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Abstract—Despite their high spectral efficiencies, multiple-input
multiple-output (MIMO) systems suffer from high cost and com-
plexity due to multiple radio frequency chains at both link ends.
A possible solution is to select a subset of the available antennas at
transmitter and/or receiver based on maximal capacity or minimal
error rates. In this letter, we propose a receive antenna selection
algorithm based on the minimization of the union bound on the
vector error rate. By relaxing the antenna selection variables from
discrete to continuous, we arrive at a convex optimization problem.
Efficient numerical methods such as interior-point algorithms can
be applied to solve this optimization problem with polynomial com-
plexity

Index Terms—Antenna selection, convex optimization, interior-
point algorithm, log barrier method, union bound.

I. INTRODUCTION

MULTIPLE-input multiple-output (MIMO) systems, em-
ploying multiple antennas at both the transmitter and

the receiver, achieve remarkably high spectral efficiencies
in rich-scattering multipath environments. However, MIMO
systems suffer from high cost and complexity due to multiple
radio frequency chains at both link ends. A potential solution is
to select a subset of the available antennas at transmitter and/or
receiver while keeping the advantages of using all antennas [1].

MIMO antenna selection techniques have thus been exten-
sively studied, and there are several antenna selection criteria.
For full-diversity space-time codes, a subset of available an-
tennas can be selected to maximize the channel norm [2]. For
spatial-multiplexing systems, antennas can be selected to mini-
mize the error rates [3]. Heath and Love [4] propose several ap-
proaches to pick any number of transmit antennas (termed mul-
timode selection). A cross-layer approach to transmit antenna
selection is given in [5]. A useful tutorial paper on antenna se-
lection can be found in [6].

Exhaustive search based on maximum output SNR is pro-
posed in [3] and [7] when the system uses linear receivers. Since
exhaustive search is computationally expensive for large MIMO
systems, several sub-optimal algorithms with lower complexity
are derived at the expense of performance. A selection algorithm
based on accurate approximation of the conditional error prob-
ability of quasi-static MIMO systems is derived in [8]. The au-
thors in [1] and [9] develop upper and lower bounds for channel
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capacity with antenna selection. Near-optimal approaches for
capacity maximization are given in [10] and [11].

In [12], the authors formulate the receive antenna selection
problem as a combinatorial optimization problem and relax it to
a convex optimization problem. They employ an interior point
algorithm, i.e., the barrier method, to solve the relaxed convex
problem. However, they treat only the case of capacity maxi-
mization.

However, perhaps the most important system performance
metric is the bit-error-rate (BER) or the vector-error-rate
(VER). To the best of our knowledge, no algorithms for antenna
subset selection exist to directly optimize the union bound on
the system error rate. In this letter, we propose a new approach
to antenna selection based on the minimization of the union
bound, which is the sum of the all pairwise error probabil-
ities (PEPs). This can be expressed as a sum of Gaussian
Q-functions. To reduce the complexity of their evaluation, the
Gaussian Q-functions are replaced by accurate exponential
approximations. Moreover, by relaxing the antenna selection
variables from discrete to continuous, we arrive at a convex
optimization problem. Due to its convexity, efficient numerical
methods such as interior-point algorithms can be applied to
solve this optimization problem with polynomial complexity
[13].

This letter is organized as follows. In Section II, the system
model and the union bound for receive subset antenna selection
are presented. In Section III, we formulate antenna selection as
a convex program to minimize the union bound. Experimental
results via Monte Carlo simulations are given in Section IV to
verify performance improvements of our proposed algorithm.
Section V gives the conclusions.

Notation: Bold symbols denote matrices or vectors. ,
, and denote transpose, conjugate transpose, and con-

jugate, respectively. The sets of real numbers, nonnegative real
numbers, and complex numbers are , and , respectively.
The set of all complex vectors, matrices are de-
noted by and respectively. A circularly symmetric
complex Gaussian variable with mean and variance is de-
noted by . An identity matrix is denoted
by .

II. SYSTEM MODEL

We consider a MIMO system with total of transmit and
receive antennas, where . At each transmission epoch,

receive antennas are picked for signal reception. The
fading coefficient is the complex path gain form transmit
antenna to receive antenna . The set of all these fading co-
efficients forms the channel matrix ,
where are identically independent distributed
(i.i.d.). is known to the receiver, but not to the transmitter.
A block of symbols represented by a matrix
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, is transmitted through the channel. The en-
tries , , of with normal-
ization such that are the transmitted signal
from antenna at time

(1)

The entries , , of
are the signals received from antenna at time . The noise ma-
trix consists of variables so that

where is the SNR per receive an-
tenna, regardless of the number of transmit antennas. This model
includes MIMO spatial multiplexing as its specific case where

is a column vector of size , i.e., .
Following the approach of [12], we define diagonal matrix

of size with diagonal entries

if th receive antenna selected
otherwise.

(2)

The MIMO channel can then be rewritten incorporating receive
antenna selection as the following:

(3)

with the new effective channel .
The receiver performs maximum-likelihood (ML) detection

over all possible codewords to obtain

(4)

where is the codebook and denotes the Frobenius norm
of the matrix.

With ML detection in (4), the probability that at least one of
the entries of is in error (PEP) conditioned on the channel
matrix is given by [14]

(5)

where denotes the Gaussian tail probability
. The PEP depends on the specific

codeword pair , the instantaneous channel realization
, and the receive antennas selected.

III. RECEIVE ANTENNA SELECTION
AS A CONVEX OPTIMIZATION

In this section, using matrix manipulation, we rewrite (5) as
a convex function with variables as entries of . Evaluating the
Gaussian Q-function possibly may require high computational
time, a drawback for online applications. Using an approxima-
tion to the Gaussian Q-function in the form of a sum of expo-
nentials [15], we reduce the computational complexity.

First, we denote as the difference between
codewords. Using and the fact that

, we have

(6)

where and are the column vectors of diagonal elements
of matrices , respectively. Note that all the

elements of are nonnegative and
where . The PEP can
then be re-expressed with variable

(7)

There are several ways to approximate the Q-function
with high accuracy. One well-known way to upper bound the
Gaussian Q-function is to use the Chernoff upper bound [14];
that is

(8)

More accurate approximations than the Chernoff bound can
be readily derived as a sum of weighted exponentials. Using the
optimal approximation of Q-function with two exponentials, we
denote the following Chiani bound [15]:

(9)

Clearly, a sum of more exponentials can be used to approxi-
mate Q-function even better [15]. However, in our optimization
problem, there is a tradeoff between approximation accuracy
and computational complexity.

We next assume that there are possible code matrices ,
e.g., for spatial multiplexing systems, with being
the size of the input modulation constellation . The union
bound closely relates to the VER is given by

(10)

Using different expressions for the Q-function, we have the
exact form of union bound as

(11)

or the upper bounds

(12)

and

(13)

Given an instantaneous channel realization , the antenna
selection problem is to pick the receive antennas such
that they minimize the union bounds expressed in (11), (12), or
(13). It is equivalent to find such that

(14)

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 18, 2009 at 17:07 from IEEE Xplore.  Restrictions apply. 



PHAN AND TELLAMBURA: RECEIVE ANTENNA SELECTION BASED ON UNION-BOUND MINIMIZATION USING CONVEX OPTIMIZATION 611

The binary variable vector makes the selection
problem a NP-hard combinatorial optimization i.e., an exhaus-
tive search to evaluate all the antenna subsets may be
needed to pick the optimal solution . We will relax this binary
constraint by allowing , . Thus, the
problem of receive subset selection for minimizing the union
bound is approximated by the following optimization problem:

(15)

Similarly, we can minimize as well.
From the fractional solution of the problem, the receive

antennas with indices corresponding to the largest are
selected.

Proposition 1: The optimization problem in (15) is convex in
.

Proof: Here, we show that where , is
convex

(16)

(17)

The convexity is preserved under an affine transformation [13]
and note that has all its elements being real nonnegative.
Thus, is convex w.r.t. variable .
Finally, noting that the sum of convex functions is convex, we
conclude that is itself convex. The two constraints are
clearly convex. The convexity of the problem suggests that there
is no local minima but only one global minima. The convexity
of follows since it is the sum of two convex exponentials.

Remark: The exact union bound expression in (11) is
in fact also a convex funtion w.r.t. , which follows
from the convexity of w.r.t. [16]. However, the
minimization of (11) is beyond the scope of this letter.

It is well known that a convex optimization problem can be
solved by using interior point methods which require polyno-
mial complexity. We derive a log barrier method to solve (15)
in the Appendix. More details of this method are found in [13].

IV. SIMULATION RESULTS

In this section, we study the VER of systems which imple-
ments antenna selection for different antenna configurations
(varying , and ) through Monte Carlo simulations.
For simulation, each Rayleigh fading channel realization is
constant for 20 frames to produce more accuarate results. ML
signal detection is employed in all cases. For comparison,
the performance curve of a popular selection criteria, i.e.,
eigenvalue-based [3] is plotted. There are selections of
submatrix of size . Let be the collection of all
the submatrices . The eigenvalue-based selection is done by
exhaustive search over all possibilities , equivalently

(18)

Moreover, the optimal exact union bound minimization antenna
selection is also plotted. This is done by searching all the an-
tenna subsets, which has obviously high complexity for systems

Fig. 1. VER with antenna selection, N = 2,N = 3,M = 2, 4 bp/Hz/s.

Fig. 2. VER with antenna selection, N = 3,N = 5,M = 3, 6 bp/Hz/s.

with large dimensions. We plot the VER versus SNR at receiver
of different selection schemes using maximum-likelihood (ML)
detection. ML detection can be done by using an efficient sphere
decoding [17]. In Fig. 1, the MIMO system has , ,
and . We next test our proposed algorithm when imple-
menting MIMO system with larger dimension, , ,
and . Fig. 3 displays the performance gaps between the
exhaustive search (14) and our convex-based relaxation selec-
tion. Our proposed method has some loss, especially in the high
SNR region in which the optimal union bound search provides
the best performance. Moreover, the performance loss may arise
from the rounding operation applied on the optimal solution
of our optimization problem to pick corresponding receive an-
tennas. Another related issue is that the union bound is a sum of a
large number of PEPs. As a result, the rounding off may lead to a
loss. However, our proposed algorithm outperforms the optimal
eigenvalue-based criteria based on exhaustive search. Fig. 1 and
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Fig. 3. Performance of exhaustive search and convex relaxation.

Fig. 2 show that the Chernoff-based and Chiani-based optimiza-
tion perform almost the same. This is because the selected an-
tennas depend only on the order of elements ,
of the optimal but the optimal value. Simulation examples sug-
gest that the complexity of the proposed method is comparable
to that of the optimal search due to a large number of codeword
pairs in the union bound calculation. This suggests that the use
of a truncated union bound which sums over a set of dominant
PEPs may reduce the complexity.

V. CONCLUSIONS

We have proposed a novel solution to the problem of receive
antenna selection to minimize accurate approximations of the
exact union bound. Since a convex problem is obtained, interior-
point methods can be used with polynomial complexity. The
proposed algorithm outperforms eigenvalue-based selection in
terms of the vector error rate.

APPENDIX

A. Gradient Derivation

We compute the gradient of with respect to

(19)

where ,
, .

B. Barrier Method for Function [13]

Given strictly feasible , , (update
parameter), (tolerance), repeat:

• eentering step: compute by minimizing function
, subject to starting at current

using Newton method;
• update ;
• stoping criterion: If , then stop;
• Increase ,

where is the log barrier func-
tion. A note on derivatives of the barrier function

(20)
where , .
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