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Abstract— A general framework for precoder design for
multiple-input multiple-output (MIMO) systems is presented in
the paper for the case of correlated Rayleigh fading channels.
The transmitter exploits the knowledge of the transmit and
receive correlation matrices, while the instantaneous channel
state information (CSI) is assumed to be unknown. The latter
assumption is especially important for the case of time-varying
channels, for which the instantaneous CSI is typically unavailable
at the transmitter. It is also assumed that the receiver has a
precise knowledge of the instantaneous CSI. The precoder oper-
ates along with an orthogonal space-time block code (OSTBC)
and aims at minimizing the Chernoff bound on the symbol
error rate (SER). We show that for some particular correlation
scenarios, the closed-form precoder designs can be obtained.
Our simulations demonstrate the advantages of the proposed
precoding techniques.

I. INTRODUCTION

Multi-antenna systems have recently gained a significant
attention due to their ability to mitigate fading. Moreover,
multi-antenna systems offer significant channel capacity gains.
Space-time block codes (STBCs) have been developed for
such systems [1]. Among different STBCs the orthogonal
STBCs (OSTBCs) are of a special interest because the cor-
responding maximum-likelihood (ML) decoder boils down to
a simple match filter [2].

STBCs are design based on the assumption that the channel
state information (CSI) is unavailable at the transmitter. How-
ever, if the CSI is available at the transmitter, the combination
of STBC with precoding techniques can be used in order to
adopt the system to the current channel conditions without
changing the fixed structure of the transmitter and the receiver
[3]–[5].

Typically, the full instantaneous CSI is assumed to be
available at the transmitter for linear precoder design [3],
[6]. The CSI can be estimated at the transmitter when a
time-division duplex (TDD) mode is employed. However, in
frequency-division duplex (FDD) systems, the instantaneous
CSI has to be estimated at the receiver and feed back to the
transmitter. It can significantly consume the bandwidth of the
system, especially in the case of time-varying cannel. Hence,
it is more reasonable to assume that the transmitter only
has partial channel knowledge such as transmit and receive
correlation matrices. Note that these correlation matrices vary

at a much slower rate than the instantaneous CSI and can be
obtained reliably at the transmitter.

In this paper, we consider the problem of precoder de-
sign over a jointly transmit-receive correlated Rayleigh fad-
ing MIMO channel with OSTBC. We assume that only the
transmit and receive correlation matrices are available at the
transmitter, while the precise instantaneous CSI is known at
the receiver. Our precoder aims to minimize the Chernoff
bound on the exact symbol error rate (SER). We show that
for some popular correlation models, the closed-form precoder
designs which have very low computational complexity can be
obtained. The authors in [7], [8] have considered the precoder
design for correlated channel but with some variants, i.e. in
correlation model and design criteria.

The paper is organized as follows. In Section 2, the system
model is presented. The precoder design problem formulation
is given in Section 3, while the specific precoder designs
for different correlation scenarios are summarized in Section
4. Section 5 contains our simulation results, and Section 6
concludes the paper.

II. SYSTEM MODEL

The received signal for MIMO system which uses a com-
bination of STBC and precoding can be written as

Y =
√

Es

Nt
HFC + Z (1)

where Nt and Nr are the numbers of transmit and receive
antennas, respectively, Es is the total transmitted power, Y is
the Nr ×T matrix of received signal, C is the Nt ×T STBC
matrix, F is the Nt × Nt precoding matrix, Z is the Nt × T
matrix of additive white Gaussian noise (AWGN) with zero
mean and variance No, H is the Nr × Nt channel matrix.

The Rayleigh fading channel H can be modeled in the case
of transmit and receive correlation as

H = R
1
2
RxH̃R

1
2
Tx (2)

where RTx and RRx are the transmit and receive side corre-
lation matrices of sizes Nt × Nt and Nr × Nr, respectively,
and H̃ composes of independent identically distributed (i.i.d.)
elements with zero-mean and unit variance. Note that the
correlation between different MIMO channel links is modeled
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under the assumption that the correlation among receive anten-
nas is independent of the correlation among transmit antennas
(and vice versa). Writing (2) using the vectorizing operator
vec(.) as vec(H) = R1/2vec(H̃), it can be verified that the
matrix R can be written in terms of the Kronecker product of
transmit and receive correlation matrices, i.e.,

R = RT
Tx ⊗ RRx (3)

where vec(·) denotes the vectorization operation.
We denote the Q × 1 vector consisting of complex

information-bearing symbols prior to space-time encoding as
s = [s1, s2, . . . , sQ]T , where (·)T denotes the transpose.
Though different signal modulation schemes such as M-PAM,
M-QAM, or M-PSK can be used, hereafter we assumed that
M-PAM is applied and E(|si|2) = 1, where E(·) stands for
the mathematical expectation. An Nt ×T OSTBC codematrix
X(s) is used to encode the input vector s. Note that this
codematrix satisfies the following properties [2]

• All the elements in X(s) are linear functions of
s1, s2, . . . , sQ and their complex conjugates.

• XH(s)X(s) = ‖s‖2
F I for all s ∈ C

Q, where ‖ · ‖2 and
C

Q denote the Euclidian norm of vector and the set of
complex Q × 1 vectors, correspondingly.

It has been shown in [2] that if OSTBCs are used, the ML
decoder can be simplified to a symbol-by-symbol decoder of
the following form

s̃q =
√

Es

Nt

(
1

Rs
‖HF‖2

F

)
sq + νq, q = 1, ..., Q (4)

where νq ∼ CN
(
0, 1

Rs
‖HF‖2

F N0

)
is the complex Gaussian

noise with zero-mean and variance 1
Rs

‖HF‖2
F N0, Rs = Q/T

is the code rate, and ‖ · ‖2
F denotes the Frobenius norm

of matrix. Using (4) the effective instantaneous signal-to-
noise ratio (SNR) per symbol in M -ary constellation can be
expressed as

γ =
|s̃q|2
|νq|2 =

Es

N0RsNt
α (5)

where α = ‖HF‖2
F .

III. PROBLEM FORMULATION

In this section, we develop an optimization problem for de-
signing the precoding matrix F which minimizes the Chernoff
bound on the exact SER.

Given the receive instantaneous SNR γ, the SERs in the
case of M-PAM modulation can be evaluated as [9]

SER =
2
π

M − 1
M

∫ π
2

0

exp
(
−gPAMγ

sin2 φ

)
dφ (6)

where gPAM = 3/(M2 − 1).
Using (5) and the moment generating function (MGF) for

the random variable α, the SER in (6) can be rewritten as

SER =
2
π

M − 1
M

∫ π
2

0

Φ
(
− g̃

sin2 φ

)
dφ (7)

where g̃ = gPAMEs/(N0RsNt), and Φ(.) denotes the MGF.

Exploiting the property that Tr(ABAH) = vec(AH)H(I⊗
B)vec(AH), we can write that

α = ‖HF‖2
F = Tr(HFFHHH)

= vec(HH)H(I ⊗ FFH)vec(HH) (8)

where Tr(·) denotes the trace operation. Furthermore, by
denoting Rs = RRx ⊗ RTx as the covariance matrix of
vec(HH), we can rewrite (8) as

α = vec(H̃H)HR1/2
s (I ⊗ FFH)R1/2

s vec(H̃H). (9)

Thus, α is a positive-definite quadratic form of zero-mean unit-
variance Gaussian vector vec(H̃H).

The following theorem is in order [10].
Theorem 1: The MGF of the quadratic form y = xHAx

where A is Hermitian matrix and x is circularly symmetric
complex Gaussian vector with mean x̄ and variance Rx is
given by

Φ(s) =
∫ ∞

0

esypY (y)dy =
exp(−x̄HA(I − sRxA)−1x̄)

det(I − sRxA)
.

(10)
where pY (y) stands for the probability density function of
random variable y.

Using theorem 1 and denoting x̄ = 0, A = R1/2
s (I ⊗

FFH)R1/2
s , and Rx = I the MGF for α in (9) can be written

as

Φ(s) = det
(
I − sR1/2

s (I ⊗ FFH)R1/2
s

)−1

= det
(
I − s(I ⊗ FFH)Rs

)−1

= det
(
I − s(I ⊗ FFH)(RRx ⊗ RTx)

)−1

= det
(
I − sRRx ⊗ (FFHRTx)

)−1

. (11)

Inserting (11) into (7), we can write the exact SER as

SER =
2
π

M − 1
M

×
∫ π

2

0

det
(
I+

g̃

sin2 φ
RRx⊗

(
FFHRTx

))−1

dφ (12)

The Chernoff bound on the exact SER can be obtained by
substituting φ = π/2 into (12), and is given by

SERChernoff =
M − 1

M
det

(
I + g̃RRx⊗

(
FFHRTx

))−1

.

(13)
Our task now is to design the precoding matrix F which

maximizes the Chernoff bound on the exact SER (13) subject
to the average power constraint ‖F‖2

F = Tr(FFH) = 1.
Mathematically, this problem can be expressed as

min
F

SERChernoff subject to Tr(FHF) = 1. (14)

330

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 18, 2009 at 17:11 from IEEE Xplore.  Restrictions apply. 



IV. PRECODER DESIGNS FOR SCENARIOS WITH TRANSMIT

AND/OR RECEIVE CORRELATION

Applying the singular value decomposition (SVD) to
the transmit and receive correlation matrices RTx =
UTxΣTxUH

Tx and RRx = URxΣRxUH
Rx, we can rewrite the

Chernoff bound on the exact SER as

SERChernoff =
M − 1

M
det

(
I + g̃ΣRx⊗

(
Σ1/2

Tx F̃Σ1/2
Tx

))−1

(15)
where F̃ = UH

TxFFHUTx, UTx,URx are the matrices
of eigenvectors, and ΣTx,ΣRx are the diagonal eigenvalue
matrices of the transmit and receive correlation matrices,
respectively. Then, the optimization problem (14) can be
rewritten as

min
Tr(F̃)=1, F̃�0

det
(
I + g̃ΣRx⊗

(
Σ1/2

Tx F̃Σ1/2
Tx

))−1

. (16)

We now state the Hadamard inequality [11]:
Theorem 2: If A = [aij ] is positive definite matrix of size

n, then

det(A) ≤
n∏

i=1

aii. (17)

Furthermore, equality holds in (17) if and only if A is
diagonal. Since the matrices ΣTx and ΣRx in (16) are di-

agonal, det
(
I+ g̃ΣRx⊗

(
Σ1/2

Tx F̃Σ1/2
Tx

))−1

will be minimized

if
(
I + g̃ΣRx⊗

(
Σ1/2

Tx F̃Σ1/2
Tx

))
is diagonal, that implies the

optimal F̃ for (16) is also diagonal. Moreover, based on the
property that the logarithmic function log(x) is monotonic
increasing for nonnegative x, we can rewrite the optimization
problem (16) as the following equivalent problem

min
F̃ (i,i)≥0, Tr(F̃)≤1

− log det
(
I + g̃ΣRx⊗

(
Σ1/2

Tx F̃Σ1/2
Tx

))
(18)

where the constraint Tr(F̃) = 1 is replaced by its inequality
equivalent that does not affect the optimal solution as will be
shown later.

A. Transmit side correlation only

In the case of of no receive side correlation, RRx = I, or
equivalently ΣRx = I. Thus, substituting ΣRx = I into (18)
the precoder design problem can be simplified to the following
problem

min
F̃ (i,i)≥0, Tr(F̃)≤1

− log
[
det

(
I + g̃Σ1/2

Tx F̃Σ1/2
Tx

)]Nr

(19)

or equivalently to

min
F̃ (i,i)≥0, Tr(F̃)≤1

− log det
(
I + g̃Σ1/2

Tx F̃Σ1/2
Tx

)
. (20)

The Langrangian for the problem (20) is given by

L(F̃, α, µ) = − log det
(
I + g̃Σ1/2

Tx F̃Σ1/2
Tx

) − Tr(F̃Dα)

+ µ(Tr(F̃) − 1), (21)

µ ≥ 0, αi ≥ 0, i = 1, . . . , Nt, Dα = diag(α)

where µ and αi, i = 1, . . . , Nt are the Lagrange multipliers.
From [12], − log det

(
I + g̃Σ1/2

Tx F̃Σ1/2
Tx

)
is convex w.r.t.

F̃ � 0, thus (20) is a convex program. Therefore, the globally
optimal solution to this problem can be found by solving the
following system of Karush-Kuhn-Tucker (KKT) conditions

−g̃Σ1/2
Tx

(
I + g̃Σ1/2

Tx F̃Σ1/2
Tx

)−1
Σ1/2

Tx − Dα + µI = 0,

αiF̃ (i, i) = 0, i = 1, . . . Nt, µ(Tr(F̃) − 1) = 0 (22)

where we have used the fact that [log det(X)]′ = X−1 for
positive definite matrix X. Then the linear precoder in the
case of no transmit side correlation is given by the following
waterfilling-like solution

F̃ (i, i) =
(
µ−1 − (

g̃ΣTx(i, i)
)−1

)+

, i = 1, . . . , Nt

(23)
where x+ = max{0, x}, and µ is chosen such that∑

i F̃ (i, i) = 1.

B. Receive side correlation only

Similarly, in the case of no receive side correlation, i.e.,
RRx = INr

or, equivalently, ΣRx = INr
, the problem (18)

can be simplified to the following problem

min
F̃ (i,i)≥0, Tr(F̃)≤1

− log det
(
I + g̃ΣRx ⊗ F̂

)
(24)

where F̂ = FFH . Furthermore, using some properties of Kro-
necker product and the fact that the matrix ΣRx is diagonal,
the above problem (24) can be rewritten as

max
F̃ (i,i)≥0, Tr(F̃)≤1

Nr∑
j=1

− log det
(
I + g̃ΣRx(j, j)F̂

)
. (25)

Applying the Lagrange multiplier method for solving the
problem (25), we find that the optimal F̂ is given by the
solution of the following system of equations

Nr∑
j=1

g̃ΣRx(j, j)
(
1 + g̃ΣRx(j, j)F̂ (i, i)

)−1=µ, i = 1, . . . , Nt.

(26)
Specifically, we can see that the optimal F̂ has equal diagonal
elements F̂ (i, i), i = 1, . . . , Nr. Using the average power
constraint Tr(F̂) = 1, we can find that F̂ = 1

Nt
I. Therefore,

the optimal precoding matrix in the case of no transmit side
correlation is independent on the receive side correlation.

C. Both transmit and receive sides correlations

Finally, in the general case with both receive and transmit
side correlation, the problem (18) can be rewritten as

min
F̃ (i,i)≥0, Tr(F̃)≤1

Nr∑
j=1

− log det
(
I + g̃ΣRx(j, j)Σ

1/2
Tx F̃Σ1/2

Tx

)

(27)
where we have used some properties of the Kronecker product
and the fact that ΣRx is diagonal.

The optimization problem (27) is convex, and can be effi-
ciently solved using, for example, a simple gradient descend
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method [13]. Particularly, applying the Lagrange multiplier
method for solving the problem (27), we find that the optimal
F̂ is given by the solution of the following system of equations

Nr∑
j=1

g̃ΣRx(j, j)
ΣTx(i, i)−1 + g̃ΣRx(j, j)F̃ (i, i)

= µ, i = 1, . . . , Nt.

(28)
where µ is chosen such that

∑
i F̃ (i, i) = 1.

It is worth noting that in the case of constant receive side
correlation, i.e., RRx = I(r) where I(r) is the matrix with
the diagonal elements equal to 1 and off-diagonal elements
equal to r, the problem (27) can be solved in closed form.
In this case, RRx has one eigenvalue of order one equal to
ΣRx1 = r(Nr − 1) + 1 and one eigenvalue of order Nr − 1
equal to ΣRx2 = 1 − r. Then, each equation in (28) can be
simplified as

g̃1

ΣTx(i, i)−1 + g̃1F̃ (i, i)
+

(Nr − 1)g̃2

ΣTx(i, i)−1 + g̃2F̃ (i, i)
= µ, ∀i

(29)
where g̃1 = g̃

[
r(Nr − 1) + 1

]
, g̃2 = g̃(1 − r). If the cross-

correlation between different pairs of antennas is much smaller
than 1, i.e., ΣRx(j, j) ≈ N−1

r Tr(RRx)∀j, each equation in
(28) can be approximated as

Nr ĝ

ΣTx(i, i)−1 + ĝF̃ (i, i)
= µ, i = 1, . . . , Nt (30)

where ĝ = g̃N−1
r Tr(RRx). Solving (30) we can derive the

following approximate solution for the precoder

F̃ (i, i) =
(
Nrµ

−1−(ΣTx(i, i)ĝ)−1
)+

, i = 1, . . . , Nt. (31)

V. SIMULATION RESULTS

In this section, we investigate the performance of the
proposed precoder. We simulate the system with four transmit
and single receive antenna. 4-PAM modulation is used. Note
that the 4-PAM modulation scheme is real. Therefore, the
following full-rate real OSTBC can be adopted [2]

X(s) =




s1 −s2 −s3 −s4

s2 s1 s4 −s3

s3 −s4 s1 s2

s4 s3 −s2 s1


 .

The total available power at the transmitter is equal to 1, and
the channel is assumed to be a correlated Rayleigh fading
channel with constant transmit correlation. The correlation
coefficient between different transmit antennas is equal to 0.4.

Fig. 1 displays the SER versus SNR for the system with
and without precoding. We can see that the performace gain of
the transmission scheme with precoding over the transmission
scheme without precoding is about 2.5 dB.

VI. CONCLUSION

The general framework for precoder design for OSTBC
based MIMO systems is presented in the paper for the case
of correlated Rayleigh fading channels. The optimal precoder
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0
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E
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Without precoding
With precoding

Fig. 1. SER performance of the transmission schemes with and without
precoding.

exploits the knowledge of the transmit and receive correla-
tion matrices at the transmitter and aims at minimizing the
Chernoff bound on the exact SER. Three cases of transmit
correlation only, receive correlation only, and both transmit
and receive correlations are considered. The closed-form so-
lutions with a very low computational complexity are derived
where it is possible. The simulation example demonstrates
the advantages of the precoded transmission scheme over the
scheme without precoding.
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