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Abstract— The rate-one semi-orthogonal algebraic space-time
(SAST) codes is recently introduced. In this paper, we propose a
new signal design method for SAST codes so that the transmitted
symbols can be divided into four groups for maximum likelihood
(ML) detection; we call this new design of SAST codes four-group
decodable SAST (4Gp-SAST) codes. The decoding complexity of
4Gp-SAST codes is greatly reduced compared with that of the
original SAST codes, where the ML decoding of the transmitted
symbols is made into two groups. The exact pair-wise error
probability of 4Gp-SAST codes is derived and it is used to
optimize the signal designs. Simulation results show that 4Gp-
SAST codes perform better than several low complexity space-
time block codes such as orthogonal and quasi-orthogonal codes.

I. INTRODUCTION

Space-time block codes (STBC1) have been extensively
studied [1]. Among various STBC proposed so far, orthogonal
STBC (OSTBC) have been successfully applied in the third
generation wireless communication systems [2]–[4]. The key
features leading to the wide application of OSTBC are their
minimum complexity maximum likelihood (ML) detection and
full diversity. On the other hand, OSTBC have low code rate
when the number of transmit antennas is more than 2 [5]. The
rate of one symbol per channel use (pcu) exists for 2 transmit
antennas [2], [5] and the rate is not more than 3/4 for more
than two transmit antennas.

To achieve the higher data rates for future wireless systems,
many research efforts have been made to the designs of high
rate STBC, and at the same time, to keep the complexity
low. Several quasi-orthogonal STBC (QSTBC) have been
proposed (see, e.g [6]. These QSTBC allow joint maximum
likelihood (ML) decoding of two complex symbols. However,
the rate-one QSTBC can be designed for 4 transmit antennas
only. Recently, several rate-one STBC for any number of
transmit antennas have been proposed [7]–[10], in which
the transmitted symbols can be completely separated into
two blocks for ML detection. This feature greatly reduces
the decoding complexity compared with that of the rate-one
diagonal algebraic space-time (DAST) codes [11], [12].

The algebraic structure of STBC with single complex-
symbol decoding has been revised [13], [14] enabling two new

1The acronym STBC also stands for space-time block code/coding, depend-
ing on the context.

designs of single complex-symbol decodable STBC, namely
coordinate interleaved orthogonal designs (CIOD) [13] and
minimum decoding complexity QSTBC (MDC-QSTBC) [14].
Nevertheless, these codes offer the rate of one symbol pcu for
4 transmit antennas only. Yuen et al. [15] have tried to search
for the high-rate STBC with low decoding complexity. They
have found a code of rate 5/4 with full symbol-wise diversity
[1] for 4 transmit antennas; this code allows the separation of
transmitted symbols into two groups at the receiver.

Recently, the rate-one semi-orthogonal algebraic space-time
(SAST) codes have been proposed in [10]. The SAST codes
allow the separation of the transmitted symbols into 2 groups
for ML detection. Furthermore, near capacity of multiple-input
single-ouput (MISO) channels can be achieved by using SAST
codes. Therefore, it is of interest to study other properties of
SAST codes.

In this paper, we show that the transmitted symbols em-
bedded in the SAST code matrix can be divided into four
groups for ML detection. We thus call this code four-group
decodable SAST (4Gp-SAST) codes. The exact pair-wise error
probability (PEP) of 4Gp-SAST codes is derived. Based on
the exact PEP, we optimize the signal rotation for the tradi-
tional constellations (such as quadrature amplitude modulation
(QAM)) to obtain full diversity and the best performance.
The 4Gp-SAST codes perform better than several existing low
complexity codes such as OSTBC and QSTBC.

To provide a closer look on the new 4Gp-SAST codes,
we compare their main parameters with several existing low-
decoding complexity STBC for 6 antennas in Table I, includ-
ing OSTBC, ABBA-QSTBC [6], MDC-QSTBC [14] and 4Gp-
QSTBC [16]. Clearly, the new 4Gp-SAST codes offer several
advantages such as higher code rate, lower encoding/decoding
delay, and low decoding complexity. Moreover, from simula-
tion results, our new codes also yield significant SNR gains
compared with the OSTBC, QSTBC and MDC-QSTBC.

II. SYSTEM MODEL AND PRELIMINARIES

We first set the common notations to be used throughout
the paper. Superscripts T, ∗, and † denote matrix transpose,
conjugate, and transpose conjugate, respectively. The identity
and all-zero square matrices of proper size are denoted by
I and 0. The diagonal matrix with elements of vector x
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TABLE I

COMPARISON OF SEVERAL LOW COMPLEXITY STBC FOR 6 ANTENNAS.

Codes Maximal rate Delay Real symbol decoding

OSTBC [5] 2/3 30 1 or 2

ABBA-QSTBC [6] 3/4 8 4

MDC-QSTBC [14] 3/4 8 2

QSTBC [7]–[9] 1 8 8

4Gp-QSTBC [16] 1 8 4

SAST [10] 1 6 6

4Gp-SAST 1 6 3

on the main diagonal is denoted by diag(x). ‖X‖F stands
for Frobenius norm of matrix X and ⊗ denotes Kronecker
product [17]. E[·] denotes average. A mean-m and variance-
σ2 circularly complex Gaussian random variable is written by
CN (m,σ2). �(X) and �(X) denote the real and imaginary
parts of X , respectively. Unless otherwise stated, all the
vectors are column vectors and denoted by lowercase bold
letters.

A. System Model

We consider data transmission over a quasi-static Rayleigh
flat fading channel, i.e. the channel is fixed for the duration of
a codeword, but can vary from the duration of one codeword to
another codeword. The transmitter and receiver are equipped
with M transmit (transmit) and N receive (receive) antennas.
The channel gain hik (i = 1, 2, · · · ,M ; k = 1, 2, · · · , N)
between the (i, k)-th transmit-receive antenna pair is assumed
to be CN (0, 1). We assume no spatial correlation at either
transmit or receive array, and the receiver, but not the trans-
mitter, completely knows the channel gains.

The ST encoder parses data symbols into a T × M code
matrix X of an ST code X as follows:

X =
[
cti

]t=1,...T

i=1,...,M
(1)

where cti is the symbol transmitted from antenna i at time
t (1 ≤ t ≤ T ). The average energy of the code matrices is
constrained such that EX =

∑M
i=1

∑T
t=1 E[|cti|2] = T .

The received signals ylk of the kth antenna at time t can be
arranged in a matrix Y of size T ×N . Thus, one can represent
the transmit-receive signal relation as

Y =
√

ρXH + Z (2)

where H = [hik], and Z = [zik] of size T × N , and zik

are independently, identically distributed (i.i.d.) CN (0, 1). The
transmit power is scaled by ρ so that the average signal-to-
noise ratio (SNR) at each receive antenna is ρ, independent
of the number of transmit antennas. However, ρ is sometimes
omitted for notational brevity.

The mapping of a block of K data symbols (s1, s2, · · · , sK)
into a T × M code matrix can be represented in a general
dispersion form [3], [18] as follows:

X =
K∑

k=1

(akAk + bkBk) (3)

where Ak and Bk, (k = 1, 2, · · · ,K) are T × M complex-
valued constant matrices; they are commonly called dispersion
matrices. ak and bk are the real and imaginary parts of the
symbol sk.

In (3), there are totally 2K real variables ai and bi. We
can replace variables ai and bi (and their dispersion matrices
Ak and Bk) by the same symbolic variable cl (and dispersion
matrix Cl). Then (3) becomes

X =
L∑

l=1

clCl. (4)

Denote the transmitted data vector c =
[
c1 c2 . . . cL

]T
.

The ML decoding of STBC is to find the solution ĉ of the
following metric:

ĉ = arg min
c

‖Y − XH‖2
F . (5)

B. Algebraic Constraints of QSTBC

In QSTBC we divide the L (real) transmitted symbols em-
bedded in a code matrix into Γ independent groups, so that the
ML detection of a transmitted code matrix can be decoupled
into Γ sub-metrics; each metric involves the symbols of only
one group [6]–[10], [15]. We provide a definition of STBC
with such feature to unify the notation in this paper as follows.

Definition 1: A STBC is said to be Γ-group decodable if the
ML decoding metric (5) can be decoupled into a linear sum
of Γ independent submetrics, each submetric consists of the
symbols from only one group. The Γ-group decodable STBC
is denoted by ΓGp-STBC for short.

Note that from Definition 1, the real and imaginary parts of
the same complex symbol can belong to different groups.

In the most general case, we assume that there are Γ groups;
each group is denoted by Ωi(i = 1, 2, . . . ,Γ) and has Li

symbols. Thus L =
∑Γ

i=1 Li. Let Θi be the set of indexes
of symbols in the group Ωi.

Yuen et al. [15, Theorem 1] have shown a sufficient
condition for a STBC be multi-group decodable. In fact, this
condition is also the necessary condition. We will state these
results in the following theorem.

Theorem 1: The necessary and sufficient conditions for a
STBC to be Γ-group decodable are

C†
pCq + C†

qCp = 0 ∀p ∈ Θi,∀q ∈ Θj , i 	= j. (6)
Theorem 1 covers [13, Theorem 9] (single-symbol decod-

able STBC) and can be proved similarly; details of proof are
omitted for brevity.

III. FOUR-GROUP DECODABLE SAST CODES

A. Encoding

We first review the construction of SAST codes in-
troduced in [10]. The SAST code matrix is constructed
for M = 2m transmit antennas using circulant blocks.
Two data vectors s1 =

[
s1 s2 . . . sm

]T
and s2 =
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[
sm+1 sm+2 . . . s2m

]T
are used to generate two circulant

matrices [19]:

C(sT
1) =




s1 s2 . . . sm

sm s1 . . . sm−1

...
...

. . .
...

s2 s3 . . . s1


 ,

C(sT
2) =



sm+1 sm+2 . . . s2m

s2m sm+1 . . . s2m−1

...
...

. . .
...

sm+2 sm+3 . . . sm+1


 . (7)

The SAST code matrix is constructed from as

S =
[

C(s1) C(s2)
−C†(s2) C†(s1)

]
. (8)

For example, the SAST code for 6 transmit antennas is

S6 =




u1 u2 u3 u4 u5 u6

u3 u1 u2 u6 u4 u5

u2 u3 u1 u5 u6 u4

−u∗
4 −u∗

6 −u∗
5 u∗

1 u∗
3 u∗

2

−u∗
5 −u∗

4 −u∗
6 u∗

2 u∗
1 u∗

3

−u∗
6 −u∗

5 −u∗
4 u∗

3 u∗
2 u∗

1


 . (9)

In order to use the general form of STBC (4) for SAST
codes, we introduce a representation of circulant matrices
using a matrix called forward shift permutation denoted by
π [19]. The definition of an m × m matrix π is given below

π =




0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
...

...
1 0 0 0 · · · 0


 . (10)

The circulant matrices C(s1) and C(s2) can be represented as

C(sT
1) =

m∑
i=1

siπ
i−1, C(sT

2) =
m∑

i=1

sm+iπ
i−1. (11)

The SAST code matrix follows

S =
m∑

i=1


ai

[
πi−1 0
0 (πT)i−1

]
︸ ︷︷ ︸

Ci

+bi

[
j πi−1 0

0 − j(πT)i−1

]
︸ ︷︷ ︸

Cm+i

+ am+i

[
0 πi−1

−(πT)i−1 0

]
︸ ︷︷ ︸

C2m+i

+bm+i

[
0 jπi−1

j(πT)i−1 0

]
︸ ︷︷ ︸

C3m+i


 .

(12)

One can recognize that there are 4 groups of symbols: Group
1 with symbols ai, group 2 with symbols bi, group 3 with
symbols am+i, group 4 with symbols bm+i (i = 1, 2, . . . ,m).
We can show that these four groups can be decoded separately
using Theorem 1.

Theorem 2: By construction (8), SAST codes are four-group
decodable.

Compared with 4Gp-QSTBC [16], 4Gp-SAST codes also
have rate of one symbol pcu. The main different of the two
codes is their delay-optimality. While 4Gp-QSTBC is delay-
optimal if the number of transmit antennas is a power of 2,
SAST codes are delay-optimal for 2m transmit antennas.

Theorem 2 can be shown explicitly using Theorem 1. Due
to the space limit, we ommit the proof. However, we will
derive a new ML decoder such that the decoding of transmitted
symbols becomes the decoding of 4 orthogonal groups instead.

B. Decoder of 4Gp-SAST codes

Applying the general ML decoder in (5), the decoding of
transmitted symbols of 4Gp-SAST codes becomes the decod-
ing of 4 vectors: �(s1),�(s1),�(s2) and �(s2). However,
this approach results in exponential decoding complexity. We
therefore will derive an alternative decoder for 4Gp-SAST
codes in order to provide more insights into the structure
of the equivalent channel for 4Gp-SAST codes. Furthermore,
the equivalent channel can be used to analyze the codes’
performance and to apply sphere decoding [20].

The derivation of the decoder for 4Gp-SAST codes requires
two steps. The first step is to decouple the two data vectors
s1 and s2. In the second step, the real and imaginary parts
of vectors s1 and s2 will be separated. The first decoding
step has been described in [10] and will be briefly reviewed
in the following. We provide the details of the decoder with
one receive antennas and generalization for multiple receive
antennas can be easily developed.

We introduce another type of circulant matrix called left
ciculant, denoted by CL(x), where the ith row is obtained by
circular shifts (i − 1) times to the left the row vector x.

CL(x) =




x1 x2 . . . xm

x2 x3 . . . x1

...
...

. . .
...

xm x1 . . . xm−1


 . (13)

Let us define a permutation Π on an arbitrary matrix X
such that, the (m− i + 2)th row is permuted with the ith row
for i = 2, 3, ...,

⌈
m
2

⌉
, where 
(·)� is ceiling function. One can

verify that

Π(CL(x)) = C(x) . (14)

This useful operator will be used for our next derivation.
Let y =

[
yT

1 yT
2

]T
, y1 =

[
y1 y2 . . . ym

]T
,

y2 =
[
ym+1 ym+2 . . . yM

]T
, h =

[
hT

1 hT
2

]T
, h1 =[

h1 h2 . . . hm

]T
, h2 =

[
hm+1 hm+2 . . . h2m

]T
,

z =
[
zT

1 zT
2

]T
, z1 =

[
z1 z2 . . . zm

]T
, z2 =[

zm+1 zm+2 . . . z2m

]T
.

We can write the transmit-receive signal relation as[
y1

y2

]
=
√

ρ

M

[
C(s1) C(s2)

−C†(s2) C†(s1)

] [
h1

h2

]
+
[
z1

z2

]
. (15)
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Applying permutation Π in (14) for the column matrix y1,
we obtain [10]:[

ȳ1

ȳ2

]
�
[
Π(y1)

y∗
2

]
=
√

ρ

M

[
H1 H2

H†
2 −H†

1

]
︸ ︷︷ ︸

H

[
s1

s2

]
+
[
z̄1

z̄2

]
(16)

where H1 = C(hT
1), H2 = C(hT

2), z̄1 = Π(z1), z̄2 = z∗
2. The

elements of z̄1 and z̄2 have the same statistics, CN (0, 1), as
elements of z1 and z2.

We now multiply H† to both sides of (16). Let Ĥ = H†
1H1+

H†
2H2, we get[

ŷ1

ŷ2

]
= H†

[
ȳ1

ȳ2

]
=
√

ρ

M

[
Ĥ 0m

0m Ĥ
] [

s1

s2

]
+ H†

[
z̄1

z̄2

]

=
√

ρ

M

[
Ĥ 0m

0m Ĥ
] [

s1

s2

]
+
[
ẑ1

ẑ2

]
︸ ︷︷ ︸

ẑ

. (17)

The covariance matrix of the additive noise vector ẑ is

E[zz†] =
[
Ĥ 0m

0m Ĥ
]

. (18)

Therefore, noise vectors ẑ1 and ẑs are uncorrelated and have
the same covariance matrix Ĥ. Thus s1 and s2 can be decoded
separately using ŷi = Ĥsi+ẑi, i = 1, 2. The noise vectors ẑ1

and ẑs can be whitened by the same whitening matrix Ĥ−1/2
.

The equivalent equations for transmit-receive signals are

Ĥ−1/2
ŷi =

√
ρ

M
Ĥ1/2

si + Ĥ−1/2
ẑi, i = 1, 2. (19)

At this point, the decoding of SAST codes becomes the
detection of 2 group of complex symbols si (i = 1, 2). Our
next step is to separate the real and imaginary parts of vectors
si by exploiting the properties of Ĥ.

Recall that Ĥ = H†
1H1 + H†

2H2, and both H1 and H2

are circulant. Hence, Ĥ is also circulant [19]. Let Λi =[
λi,1 λi,2 . . . λi,m

]
be the m eigenvalues of Hi (i =

1, 2). We can diagonalize Hi by Fourier transform matrix as
Hi = F† Λi F . Thus

Ĥ = F†(Λ†
1Λ1 + Λ†

2Λ2)F . (20)

Let Λ†
1Λ1 +Λ†

2Λ2 = Λ, then Λ has non-negative entries in the
main diagonal and

Ĥ1/2 = F†Λ1/2 F , (21a)

Ĥ−1/2 = F†Λ−1/2 F . (21b)

We assume that si is pre-multiplied (or rotated) by a matrix
F†. Substituting si by F† si and multiplying both sides of
(19) with F , one obtains

Λ−1/2 F ŷi =
√

ρ

M
F Ĥ1/2F†si + Λ−1/2 F ẑi

=
√

ρ

M
Λ1/2si + Λ−1/2 F ẑi︸ ︷︷ ︸

ži

. (22)

Since we can choose Λ1/2 such that it has non-negative
elements (in the main diagonal), the real and imaginary parts
of si now can be separated for detection.

Λ−1/2�(F ŷi) =
√

ρ

M
Λ1/2�(si) + �(ži), (23a)

Λ−1/2�(F ŷi) =
√

ρ

M
Λ1/2�(si) + �(ži). (23b)

We finish deriving the general decoder for 4Gp-SAST
codes. Using (23), one can use a sphere decoder to detect the
transmitted symbols. The equivalent channel of 4Gp-SAST
codes is Λ1/2.

C. Performance Analysis

Note that the eigenvalues of the m × m matrices H1 and
H2 can be found easily using unnormalized Fourier transfor-
mation of the channel vectors h1 and h2 [19]. Therefore, the
eigenvalues of H1 and H2 have distribution ∼ CN (0,m).

We can introduce a real orthogonal transformation R to
the data vectors �(si) and �(si) (i = 1, 2) to improve
the performance of 4Gp-SAST codes. Thus the actual signal
rotation of 4Gp-SAST codes is F†R. Remember that the
Fourier transform matrix F is used to make the equivalent
channel of 4Gp-SAST codes real.

Since the PEP of vectors �(si) and �(si) (i = 1, 2) are
the same, we just calculate the PEP of the vector �(s1). Let
d = �(s1)

[
a1 a2 . . . am

]T
.

The PEP of the pair d and d̄ can be expressed by the
Gaussian tail function as [21]

P (d → d̄|Ĥ) = Q



√

ρ

8
|Λ1/2Rδ|2

4N0


 (24)

where N0 = 1/2 is the variance of the elements of the white
noise vector �(ž1) in (23a), δ = d − d̄. Substituting Λ =
Λ†

1Λ1 + Λ†
2Λ2, one has

P (d → d̄|Ĥ) = Q



√√√√ρ

[
δTRT(Λ†

1Λ1 + Λ†
2Λ2)Rδ

]
16




= Q



√

ρ(
∑2

i=1

∑m
j=1 β2

j |λi,j |2)
16


 (25)

where β = Rδ.
We now use the Craig’s formula [22] to derive the condi-

tional PEP in (24).

P (d → d̄|Ĥ) = Q



√

ρ(
∑2

i=1

∑m
j=1 β2

j |λi,j |2)
16




=
1
π

∫ π/2

0

exp

(
−ρ(

∑2
i=1

∑m
j=1 β2

j |λi,j |2)
32 sin2 α

)
dα. (26)
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We can apply a method based on the moment generating
function (MGF) [23], [24] to obtain the unconditional PEP in
the following:

P (d → d̄) =
1
π

∫ π/2

0

[
m∏

i=1

(
1 +

ρβ2
i

8 sin2 α

)]−2

dα. (27)

Since there are four vectors to be decoded in each code
matrix, the codeword PEP is therefore equal to 4 times the
PEP given in (27).

Assume that βi 	= 0 ∀i = 1, 2, . . . ,m. One can find the
asymptotic PEP of 4Gp-SAST codes at high SNR as follows.

P (d → d̄) ≈
(

26mρ−2m

π

∫ π/2

0

(sin α)16dα

)
m∏

i=1

β−4
i

=
23Mρ−M

217

16!
8!8!

M/2∏
i=1

β−4
i . (28)

The asymptotic bound in (28) shows an important property
of the 4Gp-SAST codes at high SNR: The PEP is heavily
dependent on the product distance

∏4
i=1 βi (see, e.g. [25]).

The exponent of SNR in (28) is −M . This indicates that
the maximum diversity order of 4Gp-QSTBC is 8 and it is
achievable if the product distance is non-zero for all possible
data vectors. Furthermore, at high SNR, the asymptotic bound
becomes very tight to the exact PEP. Therefore, the larger the
product distance, the lower FER can be obtained. Thus, we
can optimize the rotation by R so that the minimum product
distance

dp,min = min
∀di,dj

4∏
k=1

|βk| (29)

is non-zero and maximized.
For QAM signals, the symbols ai and bi are in the set

{±1,±3,±5, . . . }, The best known rotations for QAM in
terms of maximizing the minimum product distance are pro-
vided in [26], [27]; they are denoted by RBOV .

In [26], [27], the rotated lattice points are generated by x =
dRBOV , where d ∈ Z

n and RBOV is of size m × m. In this
representation, x and d are row vectors, while we use column
vector notation in our paper. Thus the rotation matrices RBOV

given in [26], [27] will be transposed. For the 3-dimensional
lattices, the rotation matrix is given below.

RBOV,3 =


−0.32798528 −0.73697623 −0.59100905
−0.59100905 −0.32798528 0.73697623
−0.73697623 0.59100905 −0.32798528


 .

(30)

Note that in the construction of 4Gp-SAST codes, the data
vectors si (i = 1, 2) with proper size are rotated to generate
the vectors ui as ui = F†Rsi.

IV. SIMULATION RESULTS

The performance of 4Gp-QSTBC and 4Gp-SAST codes will
be compared with OSTBC [5], MDC-QSTBC [14], QSTBC
[6], [28], 4Gp-QSTBC [16], DAST [11], and SAST codes [10].

A. Performance of 4Gp-SAST codes for 6 antennas

Performance of 4Gp-SAST code for 6 antennas is compared
with rate-2/3 OSTBC [5], and rate-one 4Gp-QSTBC and
SAST codes in Fig. 1. In this simulation, the best 8QAM
in terms of Euclidean distance [28] is selected for OSTBC,
while 4QAM is for the other codes. Thus the bit rate of all the
codes is 2 bits pcu. From Fig. 1, the 4Gp-SAST code perform
significantly better than OSTBC (0.8 dB gain) and slightly
worst than 4Gp-QSTBC and SAST codes. These results reflect
the complexity-performance tradeoff (see also Table I).

B. Performance of 4Gp-SAST codes for 8 antennas

We compare the performance of 4Gp-SAST codes with
ABBA-QSTBC [6], [28] and MDC-QSTBC [14] for 8 anten-
nas and spectral efficiency of 3 bits pcu in Fig. 2. To obtain
3 bits pcu, 16QAM is used with ABBA-QSTBC and MDC-
QSTBC, while 8QAM is combined with 4Gp-SAST codes.
For 8 antennas, the decoding of 4Gp-SAST codes require join
detection of 4 real symbols, the same complexity of ABBA-
QSTBC and higher than that of MDC-QSTBC. 4Gp-SAST
codes perform much better than the two codes, due to higher
code rate.

The performance of 4Gp-SAST codes is also compared with
DAST codes [11] and 4Gp-QSTBC for the data rate of 4
bits pcu in Fig. 2. The decoding complexity of 4Gp-SAST
codes for 8 antennas is the same as that of 4Gp-QSTBC
(joint detection of 4 real symbols) and the two codes perform
similarly. However, the decoding complexity of 4Gp-SAST
is much lower than that of DAST (joint detection of 16 real
symbols), but the former is superior to the latter. Nevertheless,
SAST codes still perform better than 4Gp-SAST codes at the
cost of higher complexity.

V. CONCLUSIONS

We have presented 4Gp-SAST codes, a new class of four-
group decodable STBC derived from SAST codes. The de-
coder of 4Gp-SAST codes is derived, enabling the derivation
of the exact codeword pair-wise error probability. Therefore,
the performance of 4Gp-SAST is optimized based on the
exact PEP. The new codes are delay optimal for an even
number of transmit antennas. This feature distinguishes the
4Gp-SAST codes from the previously known 4Gp-QSTBC,
where the code length is a power of 2. Our 4Gp-SAST codes
also perform better than several low complexity codes such as
OSTBC, ABBA-QSTBC, MDC-QSTBC. The equivalent chan-
nel of 4Gp-SAST codes is provided in a simple diagonal form.
Therefore, when certain kinds of channel state information are
available at the transmitter, space-time precoder can be derived
to further improve the performance of 4Gp-SAST codes. This
problem can be a topic for future research.
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