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Abstract— Frequency synchronization is one of the most impor-
tant components in orthogonal frequency-division multiplexing
(OFDM) systems. Recently, the discrete cosine transform (DCT)
based OFDM system has received wide attentions due to several
advantages. Hence, the study of frequency synchronization issue
for this newly raised system is well on its time. To provide
a thorough study, we consider the non-circular transmissions,
and the results can be easily generated to circular transmissions
if the elliptic variance is set to zero. We present three joint
maximum likelihood (ML) carrier frequency offset (CFO) and
phase offset (PO) estimators. From both the theoretical analysis
and the numerical comparisons, we found new advantages of
the DCT-OFDM over the traditional discrete Fourier transform
(DFT) based OFDM. These advantages, as well as those already
studied in the early works on DCT-OFDM, support the belief that
the DCT-OFDM is a new promising multi-carrier modulation
(MCM) scheme.

I. INTRODUCTION

The traditional DFT based OFDM has already been en-
joying its success when it is applied to European digital
audio/video broadcasting (DAB, DVB) [1], [2], high perfor-
mance local area network (HIPERLAN) [3] and IEEE 802.11a
wireless LAN standards [4]. Another promising MCM, known
as the DCT based OFDM has been proposed recently in [5],
[6], where it is shown that the DCT-OFDM can, some times,
offer additional benefits over the DFT-OFDM.

In MCM systems, it is well known that a CFO, caused
by oscillators mismatch or Doppler effects, destroys the sub-
carriers orthogonality, and results in a substantial bit error
rate (BER) degradation [7]. In the pioneer work [8], ML
CFO estimation was developed for DFT-OFDM systems. The
algorithm exploited the existence of the cyclic prefix (CP)
and was mainly proposed for additive white Gaussian noise
(AWGN) channels. However, this method fails to provide the
PO estimation which is very important when the channel is
assumed to be AWGN.

Although circularity is a common hypothesis for narrow-
band signal analysis, non-circular transmission has also re-
ceived lots of attentions [9]. In fact, many modulations of
practical interest, such as BPSK, M-ASK, PAM, DBPSK,
OQPSK, OQAM, MSK, GMSK, contain non-circular pro-
cess. It is also noted that most popular non-circular signals
currently adopted are BPSK, DBPSK, M-ASK, and PAM,

all of which are real signals. Since the DCT uses only real
arithmetic, as opposed to the complex valued DFT, adopting
DCT-OFDM under non-circular transmissions can reduce the
signal processing complexity/power consumption and avoids
inphase/quadrature (I/Q) imbalance problems. It is thus more
important to study the non-circular transmissions for the DCT-
OFDM system.

In this paper, we derive three joint ML CFO and PO
estimators (MLE) for DCT OFDM, assuming the non-circular
transmissions. Similar to [8], all these algorithms are currently
proposed for AWGN channel. It is known that the CFO
estimation range in DFT OFDM is restricted to one subcarrier
spacing no matter whether circular or non-circular signals
are transmitted [10]. Nevertheless, due to the anti-symmetry
introduced in DCT-OFDM, a full range CFO estimation is
achieved. Another advantage by using DCT-OFDM is that it
can provide more accurate and more robust estimation than
the DFT-OFDM.

This paper is organized as follows. Section II briefly intro-
duces the non-circular transmissions. In Section III, we derive
three joint CFO and PO estimators. Meaningful discussions
are provided at the end of this section. Section IV shows
the simulation results illustrating the effectiveness of our
algorithms. Finally, conclusions are made in Section V.

II. NON-CIRCULAR MULTI-CARRIER TRANSMISSIONS

The mth OFDM block in the frequency domain is repre-
sented as

sm = [sm,0, sm,1, ..., sm,N−1]T , m = 0, 1, 2, ..., (1)

where N denotes the number of the subcarriers adopted. The
complex random variable sm,i is said to be non-circular at
the order 2, if the elliptic variance E{sm,ism,i} is not zero.
Therefore, we assume each sm,i has its variance and elliptic
variance as

E{sm,i1s∗m,i2} = Esδi1i2 , (2)

E{sm,i1sm,i2} = Ecδi1i2 , (3)

where δab is the Kronecker delta function, Es denotes the
average signal power, and Ec may be a complex number
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with |Ec| ≤ Es. Here, symbols transmitted on different
subcarriers are reasonably assumed independent from each
other. However, the symbol on the same subcarrier may be
dependent from block to block. Clearly, lots of practical signal
modulations contain non-circularity.
Example 1: BPSK modulation. Let sm,i ∈ {√Es,−

√
Es}.

Then, we have

Es = E{sm,is∗m,i} = E{sm,ism,i} = Ec. (4)

Example 2: MSK modulation. OFDM-MSK modulation has
recently attracted lots of interests, whose original form was
proposed in [11]. In this new modulation scheme, different
branches of MSK symbols are transmitted through different
subcarriers. The MSK symbol on the ith subcarrier is

sm,i = Es exp jπh am,i +
m−1

q=0

aq,i , (5)

where am,i ∈ {±1} is independently generated and h is the
modulation indices. Obviously,

E{sm,is∗m,i} = Es, (6)

whereas,

Ec = E{sm,ism,i} = Es E e(j2πham,i)
m+1

= Es
1
2

ej2πh + e−j2πh
m+1

= Es(cos(2πh))m+1. (7)

When h = 1/2, as usually the case for MSK, Ec =
(−1)m+1Es. Clearly, OFDM-MSK also includes non-
circularity.

III. DISCRETE COSINE TRANSFORM BASED OFDM
SYSTEM

A. System Model

In a DCT OFDM system, instead of performing the inverse
DFT (IDFT), we apply inverse DCT (IDCT) to the mth time
domain OFDM block, resulting in

um = [um,0, um,1, ..., um,N−1]T = DT sm, (8)

where D is the DCT matrix with the (a, b)th entry

[D]ab = βa
2
N

cos
π(a− 1)(2b− 1)

2N
, a, b = 1, ..., N.

(9)
and

βa = 1/
√

2, a = 1
1, otherwise

. (10)

If the number of the subcarriers is sufficiently large, um,i, i =
0, ..., N − 1 can be well approximated as having a Gaussian
distribution [12]. It can be readily verified that,

E{umuHm} = DE{smsHm}DH = EsIN , (11)

E{umuTm} = DE{smsTm}DT = EcIN . (12)

Note that, um,i, the time domain symbol after the IDCT, are
independent from each other.

Suppose that the maximum channel delay is no longer than
LTs, where Ts is the sampling period. From [5], we know
that in order to diagonalize the channel matrix for the DCT-
OFDM, we need to insert both the prefix and the suffix of
length µ = L

2 into um. Therefore, the effective OFDM
block length is (N + 2µ)Ts and the symbols transmitted are
represented by

xm = [xm,0, xm,1, ..., xm,N+2µ−1]T = Tpsum, (13)

where

Tps =
Vµ 0µ×(N−µ)

IN
0µ×(N−µ) Vµ

, (14)

and Vµ is the µ× µ anti-identity matrix:

Vµ =

0 . . . 1
... . .

. ...
1 . . . 0

. (15)

As in [8], we will only consider the AWGN channel for the
time being but still keep both the prefix and the suffix for
the estimation purpose. The baseband received signal could
be expressed as

rm = [rm,0, rm,1, ..., rm,N+2µ−1]T

= ej2πm(N+2µ)ε0+jφ0Γ(ε0)xm + nm, (16)

where ε0 = f0Ts is the normalized CFO by the sampling rate,
and φ0 is the PO. Each elements in nm represents independent
AWGN with variance En, and Γ(ε0) is the diagonal CFO
matrix of the form

Γ(ε0) = diag 1, ej2πε0 , ..., ej2π(N+2µ−1)ε0 . (17)

B. The Joint CFO and PO Estimation

The frequency synchronization should be carried on after
the first OFDM block is received. Therefore, we consider the
OFDM block with index number m = 0, and the index m
will be dropped for notation simplicity in the remaining of
this paper unless otherwise mentioned. Define

A = EsTpsTT
ps + EnIN+2µ, (18)

B = EcTpsTT
ps. (19)

Clearly, we have A∗ = A while B∗ �= B unless Ec is a
real number. Nevertheless, B∗ can be represented as BH .
Consequently, the covariance and the elliptic covariance of
r are Γ(ε0)AΓ(ε0)H and ej2φ0Γ(ε0)BΓ(ε0), respectively.
Therefore, r is a non-circular Gaussian random vector and
should be characterized by the joint probability density func-
tion (PDF) [13]:

f(r, r∗|ε0, φ0) =
1

πN+L(det{R})1/2

× exp −1
2
[rH , rT ]R−1 r

r∗ , (20)
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η +
2(2E2

s + EsEn − 2|Ec|2)
En(4E2

s + 4EsEn + E2
n − 4|Ec|2)

µ−1

i=0

� (r∗i r2µ−i−1 + r∗i+NrN+2µ−i−1)ej2π(2i−2µ+1)ε . (30)

2E∗
c

4E2
s + 4EsEn + E2

n − 4|Ec|2
µ−1

i=0

r∗i r
∗
2µ−i−1e

−j2π(2µ−1)ε +
2µ−1

i=0

r∗i+Nr
∗
N+2µ−i−1e

−j2π(2N+2µ−1)ε

+
E∗
c

4E2
s + 4EsEn + E2

n − 4|Ec|2
2µ−1

i=0

r∗i r
∗
i e

−j2π(2i)ε +
N+2µ−1

i=N

r∗i r
∗
i e

−j2π(2i)ε

+
E∗
c

E2
s + 2EsEn + E2

n − |Ec|2
N−1

i=2µ

r∗i r
∗
i e

−j2π(2i)ε. (31)

where R is the covariance matrix of [rT , rH ]T , defined as

R = E
r
r∗ [rH , rT ]

=
ejφ0Γ(ε0) 0

0 e−jφ0Γ(ε0)∗

Γ̃

A B
B∗ A∗

Rs

× e−jφ0Γ(ε0)∗ 0
0 ejφ0Γ(ε0)

. (21)

From the inversion of the partitioned matrix lemma, we obtain

R−1
s =

P −Q
−Q∗ P∗ , (22)

where

P = (A − BHA−1B)−∗, (23)

Q = A−1BP∗. (24)

and (·)−∗ denotes ((·)∗)−1. Then R−1 = Γ̃R−1
s Γ̃

H
. From

(21), we know that

det{R} = det{Γ̃}det{Rs}det{Γ̃H} = det{Rs}. (25)

Therefore, det{R} is only a constant, and it is sufficient to
consider the log-likelihood function only. Hereafter, we will
provide three different types of the ML joint CFO and PO
estimators.

1) MLE1: When ε0, φ0 are both considered as deterministic
values, their ML estimates can be found from

{ε̂0, φ̂0} = arg max
ε,φ

log f(r, r∗|ε, φ)

= arg max
ε,φ

−[rH , rT ]R−1 r
r∗ , (26)

where ε, φ are the trial parameters. After some manipulations,
the ML estimates ε̂0 and φ̂0 can be obtained by

{ε̂0, φ̂0} = arg max
ε,φ

−rHYr + �{e−j2φrTUr}, (27)

where

Y = Γ(ε)PΓ(ε)∗, (28)

U = Γ(ε)∗Q∗Γ(ε)∗. (29)

Due to the special structure of A and B, when 2µ < N ,
−rHYr can be rewritten as (30)1, where η is some unimpor-
tant parameters unspecified for the concise of the paper, and
rTUr can be expressed as in (31). Note that only the second
term in (27) is related with φ. Then PO can be estimated via

φ̂0 = arg max
φ

�{e−j2φrTUr} =
1
2
∠ rTUr, (32)

where ∠ is used for extracting the angle. Clearly, the estima-
tion range of PO is [−π/2, π/2). Substituting (32) back into
(27), ε̂0 can be found from

ε̂0 = arg max
ε

−rHYr + |rTUr|
g(ε)

. (33)

It is noted that the noise power En is required by the estimator
(27). This is not unexpected as is seen from [8], where the
noise power is used to estimate the TO. The study on the
noise power estimation can be found from [14] and references
therein.

2) MLE2: Strictly speaking, MLE1 is not an ML estimator
but a generalized likelihood ratio testing estimator [15]. To
realize the true ML detection, we have to pursue a two
dimensional search for both ε and φ from equation (27). Due
to its high complexity by performing two dimensional search,
the MLE2 is only of theoretical interest and is proposed here
as a benchmark for comparison with other estimators.

3) MLE3: When the statistics of either φ0 or ε0 is known,
the ML estimation can be modified by using the marginal
likelihood function. It is natural to assume that φ0 is a
uniformly distributed random variable over [−π, π). From
(32), we know that f(r, r∗|ε, φ) is a periodic function of
φ with the period π. Therefore we will assume that φ0

is uniformly distributed over the region [−π/2, π/2)2. The
average of f(r, r∗|ε, φ) over φ gives the marginal likelihood

1Since in practice, 2µ < N is always satisfied, we will only provide the
explicit expression of the estimators for this case.

2Normally the PO should be uniformly distributed over the region [−π, π).
However, if |φ0| > π/2, then only (φ0 mod π)−π/2 can be found by the
proposed estimator. Therefore the effective PO can reasonably be assumed to
be uniformly distributed over the region [−π/2, π/2).
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function f(r, r∗|ε), which removes the likelihood dependence
on φ. This marginal likelihood function can be expressed as

f(r, r∗|ε) = Eφ{f(r, r∗|ε, φ)} (34)

=K exp −rHYr Eφ exp(�{e−j2φrTUr})

=
K

π
exp −rHYr

π/2

−π/2
exp �{e−j2φrTUr} dφ,

where
K =

1
πN+L(det{R})1/2 . (35)

For notational simplicity, we define w = |rTUr| and ψ =
arg rTUr. Then

π/2

−π/2
exp �{e−j2φrTUr} dφ =

π/2

−π/2
exp (w cos(ψ − 2φ)) dφ

=
1
2

π−ψ

−π−ψ
exp(w cos t)dt =

π

0
exp(w cos t)dt = πI0(w), (36)

where I0(w) is the zeroth order modified Bessel function of
the first kind. Finally, the expression for f(r, r∗|ε) is

f(r, r∗|ε) = K exp −rHYr I0 |rTUr| . (37)

and ε0 should be estimated from

ε̂0 = arg max
ε

f(r, r∗|ε)
= arg max

ε
exp −rHYr I0 |rTUr| . (38)

For high SNR, I0(w) can be approximated by

I0(w) ≈ ew√
2πw

, (39)

and f(r, r∗|ε) is rewritten as

f(r, r∗|ε) ≈ K
exp −rHYr + |rTUr|√

2π|rTUr|1/2 = K
eg(ε)√

2π|rTUr|1/2 .
(40)

The ML estimation of ε can be found from

ε̂0 = arg max
ε

eg(ε)

|rTUr|1/2 . (41)

Unfortunately, a reasonable assumption on the distribution of
ε0 is not available in the literature3. Therefore, we are unable
to average f(r, r∗|ε, φ) over ε to obtain f(r, r∗|φ). However,
since the PDF of φ is known, we may consider the maximum a
posteriori (MAP) approach to detect φ0. From the Bayesian’s
rule,

f(φ|r, r∗, ε̂0) =
f(r, r∗, ε̂0, φ)
f(r, r∗, ε̂0)

=
f(r, r∗|ε̂0, φ)f(ε̂0, φ)
f(r, r∗|ε̂0)f(ε̂0)

=
f(r, r∗|ε̂0, φ)f(ε̂0)f(φ)

f(r, r∗|ε̂0)f(ε̂0)
=
f(r, r∗|ε̂0, φ)
πf(r, r∗|ε̂0) . (42)

Note that the denominator is independent from φ. Then φ0 is
estimated from

φ̂0 = arg max
φ

f(r, r∗|ε̂0, φ), (43)

This gives exactly the same result as (32).

3If CFO is assumed to be uniformly distributed in [−0.5, 0.5], then similar
process can be conducted.

C. Discussions

Since MLE3 includes the complicated Bessel function, we
will mainly provide the discussions on MLE1. As will be
seen in the later simulations, all these three estimators perform
identically within the regular SNR region.

1) Circular Transmissions: The ML CFO estimation for
circular transmissions can be obtained by simply setting the
elliptic variance of si as zero. In this case, B and U become
zero matrices. Hence, the PO cannot be estimated. However,
the CFO could still be estimated from

ε̂0 = arg max
ε

−rHYr

= arg max
ε

µ−1

i=0

� (r∗i r2µ−i−1 + r∗i+NrN+2µ−i−1)

× ej2π(2i−2µ+1)ε .(44)

Note that, µ > 0 is required, otherwise −rHYr is independent
of ε, as explained previously. The estimator (44) can be
easily understood in the noise free environment, in which
case each term in (44) achieves its maximum at ε = ε0.
For example, ru = ru−1e

j2πε0 holds if there is no noise,
and clearly, the term �{r∗u−1rue

−j2πε} in (44) achieves its
maximum at ε = ε0. Estimator (44) could never provide
the ML estimation for non-circular transmissions, and there
is considerable performance loss if one still uses (44) for non-
circular transmissions, as will be shown in the simulations
later.

2) CFO Tracking: Tracking the residue CFO and PO is also
possible by considering the block with index m > 0. Namely,
for each new received block with m > 0, we can estimate
new CFO and PO corresponding to this specific block. If the
mth OFDM block is considered, we may regard 2πm(N +
2µ)ε0 + φ0 as the equivalent PO and carry on the similar
steps to estimate CFO and PO. The PO estimator (32) could
then be rewritten as

φ̂0 = arg max
φ

�{e−j2(2πm(N+2µ)ε+φ)rTUr}

=
1
2
∠ e−j4πm(N+2µ)εrTUr . (45)

Nevertheless, the ML CFO estimator (33) remains unchanged.

IV. SIMULATION RESULTS

In this section, we examine the proposed estimators under
various scenarios. We consider OFDM systems with N = 64
subcarriers (consistent with IEEE 802.11a standard [4]). In
each example, Mq =500 Monte Carlo runs are conducted to
average the simulation results. All symbols are assumed to be
obtained from a BPSK constellation, namely, Es = Ec. The
normalized mean square errors is defined as

NMSE(ε) =
1
Mq

Mq

i=1

|ε̂0,i − ε0|2
ω2

, (46)

NMSE(φ) =
1
Mq

Mq

i=1

|φ̂0,i − φ0|2
π2

, (47)
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Fig. 1. Performance comparison between the MLE1, MLE2, and MLE3 in
DCT-OFDM.

where ω = 1/N if ε0 < 1/N and ω = ε0 otherwise. The
parameters ε̂0,i and φ̂0,i are the estimates of ε0 and φ0 in the
ith Monte Carlo run.

A. DCT-OFDM

The normalized CFO is chosen as large as ε0 = 0.2
(more than 12 subcarrier spacings) and PO is set as π/3. We
first compare our three estimators when both the prefix and
suffix has length 8. The CFO and PO NMSEs versus SNR
performances are shown in Fig. 1. The Cramer-Rao bounds
(CRBs) [16] for CFO and PO estimations are displayed as
well. From the figure, it can be seen that all three estimators
provide the same performance. Moreover, they agree with the
CRB very well, which is consistent with the general belief that
the ML estimation can reach the CRBs asymptotically.

Next we examine how the performance differs by using
different length of the prefix and the suffix. From the previous
example, we know that all three proposed estimators perform
identically. Hence, we will only present the result from MLE1
for the conciseness of the figure. The CFO and PO NMSEs
versus SNR performances, for µ = 0, 2, 4, 8 are drawn in Fig.
2 with their corresponding CRBs. From the figure, we can
find that the CFO estimation accuracy is improved when µ is
increased, say 4dB when µ is increased from 0 to 8. However,
the PO estimation accuracy does not change much by varying
the value of µ.

We then illustrate the performance of the estimator (44)
under the considered BPSK transmissions. Since µ for (44)
must be greater than zero, we will select three values as µ =
2, 4, 8. Fig. 3 shows CFO NMSEs versus SNR performance
for both the estimator (44) and the ML estimator (33). It can
be seen that the performance loss is significant if one ignore
the non-circularity of the transmitted symbols and apply the
circular estimator (44) directly. Especially when µ is small, the
performance loss is amazingly large. Therefore, DCT-OFDM
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Fig. 2. Performance comparison of the CFO/PO estimations for different µ
in DCT-OFDM.
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Fig. 3. Comparing CFO estimation of circular and non-circular estimators
in DCT OFDM system.

is sensitive to whether the transmission is circular or non-
circular, and ignoring the non-circularity, if any, will greatly
drop the performance of DCT OFDM systems.

B. Comparison Between DCT-OFDM and DFT-OFDM

One may be curious that how the performance of these
two OFDM systems differs for the non-circular transmission
considered. We will study this issue in this example. Since
DFT-OFDM is also considered, the parameters change to
ε0 = 0.15/N , and φ0 = π/3. For a fair comparison, the total
amount of redundancy added to one OFDM block is made the
same, namely, L = 2µ. The CFO and PO NMSEs versus SNR
performances are shown in Fig. 4 and Fig. 5, respectively. In
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Fig. 5. Comparison between DCT-OFDM and DFT-OFDM under non-
circular transmission, PO estimation.

each figure, the solid lines from up to down represent the
DCT-OFDM with µ = 2, 4, 8, whereas the dashed lines from
up to down represent the DFT-OFDM with L = 4, 8, 16. Two
phenomena are observed. 1) The DCT OFDM could provide
better performance than the DFT OFDM, especially when the
amount of the redundancy added to one OFDM block is small.
2) The performance of the DCT-OFDM vary slightly when we
change the value of the µ. However, the performance of the
DFT-OFDM is affected greatly when we change L. As a result,
the estimators in DCT-OFDM is more robust to the amount of
the redundancy than those in DFT-OFDM. Clearly, both these
two phenomena suggest extra advantages of the DCT-OFDM
over the DFT OFDM.

V. CONCLUSIONS

In this paper, we considered the non-circular transmissions
and proposed three ML joint CFO and PO estimators for
the newly raised DCT-OFDM systems. In addition to those
mentioned in [5], [6], we found new advantages of the DCT-
OFDM over the DFT-OFDM. First of all, if DCT based OFDM
is applied, the CFO estimation range could be increased from
only one subcarrier spacing to its maximum. Secondly, the
CFO and PO estimation in DCT-OFDM is more accurate than
those in DFT-OFDM. Lastly, the CFO estimation in DCT
OFDM is robust to the amount of the redundancy inserted
than in DFT-OFDM. Simulation results clearly support our
analysis and discussions.
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