cellular network operator. Using the
properties (i) and (ii) of D.C. functions, it is easy to show that
Problem 3 and Problem 4 are D.C. optimization problems. It
worths noting that in Problem 3, the weights can be any real
positive numbers other than integer values. It helps to charac-
terize better the fairness issue among users.
We should also note here that for weighted optimization,

the fairness parameters, i.e. wk, k = 1, . . . , K can be jointly-
optimized with power levels. Using the property (iv) of D.C.
functions, we can show that wkRk is a D.C. function on vari-
ables wk, P1, . . . , Pk. Thus,

∑
k wkRk is also a D.C. func-

tion on variables w1, . . . , wK , P1, . . . , Pk. It shows that D.C.
optimization framework is capable for joint optimization of
fairness parameters with QoS criteria.

4.2. Power Control for Queuing Delay Optimization

Delay is a crucial part of QoS for a wireless cellular network.
In general, there are three main components of the overall
delay: propagation delay, transmission delay and queuing de-
lay. Queuing delay is common and especially important for
scenarios where the short term data rate may exceed the data
rate supported by the wireless link, and thus data needs to be
buffered. Hence, queuing delay is sometimes the main source
of the overall delay. Assuming that for each user k, packets
with variable length arrive at the base station according to a
Poisson distribution with rate λk, the system can be modeled
as an M/M/1 queue. The average queueing delay, QDk can
then be expressed as

QDk =
1

Rk − λk
. (19)
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If an existing QoS agreement specifies a maximum average
delayQDUB

k , then such type of constraint can be transformed
into the constraint on the rate Rk. However, when the sys-
tem’s total delay is of concern, it is much more difficult to
handle, for example, the total delay

∑
i=1,...,K QDk mini-

mization. Fortunately, the total queuing delay can be written
as a fraction of two D.C. functions. Specifically, let us write

∑
i=1,...,K

QDk =
f(P1, . . . , Pk)
g(P1, . . . , Pk)

(20)

where f and g are D.C. functions. Then, the power control
problem to minimize the total queuing delay can be formu-
lated as
Problem 5:

minimize f/g (21)
subject to The constraints (5)-(7).

which can be equivalently rewritten as a D.C. problem

minimize t (22)
subject to f − tg ≤ 0, t ≥ 0, (23)

The constraints (5)-(7).

It is easy to see that the constraint (23) is a D.C. constraint.
We should stress here that minmax fairness optimization on
queuing delay, that is

minimize max
k=1,...,K

QDk

can also be done similarly. To the best of our knowledge,
no method have been developed for solving such problems
before.

4.3. Power Control: A Probabilistically Constrained Ap-
proach

So far, we have considered the deterministic optimization ap-
proach to the power control problem, when the controller needs
to acquire the instantaneous channel state information (CSI)
through feedback channel from the receiver. The latter re-
quirement on the availability of the instantaneous CSI at the
transmitter can significantly consume the bandwidth of the
system, especially in the case of a time-varying channel. In
communications over fading environment, one important QoS
parameter for long-term users’ requirements is the outage prob-
ability. The power control scheme with outage probability
constraints arises in cellular networks when the power does
not need to be updated whenever the channel varies from one
state to another. Taking into account users’ outage probabil-
ity constraints and the statistical variation of the channel, we
can optimally allocate power to users and meet the QoS con-
straints.

Using the model (1), the signal power at the kth receiver
is given by PkGkFk and the total interference from other
users is given by

∑
j �=k PjGjFj , where Gj , j = 1, . . . , K

represent the path gains not including fading, and Fj , j =
1, . . . ,K model the Rayleigh fading and are assumed to be
independent exponentially distributed random variables with
unit mean [5]. Thus, the SINR of the kth receiver becomes

SINRk =
PkGkFk∑

j �=k PjGjFj + σ2
k

. (24)

An outage is declared for kth user when the date rate Rk falls
below a given threshold Rth

k . The outage probability associ-
ated with the kth user is then given by

Ok = Pr(Rk ≤ Rth
k )

= Pr
(
PkGkFk ≤ ϕth

k

[ K∑
j �=k

PjGjFj +σ2
k

])
(25)

where ϕth
k = (Kber)−1

(
exp{Rth

k } − 1
)
. The outage proba-

bility can be expressed as [5]

Ok = exp
{
−ϕth

k σ2
k

PkGk

} ∏
j �=k

PkGk

PkGk + ϕth
k PjGj

. (26)

Then the power control problem can be written as the fol-
lowing nonlinear optimization problem of maximizing total
network throughput.
Problem 6:

maximize
K∑
k

wkRk (27)

subject to Rk ≥ γLB
k , ∀k (28)

Ok = exp
{
−ϕth

k σ2
k

PkGk

}
·
∏
j �=k

PkGk

PkGk + ϕth
k PjGj

≤ OUB
k , ∀k (29)

0 ≤ Pk ≤ PUB
k , ∀k (30)

where the second constraint is used to limit the outage proba-
bility for QoS requirement of each user.
We have previously shown that the objective function (27)

in Problem 6 is a D.C. function, and the constraints (28) and
(30) are D.C. constraints. Therefore, in order to prove that
Problem 6 is a D.C. programming problem, we need to show
that constraint (29) can be written as D.C. constraint. Taking
the logarithm of the outage probability expression (29), we
can write

log(Ok) = f̃1(P1, . . . , PK) − f̃2(P1, . . . , PK) (31)

where the functions

f̃1(P1, . . . , PK) = −
∑
j �=k

log(PkGk + ϕth
k PjGj) (32)

f̃2(P1, . . . , PK) =
ϕth

k σ2
k

PkGk
− log(PkGk) (33)
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Fig. 1. Ergodic sum rate capacity forK = 2.

are logarithmically convex functions of P1, . . . , PK . Thus,
we can formulate Problem 6 as a D.C. programming problem.

5. SIMULATION RESULTS

We consider a simple system comprised of a single cell and
two users and no inter-cell interferences. The power control
problem which we consider in our simulations aims at max-
imizing the system’s sum-rate, i.e., (Problem 3 with weights
equal to 1’s), under the constraints on the upper power con-
sumptions on each user. The prismatic branch-and-bound
(PBnB) algorithm [8] is used to solve the corresponding D.C.
programming problem. For simplicity reason, we rewrite the
formula for the rate of the user k as follows

Rk = log
(
1 +

PkG̃kFk∑
j �=k PjGjFj + 1

)
(34)

where G̃k, Gj are normalized SNR and interference-to-noise
ratio (INR), respectively. We assume that G̃1 = G̃2 andG1 =
G2. The maximum power is constrained for all users, i.e.,
PUB = 1W . We perform 500 runs to obtain the ergodic sum
rate capacity. Fig. 1 demonstrates the sum rate of the system
versus INR. For comparison, the local optimization method is
also performed.
We can see that the PBnB algorithm significantly outper-

forms the local optimization search based algorithm in all
cases, especially when the INRs are large. In the full paper
and during the presentation, we show more simulation results
on the proposed D.C. applications.

6. CONCLUSION

In this paper, we have developed various QoS provisioning
problems for wireless cellular networks based on the resource
allocation perspective. The individual user data rate or ag-
gregate system throughput are used as performance metrics.
The optimization of the queuing delay is also considered. It is
shown that the developed problems can be posed as D.C. pro-
gramming problems. Numerical simulation example demon-
strates significant performance advantages of the proposed
approach.
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