
Signal-to-interference-plus-noise ratio Analysis for
MIMO-OFDM with Carrier Frequency Offset and

Channel Estimation Errors
Wei Zhang, Zhongshan Zhang and Chintha Tellambura

Department of Electrical and Computer Engineering
University of Alberta, Edmonton

AB T6G 2V4, Canada
{wzhang, zszhang, chintha}@ece.ualberta.ca

Abstract— In this paper, we derive the signal-to-interference-
plus-noise ratio (SINR) for multiple-input multiple-output
(MIMO) orthogonal frequency-division multiplexing (OFDM)
systems in the presence of frequency offset and channel esti-
mation errors. The channel is assumed to be frequency-selective
Rayleigh fading. Our analysis of the demodulated signal shows
that the interference can be decomposed into two independent
components: Inter-Carrier Interference and interference con-
tributed by other transmit antennas. The SINR for MIMO-
OFDM systems with equal gain combining (EGC) and maximal
ratio combining (MRC) are also derived.

I. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) has
been widely used for wireless applications such as standards of
high data rate wireless local area networks, mainly due to its
remarkable resistance to frequency-selective fading, achieved
by dividing the available bandwidth into many narrow parallel
overlapping subchannels [1]. The multiple-input multiple-
output (MIMO) technique [2] can be used together with
OFDM to operate at a high-throughput mode, the diversity
mode or the combination of both [3]. Such systems achieve
high spectral efficiencies and/or a large coverage area that are
critical for future-generation wireless networks.

However, MIMO-OFDM faces several technical challenges.
One is that, as in single-input single-output (SISO)-OFDM,
MIMO-OFDM systems are highly sensitive to the frequency
offset, which introduces intercarrier interference and thereby
significantly degrades the system performance [4]. The other
major problem for MIMO-OFDM is that channel estimation
becomes increasingly difficult with the increase in the number
of antennas. Several estimators of channel, frequency offset
or both for SISO-OFDM have already been developed [5]–
[7]. Optimal training signal design for MIMO-OFDM channel
estimation has been considered in [9] and preamble training
for MIMO-OFDM has been proposed in [10]. Recursive
estimation of channel and frequency offset in MIMO-OFDM
systems is discussed in [11].

Previously, the signal-to-interference-plus-noise ratio
(SINR) for SISO-OFDM has been evaluated as a measure
of the performance degradation due to frequency offset [4],
[5], [12], [13]. In [13], the SINR on a single subcarrier is

evaluated accurately in Rayleigh or Rician fading channels.
However, [13] assumes that the channel is perfectly known at
the receiver side and that the frequency offset is negligible.
Although some estimators are highly accurate, we know that
their performance is ultimately limited by the Cramér-Rao
Lower Bound (CRLB) [14], i.e., the residual frequency offset
and channel estimation errors after frequency offset correction
and channel equalization degrade the system performance.

In this paper, we extend the SINR derived in [13] to
MIMO-OFDM systems, taking into consideration the residual
frequency offset and channel estimation errors. We assume that
the frequency offsets between different transmit and receive
antenna pairs are different, a model that is suitable for a slow
or high mobility of mobile user. We also derived the SINR
for equal gain combining (EGC) and maximal ratio combining
(MRC), two well known diversity reception techniques.

This paper is organized as follows. The MIMO-OFDM
system model is given in Section II. In section III, the
SINR degradation in MIMO-OFDM systems due to frequency
offset and channel estimation errors is analyzed for three
different reception cases: no diversity combining, EGC and
MRC. Numerical results are given in Section IV, followed by
conclusions in Section V.

II. SYSTEM AND SIGNAL MODEL

We introduce some notation. Bold symbols denote matrices
or vectors. (·)H is Hermitian (complex conjugate transpose).
diag{x} stands for the diagonal matrix with the entries of
column vector x on its diagonal. The imaginary unit is
 =

√−1. A circularly symmetric complex Gaussian random
variable (RV) w with mean µ and variance σ2 is denoted by
w ∼ CN (µ, σ2). a[i] is the ith entry of vector a and [B]k,i is
the (k, i)th entry of matrix B.

Let us consider a MIMO-OFDM system with Nt transmit
antennas and Nr receive antennas and N subcarriers are
used at each transmit antenna. For the ith transmit antenna
(1 ≤ i ≤ Nt), the frequency domain complex data symbols xi

is a N × 1 vector, the elements of which are drawn from an
M -ary square Quadrature Amplitude Modulation (QAM) or
Phase-Shift Keying (PSK) constellation. The OFDM symbol
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is generated by taking Inverse Discrete Fourier Transform
(IDFT) of xi. A Cyclic Prefix (CP) is inserted for each OFDM
symbol, whose duration should be longer than the channel
impulse duration to avoid the inter symbol interference.

For the multipath MIMO-OFDM channel between
the ith transmit antenna and the kth receive antenna,
hk,i(1), hk,i(2), · · · , hk,i(L) represent the identical
independent distributed (i.i.d.) time-domain taps and L stands
for the maximum delay. We assume that

∑L
d=1 |hk,i(d)|2 = 1

is satisfied for each k, i. The frequency-domain channel
response on the n subcarrier can be expressed by [15]

H
(n)
k,i =

Lk,i−1∑
d=0

hk,i(d)e− 2πnd
N . (1)

H
(n)
k,i ∼ CN (0, 1), i.e., the channel model is Rayleigh fading.

We also assume that H
(n)
k,i are independent to H

(l)
p,q if k �= p

and/or i �= q, i.e., if either transmit antenna or receive antenna
is different, the channel frequency responses of subcarriers are
independent. The covariance of channel frequency response
between the subcarriers between the ith transmit antenna and
the kth receive antenna can be give by

R
H

(n)
k,i H

(l)
k,i

=
Lmax−1∑

d=0

E

{
|hk,i(d)|2

}
e−

2πd(l−n)
N l �= n, (2)

where Lmax is the maximum tap delay of all Nr×Nt channels.
At the receiver side, frequency offset may arise from: 1)

mismatch between transmit and receive oscillators; 2) Doppler
shift due to user mobility; and 3) carrier frequency offset
compensation errors. We define δk,i to be the frequency offset
with respect to the ith transmit antenna and the kth receive
antenna. The normalized frequency offset εk,i = δk,i

∆f , where
∆f is the subcarrier bandwidth. Without loss of generality,
we assume that εk,i are i.i.d. RVs with zero mean for each
(k, i) and the assumption that the frequency offsets between
different transmit and receive antennas are identical can be
seemed as a special case. The received N × 1 signal vector
on the kth receive antenna in time domain after removing the
CP can be expressed as

yk =
√

Es

Nt

Nt∑
i=1

Ek,iFHk,ixi + wk, (3)

where

Ek,i = diag
{

e0, e
2πεk,i

N , · · · , e
2πεk,i(N−1)

N

}
, (4)

F is the N × N IDFT matrix, Hk,i =
diag

{
H

(0)
k,i ,H

(1)
k,i , · · · ,H

(N−1)
k,i

}
, and wk is a N × 1

vector of additive complex white Gaussian noise (AWGN),
where wk[n] ∼ CN (0, σ2

w). Note that the transmit power is
equally allocated at all transmit antennas.

III. SINR ANALYSIS

In this section, we assume the subcarrier frequency offset
and channel estimation errors are zero-mean RVs. After defin-
ing ∆εk,i and ∆Hk,i to be the frequency offset estimation
error and channel estimation error for the (k, i) antenna pair,
the estimated frequency offset and channel estimation can be
expressed as ε̂k,i = εk,i + ∆εk,i and Ĥk,i = Hk,i + ∆Hk,i,
where εk,i and Hk,i are the exact frequency offset and channel
response. The receiver, firstly, use the estimated ε̂k,j , Ĥk,j

(j �= i) to eliminate the signals transmitted from the trans-
mitted antennas other than the ith transmit antenna and then
compensate with ε̂k,i and Ĥk,i. After performing frequency
offset pre-compensation and the zero-forcing equalization, we
obtain

rk,i = FHÊH
k,i


yk −

√
Es

Nt

Nt∑
j=1,j �=i

Êk,jFĤk,jxj




=
√

Es

Nt
FHÊH

k,iEk,iFHk,ixi︸ ︷︷ ︸
sk,i

+Φk,i + w̃k,i.

(5)

where Êk,j is derived from Ek,j by replacing εk,j with ε̂k,j .
In (5), Φk,i is the interference component contributed by
signals transmitted by transmit antennas other than ith transmit
antenna and can be given as

Φk,i =
√

Es

Nt

Nt∑
j=1,j �=i

FHÊH
k,i

(
Ek,jFHk,j − Êk,jFĤk,j

)
xj ,

(6)

In (5), w̃k,i is the AWGN component of rk,i given by

w̃k,i = FHÊH
k,iwk. (7)

A. SINR Analysis without Receiver Combining

We assume that the Nr × Nt channels are fading indepen-
dently and transmitted symbols are i.i.d. RVs with zero mean
and unit variance. In this subsection, we will derive the average
SINR for the channel between ith transmit antenna and kth
receive antenna, denoted as γ̄k,i, when there is no combining
at the receiver side.

In MIMO-OFDM systems, the average SINR γ̄k,i respects
to the OFDM symbol transmitted on N subcarriers and can
be obtained by

γ̄k,i =
∫
Hk,i

γk,i(Hk,i)fHk,i
(Hk,i)dHk,i, (8)

where fHk,i
(Hk,i) is the probability density function the

frequency response Hk,i. The main difficulty in evaluating (8)
is that Hk,i is a N × 1 random vector with correlation within
elements H(n)

k,i (0 ≤ n ≤ N − 1). Following the idea in [13],
i.e., expressing the Hk,i as a function of channel frequency
response on one subcarrier H(n)

k,i and averaging over H(n)
k,i , (8)

becomes

γ̄k,i =
∫
H

(n)
k,i

γk,i(H
(n)
k,i )f

H
(n)
k,i

(H(n)
k,i )dH(n)

k,i . (9)
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Based on (5), the demodulated signal which is transmitted
on the (k, i, n) subcarrier can be rewritten as

rk,i[n] =
√

Es

Nt
sk,i[n] + Φk,i[n] + w̃k,i[n]

=
√

Es

Nt
m

(n)
k,i H

(n)
k,i xi[n] + η

(n)
k,i

+ λ
(n)
k,i − λ̂

(n)
k,i + ξ

(n)
k,i − ξ̂

(n)
k,i + w̃k,i[n],

(10)

where
√

Es

Nt
m

(n)
k,i H

(n)
k,i xi[n] is the useful signal component and

m
(n)
k,i = m

(l)
k,i|l=n =

sin[π(l − n − ∆εk,i)]

N sin
[

π(l−n−∆εk,i)
N

] e
π(N−1)(l−n)

N . In

(10), η
(n)
k,i is the intercarrier interference contributed by sub-

carriers other than n with the same (k, i) transmit and receive

antenna pair and η
(n)
k,i =

√
Es

Nt

∑
l �=n

m
(l)
k,iH

(l)
k,ixi[l]. Based on

(10), We define ∆λ
(n)
k,i = λ

(n)
k,i − λ̂

(n)
k,i as the interference

contributed by the same nth subcarrier but transmit antennas

other than i and λ
(n)
k,i =

√
Es

Nt

Nt∑
j=1,j �=i

m
(n)
k,j H

(n)
k,j xj [n], λ̂

(n)
k,i =

√
Es

Nt

Nt∑
j=1,j �=i

m̂
(n)
k,j Ĥ

(n)
k,j xj [n], where

m
(l)
k,j �=i =

sin[π(l − n + εk,j − ε̂k,i)]

N sin
[

π(l−n+εk,j−ε̂k,i)
N

] e
π(N−1)(l−n)

N

m̂
(l)
k,j �=i =

sin[π(l − n + ε̂k,j − ε̂k,i)]

N sin
[

π(l−n+ε̂k,j−ε̂k,i)
N

] e
π(N−1)(l−n)

N .

(11)

Based on (10), we also define ∆ξ
(n)
k,i = ξ

(n)
k,i −

ξ̂
(n)
k,i as the interference contributed by the subcarri-

ers other than n and transmit antennas other than

i, ξ
(n)
k,i =

√
Es

Nt

∑
l �=n

Nt∑
j=1,j �=i

m
(l)
k,jH

(l)
k,jxj [l], ξ̂

(n)
k,i =

√
Es

Nt

∑
l �=n

Nt∑
j=1,j �=i

m̂
(l)
k,jĤ

(l)
k,jxj [l].

From the analysis above, the SINR without combining
at the receiver side and conditioned on H

(n)
k,i (denoted as

γW/O-C
k,i (H(n)

k,i )) can be expressed by

γW/O-C
k,i (H(n)

k,i ) =
Es

Nt
|m(n)

k,i |
2|H(n)

k,i |
2

σ2

η
(n)
k,i

+ σ2

∆λ
(n)
k,i

+ σ2

∆ξ
(n)
k,i

+ σ2
w̃k,i

, (12)

where σ2

η
(n)
k,i

, σ2

∆λ
(n)
k,i

, σ2

∆ξ
(n)
k,i

and σ2
w̃k,i

denote the variance of

η
(n)
k,i , ∆λ

(n)
k,i , ∆ξ

(n)
k,i and w̃k,i respectively. To evaluating (12),

we give the presuppositions that εk,i, ∆εk,i and ∆H
(n)
k,i are

independent RVs with zero mean and variance of σ2
ε , σ2

res and
σ2

∆H respectively.
We rewritten the intercarrier interference η

(n)
k,i in (10) as

η
(n)
k,i = H

(n)
k,i α

(n)
k,i + β

(n)
k,i , where α

(n)
k,i and β

(n)
k,i are RVs of

zero mean. The H
(n)
k,i α

(n)
k,i component in η

(n)
k,i is proportional

to the channel frequency response H
(n)
k,i and represents the

intercarrier interference part that fades synchronously with the
useful signal. The β

(n)
k,i part fades independent with the useful

signal. Both α
(n)
k,i and β

(n)
k,i depend on the frequency channel

characterization and do not depend on the H
(n)
k,i [13]. As α

(n)
k,i

and β
(n)
k,i are uncorrelated,

σ2

η
(n)
k,i

= |H(n)
k,i |

2
σ2

α
(n)
k,i

+ σ2

β
(n)
k,i

. (13)

We derive the σ2

α
(n)
k,i

and σ2

β
(n)
k,i

as

σ2

α
(n)
k,i

=
Es

Nt
· E


∣∣∣∣R−1

H
(n)
k,i H

(n)
k,i

∣∣∣∣2∑
l �=n

∣∣∣m(l)
k,iRH

(l)
k,iH

(n)
k,i

∣∣∣2



∼= π2σ2
resEs

Nt
·
∑
l �=n

1

N2 sin2
[

π(l−n)
N

]
·
∣∣∣∣∣
Lmax−1∑

d=0

E

{
|hk,i(d)|2

}
e−

2πd(l−n)
N

∣∣∣∣∣
2

,

(14)

σ2

β
(n)
k,i

=
Es

Nt
· E
{∑

l �=n

∣∣m(l)
k,i

∣∣2(R
H

(l)
k,iH

(l)
k,i

− R−1

H
(n)
k,i H

(n)
k,i

∣∣R
H

(l)
k,iH

(n)
k,i

∣∣2)}

=
Es

Nt
· E
{∑

l �=n

∣∣∣m(l)
k,i

∣∣∣2 }− σ2

α
(n)
k,i

∼= π2σ2
resEs

3Nt
− σ2

α
(n)
k,i

,

(15)

where R
H

(l)
k,iH

(n)
k,i

is given by (2). If the following conditions

of

1. |εk,j | � 1 for each (k, j);
2. |ε̂k,i| + |εk,j | < 1 for each (k, i, j);
3. |ε̂k,i| + |ε̂k,j | < 1 for each (k, i, j)

are satisfied simultaneously, we can approximate

∆λ
(n)
k,i =

√
Es

Nt

Nt∑
j=1,j �=i

[
π2
(
εk,j − ε̂k,i + ∆εk,j

2

)
H

(n)
k,j ∆εk,j

3

−
(

1 − π2 (ε̂k,j − ε̂k,i)
2

6

)
∆H

(n)
k,j

]
xj [n]

+ o(∆εk,j ,∆Hk,j)
(16)
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and

∆ξ
(n)
k,i =

√
Es

Nt

∑
l �=n

Nt∑
j=1,j �=i

(−1)l−n+1e
π(N−1)(l−n)

N

N sin
[

π(l−n)
N

]
·
[
π cos

(
π

(
εk,j − ε̂k,i +

∆εk,j

2

))
H

(l)
k,j∆εk,j

+ sin (π (ε̂k,j − ε̂k,i)) ∆H
(l)
k,j

]
xj [l]

+ o(∆εk,j ,∆Hk,j)
(17)

with o(∆εk,j ,∆Hk,j) represents the higher order item of
∆εk,j and ∆Hk,j . It’s easy to prove that ∆λ

(n)
k,i and ∆ξ

(n)
k,i

are zero-mean RVs, and their variances are given by

σ2

∆λ
(n)
k,i

∼= (Nt − 1)π4Es

9Nt

(
2σ2

ε σ2
res + σ4

res +
E

{
∆ε4

k,j

}
4

)
+

(Nt − 1)Es

Nt
· σ2

∆H

·
[
1 +

π4
(
E

{
ε4
k,j

}
+ 8σ2

ε σ2
res + 2σ4

ε + 2σ4
res

)
18

− 2π2
(
σ2

ε + σ2
res

)
3

]
(18)

and

σ2

∆ξ
(n)
k,i

∼= (Nt − 1)Es

3Nt

[
π2σ2

res − π4
(
2σ2

ε σ2
res + σ4

res

+
E

{
∆ε4

k,j

}
4

)]
+

2(Nt − 1)π2Es

3Nt

(
σ2

ε + σ2
res

)
σ2

∆H .

(19)

Thus, the SINR conditioned on H
(n)
k,i can obtained by substitut-

ing (13),(14),(15),(18) and (19) into (12) with σ2
m = |m(n)

k,i |
2

=

1− π2σ2
res

3
+

π4
E

{
∆ε4

k,j

}
36

. By average |H(n)
k,i |

2
, the average

SINR on the (k, i) antenna pair can be obtained.

B. SINR Analysis with EGC at Receive Antennas

Not only does EGC increase the SINR, but also has lower
implementation complexity than MRC. In EGC, the desired
signals at all the Nr receive antennas are co-phased, equally
weighted and summed to form the resultant desired signal.
The EGC output may thus be expressed as

rEGC
i [n] =

Nr∑
k=1

e−θ
(n)
k,i rk,i[n], (20)

where θ
(n)
k,i = arg

{
m

(n)
k,i H

(n)
k,i

}
. After averaging out εk,i,

∆εk,i and ∆H
(n)
k,i for each (k, i), the SINR of rEGC

i [n]

conditioned on the nth subcarrier is derived as

γEGC
i

(
n
∣∣H(n)

1,i , · · · ,H
(n)
Nr,i

)

∼=
Es

Nt
· σ2

m ·
(

Nr∑
k=1

∣∣∣H(n)
k,i

∣∣∣2 +
∑
k �=l

∣∣∣H(n)
k,i

∣∣∣ · ∣∣∣H(n)
l,i

∣∣∣
)

Nr∑
k=1

∣∣∣H(n)
k,i

∣∣∣2 · σ2

α
(n)
k,i

+ Nrκ

,

(21)

where κ = σ2

β
(n)
k,i

+ σ2

∆λ
(n)
k,i

+ σ2

∆ξ
(n)
k,i

+ σ2
w̃k,i

. When Nr is

large enough (for example Nr ≥ 4), (21) can be further
simplified as

γEGC
i

(
n
∣∣H(n)

1,i , · · · ,H
(n)
Nr,i

)

∼=
Es

Nt
· σ2

m ·
(

Nr∑
k=1

∣∣∣H(n)
k,i

∣∣∣2 + Nr(Nr−1)π
4

)
Nr∑
k=1

∣∣∣H(n)
k,i

∣∣∣2 · σ2

α
(n)
k,i

+ Nrκ

.
(22)

The average SINR can be obtained by average H
(n)
k,i (1 ≤ k ≤

Nr).

C. SINR Analysis with MRC at Receive Antennas

MRC is a well-known optimal combining scheme. In MRC,
different from EGC, the received signal at Nr receive antennas
are multiplied with the Hermitian conjugates of the channel
gains. Therefore, the signal at the output of MRC is

rMRC
i [n] =

Nr∑
k=1

ωk,irk,i[n]

Nr∑
k=1

|ωk,i|2
, (23)

where the complex combining coefficient is defined as ωk,i =(
Ĥ

(n)
k,i m

(n)
k,i

)∗
for each k to maximize the resulting SINR.

After averaging out εk,i, ∆εk,i and ∆H
(n)
k,i for each (k, i), the

SINR of rMRC
i [n] conditioned on the nth subcarrier is derived

as

γMRC
i

(
n
∣∣H(n)

1,i , · · · ,H
(n)
Nr,i

)

∼=
Es

Nt
· σ2

m ·
(

Nr∑
k=1

∣∣∣H(n)
k,i

∣∣∣2)2

Nr∑
k=1

∣∣∣H(n)
k,i

∣∣∣4 · σ2

α
(n)
k,i

+
Nr∑
k=1

∣∣∣H(n)
k,i

∣∣∣2 κ′ + Nr · κ · σ2
∆H

,

(24)

where we defined κ′ =
[
κ +

(
Es

Nt
+ σ2

α
(n)
k,i

)
σ2

∆H

]
, which is

also independent of (k, i, n). When Nr is large enough (for
example Nr ≥ 4), (24) can be further simplified as

γMRC
i

(
n
∣∣H(n)

1,i , · · · ,H
(n)
Nr,i

)

∼=
Es

Nt
· σ2

m ·
Nr∑
k=1

∣∣∣H(n)
k,i

∣∣∣2(
Nr∑
k=1

∣∣∣H(n)
k,i

∣∣∣2 − (Nr − 1)
)

σ2

α
(n)
k,i

+ κ′ + κ · σ2
∆H

.
(25)
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Fig. 1. SINR reduction by residual frequency offset in MIMO-OFDM.

IV. NUMERICAL RESULTS

We now present numerical results to illustrate the average
SINR impairment due to residual frequency offset and channel
estimation errors. We consider a MIMO-OFDM system with
N = 128 subcarriers and each subcarrier fades independently.

SINR degradation due to the residual frequency offsets is
shown in Fig. 1, where the variance of channel estimation
error σ2

�H = 0 and signal-to-noise ratio (SNR) is 10 dB.
For larger σ2

res (the variance of residual frequency offset),
there is an increase in SINR degradation as expected. The
SINR degradation due to the channel estimation error is also
shown in Fig. 2, where σ2

res = 0 and an SNR of 10 dB. The
SINR also degrades as σ2

�H increases. Comparison between
these two figures indicates that the residual frequency offset
degrades the SINR more seriously than channel estimation
error with the same estimation error variance. In both figures,
MRC outperforms EGC due to its maximization of the SINR.
Both MRC and EGC benefit from increasing the number of
receiver antennas. Without combining at the receiver side, the
MIMO-OFDM system can not gain any diversity benefit by
increasing the number of receiver antennas.

V. CONCLUSIONS

The SINR impairment due to frequency offset and channel
estimation errors in MIMO-OFDM has been analyzed. Based
on the analysis of the demodulated signal and interference,
we derived the SINR for each receive antenna. The SINR for
different receiver combining technologies, including EGC and
MRC, for MIMO-OFDM has also been analyzed. The simple
form of the derived expressions allows numerical evaluation
of cases of practical interest.
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