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Abstract— Despite their high spectral efficiencies, multiple-
input multiple-output (MIMO) systems suffer from high cost
and complexity due to multiple radio frequency chains at both
link ends. A possible solution is to select a subset of the available
antennas at transmitter and/or receiver based on maximal capac-
ity or minimal error rates. In this paper, we propose a receive
antenna selection algorithm to minimize the union bound on the
vector error rate. By relaxing the antenna selection variables
from discrete to continuous, we formulate the problem as a
convex optimization problem. An efficient iterative method can
be used to obtain the solution.

I. INTRODUCTION

Wireless communication systems, employing multiple an-
tennas at both the transmitter and the receiver, achieve re-
markably high spectral efficiencies in rich-scattering multipath
environments. A well-known example of a such system is the
BLAST (Bell Laboratories layered space time) architecture
[1]. However, MIMO systems suffer from high cost and
complexity due to multiple radio frequency chains at both link
ends.

Antenna selection technologies for MIMO systems have
thus been extensively studied. Since the MIMO paradigm
includes a wide range of techniques such as space-time codes
that extract full diversity [2], [3], uncoded transmissions that
achieve full spatial multiplexing [1] and schemes that exploit
the diversity-multiplexing tradeoff [4], there are several an-
tenna selection criteria. For full-diversity space-time codes, a
subset of available antennas can be selected to maximize the
channel norm [5]. For spatial-multiplexing systems, antennas
can be selected to minimize the error rates [6]. Comprehensive
tutorial papers on antenna selection can be found in [7], [8].

Exhaustive search based on maximum output SNR is pro-
posed in [6] and [9] when the system implements linear re-
ceivers. Since exhaustive search is computationally expensive
for large MIMO systems, several sub-optimal algorithms with
lower complexity are derived at the expense of efficiency.
A selection algorithm based on accurate approximation for
the conditional probability on quasi-static MIMO systems is
derived in [10].

In [11], Dua et.al. formulate the receive antenna selection
problem as a combinatorial optimization problem and then
relax it to a convex optimization problem. They employ an
interior point algorithm, i.e. the barrier method, to solve the

relaxed convex problem. However, they treat only the case of
capacity maximization.

However, perhaps the most important system performance
metric is the bit-error-rate (BER) or the vector-error-rate
(VER). To the best of our knowledge, no algorithms for
antenna subset selection exist to directly optimize the union
bound on the system error rate. In this paper, we propose a new
approach to antenna selection to minimize the union bound,
which is the sum of the all pairwise error probabilities (PEPs).
This can be expressed as a sum of Gaussian Q-functions. To
reduce the complexity to evaluate the Gaussian Q-function,
we choose to minimize accurate approximations for the Q-
function instead. By relaxing the antenna selection variables
from discrete to continuous, we formulate the problem as a
convex optimization problem. Due to the convexity of our
derived problem, efficient numerical methods such as interior-
point algorithms can be applied to solve it with polynomial
complexity [12].

The paper is organized as follows. In the next section,
the system model and the union bound when implementing
receive subset antenna selection are presented. In Section 3, we
formulate antenna selection as a convex programming problem
to minimize the union bound. Experimental results via Monte
Carlo simulations are given in Section 4 to verify performance
improvements of our proposed algorithm, followed by the
conclusion.

Notation: Bold symbols denote matrices or vectors. (·)T ,
(·)H and (·)∗ denote transpose, conjugate transpose and con-
jugate, respectively. The sets of real numbers, nonnegative real
numbers and complex numbers are R, R+ and C respectively.
The set of all complex K × 1 vectors, M × N matrices are
denoted by C

K , C
M×N respectively. A circularly symmetric

complex Gaussian variable with mean µ and variance σ2 is
denoted by z ∼ CN (µ, σ2). An N × N identity matrix is
denoted by IN . A diagonal matrix with diagonal entries from
vector a is denoted by Diag(a). A ≥ B, A > B denotes
A − B is semi-positive definite matrix and positive definite
matrix. e denotes column vector with all entries of 1.

II. SYSTEM MODEL

We consider a MIMO system with total of Nt transmit and
Nr receive antennas, where Nr ≥ Nt. At each transmission
epoch, M < Nr are picked receive antennas for signal
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reception. This paper considers the case M ≥ Nt only. For
spatial multiplexing, the number of receive antennas should
be at least the number of transmit antennas. If M < Nt, the
system will be rank-deficient. The fading coefficient hij is the
complex path gain form transmit antenna j to receive antenna
i. We assume that the fading elements of the channel matrix
H = [hi,j ] ∈ C

Nr×Nt are identically independent distributed
(i.i.d.) with hi,j ∼ CN(0, 1). H is known to the receiver, but
not to the transmitter. A block of N ×Nt symbols represented
by a Nt×N matrix X � (x1, . . . ,xN), is transmitted through
the channel. The entries xij , i = 1, . . . , Nt, j = 1, . . . , N of
Xm with normalization such that E{|xij |2} = 1 ∀i, j are the
transmitted signal from antenna i at time j

Y = HX + Z. (1)

The entries yij , i = 1, . . . , Nr, j = 1, . . . , N of Y ∈ C
Nr×N

are the signals received from antenna i at time j. The Gaussian
noise matrix Z ∈ C

Nr×N consists of CN (0, Nt

ρ ) variables
so that E[ZZ†] = NNt

ρ INr
where ρ is the SNR per receive

antenna, regardless of the number of transmit antennas. This
model includes MIMO spatial multiplexing as its specific case
where X is a column vector of size Nt, i.e. N = 1.

Following the approach of Dua et. al. [11], we define
diagonal matrix ∆ of size Nr × Nr with diagonal entries

∆i =

{
1, if ith receive antenna selected

0, otherwise.
(2)

The MIMO channel can then be re-written incorporating
receive antenna selection as the following

Y = ∆HX + Z (3)

with the new effective channel ∆H.
The receiver performs maximum-likelihood detection over

all possible codewords X to obtain

X̃ = arg min
X∈C

‖Y − ∆HX‖2
F , (4)

where C is the codebook and ‖.‖F denotes the Frobenius norm
of the matrix, that is

‖R‖2
F =

∑
i,j

|rij |2 = Trace(RRH) = Trace(RHR).

With ML detection in (4), the pair-wise error probability
conditioned on the channel matrix H is given by

Ppep (Xm → Xn| H) = Q

(√
ρ

2
‖∆H(Xm − Xn)‖2

F

)
,

(5)
where Q(.) denotes the Gaussian tail probability Q(x) =

1√
2π

∫∞
x

exp− 1
2 t2 dt . The PEP depends on the specific code-

word pair (Xm,Xn), the instantaneous channel realization H
and the receive antennas selected.

III. RECEIVE ANTENNA SELECTION AS A CONVEX

OPTIMIZATION

In this section, by using matrix manipulation, we rewrite
(5) as a convex function with variables as entries of ∆.
Evaluating the Gaussian Q-function possibly may require high
computational time, a drawback for online applications. Using
an approximation to the Gaussian Q-function as a sum of
exponentials [13], we reduce the computational complexity.

First, we denote Γm,n = Xm − Xn as the difference
between codewords. Using the fact that ∆H∆ = ∆ and
Trace(AB) = Trace(BA), we have

‖∆H(Xm − Xn)‖2
F = ‖∆HΓm,n‖2

F

= Trace
(
ΓH

m,nHH∆H∆HΓm,n

)
= Trace

(
HΓm,nΓH

m,nHH∆
)

= h̃H
m,nu

(6)

where h̃m,n and u are the column vectors of diagonal elements
of matrices HΓm,nΓH

m,nHH , ∆ respectively. Note that all the
elements of h̃m,n are nonnegative and Trace(∆) =

∑
i ui

where u = [u1, . . . , uNr
]T = [∆1, . . . ,∆Nr

]T .
The PEP can then be re-expressed with variable u

Ppep (Xm → Xn| H) = Q

(√
ρ

2
h̃H

m,nu

)
. (7)

The Gaussian Q-function can be evaluated using a lookup
table or a polynomial approximation [14] and often available
in most mathematical software. However, it is still an issue
for systems with large dimension. There are several ways to
approximate the Q-function with high accuracy. The authors in
[13] proposed a general formula to approximate the function
erfc(x) where Q(x) = 1

2erfc( x√
2
)

erfc(x) ≤ 2
π

N∑
i=1

∫ θi

θi−1

exp
(− x2

sin2 θi

)
dθ

=
N∑

i=1

ai exp(−bix
2) (8)

where

ai =
2(θi − θi−1)

π
, bi =

1
sin2 θi

(9)

By choosing N = 1, from (7) and (8), we obtain the well-
known Chernoff upper bound

Ppep (Xm → Xn| H) ≤ 1
2

exp

{
−ρh̃H

m,nu
4

}
︸ ︷︷ ︸

g̃1
m,n(u)

. (10)

More accurate approximations than the Chernoff bound can
be readily extended as a sum of more than two exponential
terms. The following is the optimal approximation of Q-
function with N = 2 in (8), termed ’Chiani bound’ [13]

Q(x) ≤ 1
12

e−
x2
2 +

1
4
e−

2x2
3 . (11)
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Therefore,

Q

(√
ρ

2
h̃H

m,nu

)
≤ 1

12
exp

{
−ρh̃H

m,nu
4

}
+

1
4

exp

{
−ρh̃H

m,nu
3

}
︸ ︷︷ ︸

g̃2
m,n(u)

.

(12)
Clearly, sum of more exponentials can be used to approximate
Q-function (8). However, in our optimization problem, there is
a tradeoff between approximation accuracy and computational
complexity.

We next assume that there are L possible code matrices
X, e.g. for spatial multiplexing systems, L = |S|Nt with |S|
being the size of the input modulation constellation S. The
union bound on the error probability is given by

Pe ≤ PUB =
2
L

L−1∑
m=1

L∑
n=m+1

Ppep (Xm → Xn| H). (13)

Using different expressions for the Q-function, we have the
exact form of union bound as

PUB =
2
L

L−1∑
m=1

L∑
n=m+1

Q

(√
ρ

2
h̃H

m,nu

)
, (14)

or the upper bounds

PUB ≤ 2
L

L−1∑
m=1

L∑
n=m+1

g̃1
m,n(u) = g1(u), (15)

and

PUB ≤ 2
L

L−1∑
m=1

L∑
n=m+1

g̃2
m,n(u) = g2(u). (16)

Given an instantaneous channel realization H, the antenna
selection problem is to pick the M < Nr receive antennas
such that they will minimize the union bound in (14), (15), or
(16). It is equivalent to find u such that

u = arg min
ui∈{0,1}∑

i ui=M

PUB . (17)

The binary variable vector u ∈ {0, 1}Nr makes the selection
problem a NP-hard combinatorial optimization i.e. an exhaus-
tive search to evaluate all the

(
Nr

M

)
antenna subsets may be

needed to pick the optimal solution u. We will relax this binary
constraint by allowing ui ∈ [0, 1], (i = 1, . . . , Nr). Thus, the
problem of receive subset selection for minimizing the union
bound is approximated by the following optimization problem:

min g1(u) (18)

subject to 0 ≤ ui ≤ 1, i = 1, ..., Nr,
Nr∑
i=1

ui = M.

Similarly, we can minimize g2(u) as well.
Typically, the solution u of (18) is a set of fractional

values. The receive antennas with indices corresponding to

the M largest ui are selected.

Proposition 1: The above optimization problem is convex
in u ∈ R

Nr
+ .

Proof: Here, we show that e
−βu

2 where β, u > 0 is convex

∂ e
−βu

2

∂u
= −β

2
e

−βu
2 < 0, 0 < u < ∞ (19)

∂2 e
−βu

2

∂u2
=

(β

2

)2

e
−βu

2 > 0, 0 < u < ∞. (20)

The convexity is preserved under an affine transformation [12]
and note that h̃m,n has all its elements being real nonnegative.

Thus, exp
{
−ρh̃H

m,nu

4

}
is convex w.r.t. variable u ∈ R

Nr
+ .

Finally, noting that the sum of convex functions is convex,
we conclude that g1(u) is itself convex. The two constraints
are clearly convex.

It is well-known that a convex optimization problem can
be solve either in closed form or by using interior point
methods which require polynomial complexity. We employ a
log barrier method [12] to solve (18). More details on the
gradient derivation of the objective function and the algorithm
can be found in [15].

IV. SIMULATION RESULTS

This section studies the VER of systems which implements
antenna selection for different antenna configurations (varying
Nt, Nr and M ) through Monte Carlo simulations. For simu-
lation, each Rayleigh fading channel realization is constant
for 20 frames to produce more accuarate results. The ML
detection is employed in all cases. For comparison, we also
plot the performance curves of the eigenvalue-based [6] and
the optimal exact union bound minimization antenna selection.
This involves searching over

(
Nr

M

)
possible submatrices of size

M × Nt. We plot the VER vs SNR at receiver of different
selection schemes. In Fig. 1, the MIMO system has Nt = 2,
Nr = 3, and M = 2. We next test our proposed algorithm
when implementing MIMO system with larger dimension,
Nt = 3, Nr = 5, and M = 3. There are discrepancies between
the optimal union bound selection and Chernoff bound (or
Chiani approximation) convex-based selection, especially in
the high SNR region. Fig. 3 displays the gaps between the
exhaustive search (17) and our convex relaxation method.
The performance loss may arise from the rounding operation
applied on the optimal solution of our optimization problem to
pick corresponding receive antennas. However, our proposed
algorithm outperforms the optimal eigenvalue-based criteria
based on exhaustive search. Fig. 1 and Fig. 2 show that
the Chernoff-based and Chiani-based optimization perform
almost the same. This is because the performance of our
proposed algorithm (or equivalently the antennas selected for
each channel realization) does not depend on the optimal
value (or the optimal solution x) of our optimization problem
(18) but the order of elements xi, i = 1, . . . , Nr of the
optimal x. For the simualtion examples, the complexity of the
proposed method is comparable to that of the optimal search
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Fig. 1. Vector Error Rate with antenna selection, Nt = 2, Nr = 3, M = 2,
4bp/Hz/s.
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Fig. 2. Vector Error Rate with antenna selection, Nt = 3, Nr = 5, M = 3,
6bp/Hz/s.

due to a large number of codeword pairs in the union bound
calculation. This has motivated us to investigate the bound
over the codeword pairs with small distances only which is
the subject of our current research.

V. CONCLUSION

We have proposed a novel solution to the problem of
receive antenna selection to minimize accurate approximations
of the exact union bound. Since we are able to formulate
the antenna selection as a convex programming problem,
interior-point methods such as the log barrier method can
be used efficiently with polynomial complexity. The proposed
algorithm outperforms eigenvalue-based selection in terms of
the vector error rate.
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Fig. 3. Performance comparisions between exhaustive search and our convex
relaxation method.
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