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Abstract— Despite high spectral efficiencies of multiple-input
multiple-output systems, they suffer from high cost and com-
plexity due to the use of multiple radio frequency chains. A
possible solution is to select a subset of the available antennas
at transmitter and/or receiver based on a criterion such as
capacity maximization or error-rate minimization. In this paper,
we propose a receive antenna selection algorithm to maximize
instantaneous mutual information. The algorithm is based on
singular value decomposition and iterative water-filling. Although
sub-optimal, our algorithm performs close to optimal selection
based on exhaustive search.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless communi-
cation systems, employing multiple antennas at both the trans-
mitter and the receiver, achieve remarkably high spectral ef-
ficiencies in rich scattering multipath environments. However,
they suffer from high cost and complexity due to multiple radio
frequency chains at both link ends (such as amplifiers, mixers
and analog-to-digital converters). A powerful solution is to
select a subset of the available antennas at transmitter and/or
receiver [1]–[3], that is a limited number of transmit/receive
chains are dynamically multiplexed among several available
transmit/receive antennas.

Exhaustive search based on maximum output signal-to-noise
(SNR) is proposed in [4] when signal detection is performed
by the linear receivers. Since exhaustive search is compu-
tationally expensive for large MIMO systems, several sub-
optimal algorithms with lower complexity have been derived
at the expense of performance. A selection algorithm based
on accurate approximation of the conditional probability on
quasi-static MIMO systems is derived in [5]. The authors
in [6] develop upper and lower bounds for channel capacity
with antenna selection. Near-optimal approaches for capacity
maximization are given in [7], [8]. In [9], the authors formulate
receive antenna selection as a convex relaxation problem
and employ interior point algorithms (specifically, the barrier
method), where only an approximate solution is obtained.
Although their approach has the total complexity O(N3.5

r ) for
the total number of Nr receive antennas, their iterative method
might be difficult to be implemented in real-time systems.

In this paper, we propose an algorithm for receive antenna
selection using a simple modified water-filling rule. The
performance of our algorithm is close to optimal selection
based on exhaustive search. Moreover, it is easy to implement

because of its utilization of well-known tools such as singular
value decomposition (SVD) and water-filling. Our algorithm
can also be extended for capacity maximization when imple-
menting practical receivers such as minimum mean square
error (MMSE) or ordered successive interference cancelation
(OSIC) [9].

Notation: Bold symbols denote matrices or vectors. (·)T ,
(·)H and (·)∗ denote transpose, conjugate transpose and con-
jugate, respectively. The sets of real numbers and complex
numbers are R and C. Complex K × 1 vectors and M × N
matrices are denoted by C

K , C
M×N respectively. A circularly

symmetric complex Gaussian variable with mean µ and vari-
ance σ2 is denoted by z ∼ CN (µ, σ2). An N × N identity
matrix is IN .

II. SYSTEM MODEL

We consider a MIMO system with total of Nt transmit and
Nr receive antennas, where Nr ≥ Nt. For each transmission
epoch, a set of M < Nr receive antennas is chosen for signal
reception. This letter considers the case M ≥ Nt only. For
spatial multiplexing, the number of receive antennas should
be at least the number of transmit antennas. If M < Nt,
the system will be rank-deficient. The channel gain hij is the
complex path gain from the jth transmit antenna to the ith
receive antenna. All the channel gains form the channel matrix
H = [hi,j ] ∈ C

Nr×Nt , where hi,j ∼ CN (0, 1) are identically
independent distributed (i.i.d.). Moreover, H is known to the
receiver, but not to the transmitter. Nt symbols from the input
signal constellation are transmitted through the channel and
the received signal samples are given by

y = Hx + z (1)

where x ∈ C
Nt whose elements xi are the transmitted signals

from antenna i with E{|xi|2} = Es ∀i; y ∈ C
Nr has its

entries yj , j = 1, . . . , Nr being the received signals of the jth
antenna. Es is the average energy per receive antenna. The
Gaussian noise vector z ∈ C

Nr consists of i.i.d. CN (0, N0)
variables so that E[zz†] = N0INr

.
Following [9], we define the diagonal matrix ∆ of size Nr×

Nr with entries

∆ii =

{
1, if ith receive antenna selected

0, otherwise.
(2)
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Clearly, tr(∆) =
∑Nr

i ∆ii = M < Nr equals the number
of receive antennas selected for signal reception. The MIMO
signal model can now be re-written incorporating receive
antenna selection as

y = ∆Hx + z. (3)

The channel mutual information with receive antenna selection
can now be expressed as in [9]

C = log2 det(INr
+ γ∆HHH) (4)

where γ = Es/N0 is SNR per symbol transmitted. We can see
that the mutual information is a function of antennas selected
(through the matrix ∆ in (4)). For brevity, we let γ = 1.
The optimization problem is to pick the M receive antennas
such that they maximize the mutual information in (4). It is
equivalent to find the matrix ∆ such that

∆ = arg max
∆ii∈{0,1}∑

i ∆ii=M

log2 det(INr
+ ∆HHH).

The binary variables {∆ii, i = 1, . . . , Nr} make the antenna
selection problem an NP-hard combinatorial optimization, i.e.
an exhaustive search to evaluate all the

(
Nr

M

)
antenna subsets

may be needed to pick the optimal solution. One efficient way
to deal with the combinatoric nature of variables is to relax
the binary constraints by letting ∆ii ∈ [0, 1]. The problem of
receive antenna selection for mutual information maximization
is then approximated by the following optimization problem

max log det(INr
+ ∆HHH) (5)

subject to ∆ is diagonal,

0 ≤ ∆ii ≤ 1, i = 1, ..., Nr,

tr (∆) =
Nr∑
i=1

∆ii = M.

Since the variables are now continuous, it is likely that the
optimal solution ∆ is fractional. The antenna subset is then
obtained by choosing the receive antennas corresponding to
M largest values of ∆ii, i = 1, . . . , Nr.

III. A WATER-FILLING BASED ALGORITHM FOR MUTUAL

INFORMATION MAXIMIZATION

In [9], the authors use the barrier algorithm to solve the
convex relaxation (5). However, the barrier method involves
a variable number of Newton steps, which inhibits its prac-
ticability. Here, we will provide a direct approach to find an
approximate solution of (5). To reduce complexity and ensure
implementation ease, we trade off performance compared with
the optimal solution based on exhaustive search.

First, let the SVD of HHH = UHΣ2
HU∗

H with unitary ma-
trix UH ∈ CNr×Nr and diagonal matrix ΣLH with elements
being the singular values of HHH :

ΣH = diag[ΣLH 0] ∈ RNr×Nr , 0 < ΣLH ∈ RNt×Nt .
(6)

Since (5) is a convex optimization problem on ∆, even when
we relax the trace constraint tr(∆) = M to tr(∆) ≤ M , the
optimal solution always achieves tr(∆) = M . Eq. (5) becomes

max
0≤∆ii≤1
tr(∆)≤M

log det(INr
+ ∆HHH) =

max
0≤∆ii≤1
tr(∆)≤M

log det(INr
+ ∆UHΣ2

HU∗
H)

(7)

Since tr(AB) = tr(BA) for matrices A and B with appro-
priate size, we have

max
0≤∆ii≤1
tr(∆)≤M

log det(INr
+ ∆UHΣ2

HU∗
H) =

max
0≤∆ii≤1
tr(∆)≤M

log det(INr
+ ΣHU∗

H∆UHΣH).
(8)

By introducing new variable X = U∗
H∆UH ∈ CNr×Nr ,

we find that it has the following properties:

• tr(X) = tr(∆) [10],
• X is positive definite but may not be diagonal even if ∆

is,
• 0 ≤ Xii ≤ 1.

The last property derives from the fact that 0 ≤ Xii =∑
j ‖U∗

Hij‖2∆jj ≤ ∑
j ‖U∗

Hij‖2 = 1. The optimization
problem can now be approximately expressed in terms of new
variable X:

max
X≥0, 0≤Xii≤1

tr(X)≤M

log det(INr
+ ΣHXΣH)

⇐⇒ max
X≥0, 0≤Xii≤1

tr(X)≤M

log det(INt
+ ΣLHXLΣLH)

(9)

where X =
[
XL ∗
∗ ∗

]
, XL ∈ CNt×Nt . Note that (9) and

(8) are not necessarily equivalent. Since tr(XL) ≤ tr(X), at

optimality X =
[
XL ∗
∗ 0

]
. Then

(9) ⇐⇒ max
XL≥0, 0≤XLii≤1

tr(XL)≤M

log det(INt
+ ΣLHXLΣLH). (10)

We remove the constraint XLii ≤ 1 ∀i. By modifying the
conventional water-filling rule, we will ensure that XLii ≤ 1∀i

max
XL≥0, 0≤XLii

tr(XL)≤M

log det(INt
+ ΣLHXLΣLH) (11)

The Lagrangian of (11) is

L(XL, α, µ) = − log det(INt
+ ΣLHXLΣLH) − tr(XLDα)

+ µ(tr(XL) − M),
αi ≥ 0, µ ≥ 0, Dα = diag(α).

(12)

Note that − log det(INt
+ΣLHXLΣLH) is convex on XL, so

(11) is a convex optimization program. Therefore, the Karush-
Kuhn-Tucker (KKT) conditions are necessary and sufficient
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for the globally optimal solution. We thus find

0 =
∂L(XL, α, µ)

∂XL

= −ΣLH(INt
+ ΣLHXLΣLH)−1ΣLH−Dα+µINt

,(13)

0 = αiXLii, i = 1, . . . , Nt,

0 = µ(tr(XL) − M).

From (13), it is clear that at optimality, XL is diagonal.
This is due to all the involved matrices are diagonal.
Then the following water filling solution can be obtained

XLii =
(
µ−1 − Σ−2

LHii

)+

, i = 1, . . . , Nt, (14)

where x+ = max{0, x} and µ is chosen to satisfy tr(XL) =
M . However, due to the nature of the water-filling solution,
there is no certainty that (14) will give the optimal XL with
XLii ≤ 1. Therefore, we propose a modified water-filling rule
to achieve this constraint. We have the following observation:

Observation 1: The optimal solution XLii, i = 1, . . . , Nt

of the two problems (10) and (11) has the same ordering
(increasing or decreasing).

The water-filling rule in (16) to solve (11) optimally now
can be modified to accommodate the constraint XLii ≤ 1 ∀i
which will solve (10) optimally, as follows

• Step 1: Do water-filling as (14) to find S = [i|XLii > 1].
If S is empty, then stop algorithm. Otherwise, set XLii =
1 ∀i ∈ S.

• Step 2: Compute new total water M = M − ‖S‖ where
‖S‖ is the number of indices i in S.

• Step 3: Go back Step 1 for the remaining indices i /∈ S.

An approximation to the optimal solution of (8) is given by
UHdiag[XL 0]U∗

H with all the diagonal elements being real.
Simulations show that the iterations almost always stop after

the first step, so the second and third steps in the modified
water-filling are rarely executed, which reduces complexity.

This solution is not necessarily the optimal solution of our
original problem (5) since it is not a diagonal matrix. A direct
solution is to take the real diagonal elements of ∆ only. Al-
though this will cause a performance loss, simulations results
show that this approach nearly achieves optimal performance.

IV. SIMULATION RESULTS

In this section, we demonstrate the the efficiency of the
proposed antenna selection algorithm via Monte-Carlo sim-
ulation. Ergodic capacity for MIMO systems is used as the
performance evaluation metric, which is obtained by averaging
over results from 2000 independent realizations of channel
matrix H. The proposed algorithm and the optimal selection
are done to maximize the instantaneous mutual information.
The optimal set of antennas is obtained by exhaustive search
over

(
Nr

M

)
subsets of receive antennas. Figure 1 shows the

ergodic capacity vs received SNR per antenna (= Ntγ)
when Nt = 2 and Nt = 4, Nr = 6, M = Nt. The
performance of proposed algorithm is almost indistinguishable
from optimal selection. In Fig. 2, the number of received

antennas Nr are varied while Nt and M = Nt are kept
constant. The performance gap between our approach and the
optimal one is larger than in Fig. 1 but still quite tolerable
for practical implementation. As mentioned before, since our
algorithm is not optimal, the results in Fig. 2 are marginally
worse. However, our proposed algorithm avoids implementing
complex iterative operations.
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Fig. 1. Ergodic capacity Nt = 2, 4, Nr = 6, M = Nt.
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Fig. 2. Ergodic capacity vs Nr , SNR = 10dB Nt = 2,4, M = Nt.

V. CONCLUSION

This paper has presented a direct and attractive approach
for receive subset antenna selection to maximize the channel
instantaneous mutual information. Our algorithm is based on
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popular tools i.e. SVD and modified water-filling and does
not require iterative Newton steps like [9]. Consequently, our
algorithm may be easier to implement in real-time systems.
With a total number of Nr receive antennas, the approach
[9] has the total complexity O(N3.5

r ). Since the main part of
our algorithm is an SVD, we would expect its complexity be
O(N3

r ) for practical purposes. Simulation results show that
the performance of our proposed algorithm is close to optimal
selection using exhaustive search. The work considers a sub-
optimal algorithm that could be more sensitive to imperfect
channel estimation. Thus, it would be of further interest to
incorporate an imperfect estimation of the channel matrix.
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