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Abstract— In this paper, we derive a new infinite series
representation for the trivariate Non-central chi-squared distri-
bution when the underlying correlated Gaussian variables have
tridiagonal form of inverse covariance matrix. We make use of the
Miller’s approach and the Dougall’s identity to derive the joint
density function. Moreover, the trivariate cumulative distribution
function (cdf) and characteristic function (chf) are also derived.
Finally, bivariate noncentral chi-squared distribution and some
known forms are shown to be special cases of the more general
distribution. However, noncentral chi-squared distribution for an
arbitrary covariance matrix seems intractable with the Miller’s
approach.

I. INTRODUCTION

The χ2 and non-central χ2 distributions play a major role
in the performance analysis of communication systems [1]-[5].
The generalized chi-squared distribution is analyzed in detail
in [6]-[9]. Khaled and Williams [10] derive a relationship
between non-central χ2 distribution and the distribution of
generalized Hermite quadratic form. It is well known that
the diagonal elements of a Wishart matrix has chi-squared
distribution [11]. Joint density of the diagonal elements of
a real central Wishart matrix (i.e., multivariate central χ2

distribution) is analyzed in [12]-[14]. The multivariate gener-
alized Rayleigh density studied in [15] is also another form of
multivariate central χ2 distribution. Nevertheless, the authors
in [15], [16] assumed a tridiagonal form of inverse correlation
matrix for the underlying Gaussian variables to derive a closed
form solution for the generalized Rayleigh density. However,
the trivariate generalized Rayleigh density for an arbitrary
correlation matrix is given in [16]. Recently Hagedorn et
al [11] derive a trivariate central chisquare distribution from
the diagonal elements of a complex Wishart matrix. Miller’s
assumption of tridiagonal form of inverse correlation matrix
is significant since it gives rise to a closed form solution for
the multivariate Rayleigh density. Karagiannadis et al [17],
[18] have extended the Millers result to n variate Nakagami-m
distribution, which is also a some form of multivariate central
χ2 density.

It is obvious that the Rice density is closely coupled with the
non-central χ2 distribution [19]. The multivariate noncentral
χ2 distribution can be thought of as a generalization of the
multivariate Rician distribution. The bivariate Rician density
is given in [20], [21]. In [22] propose an infinite series

representation involving modified Bessel functions of the first
kind for the distribution of trivariate Rician distribution when
the underlying Gaussian components have a tridiagonal form
of inverse covariance matrix. Miller [16] propose an infinite
series representation involving modified Bessel function of the
first kind for the distribution of bivariate generalized Rician
distribution. A careful study of the previous work related to
the multivariate distributions reveals that there exists no joint
distribution for trivariate noncentral χ2 distribution.

Having motivated with that reason we propose a novel ex-
pressions for the trivariate noncentral chi-squared distribution,
cdf and chf when the underlying Gaussian components have
a tridiagonal form of inverse covariance matrix. Our main
derivation is inspired with the approach due to Miller [16]
and a theorem for a product of ultraspherical polynomials
due to Dougall [23]. However, the derivation of noncentral
trivariate distribution for an arbitrary covariance matrix seems
intractable with the millers approach.

This paper is organized as follows. Section II derives the
generalized Rician distribution and trivariate noncentral chi-
squared distribution. Some simplifications related to previously
known results are also discussed there. Section III deals with
the derivation of cfd and chf with some simplifications. Section
IV concludes the paper.

II. DERIVATION OF TRIVARIATE NONCENTRAL χ2

DISTRIBUTION

Let {X1,X2,X3} be three nonzero mean Gaussian vectors
with E (Xi = a) and Xi = (x1i x2i . . . . . . xni)

T for all
1 ≤ i ≤ 3. Here a = (a1 a2 . . . an)T , E(·) represents the
mathematical expectation and (·)T denotes the transpose of a
matrix. Let Vj = (xj1 xj2 xj3)

T , 1 ≤ j ≤ n be independent
four dimensional nonzero mean Gaussian vectors composed
of the jth components of Xi.

In this display, the columns are the n-dimensional Gaussian
vectors

X1 X2 X3

V1 x11 x12 x13

V2 x21 x22 x23

. . . . . . . . .
Vn xn,1 xn,2 xn,3

(1)
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and the rows Vj are independent from each other and with
identical covariance matrix M3. The inverse covariance matrix
of Vj is

W3 = M−1
3 =


w11 w12 w13

w12 w22 w23

w13 w23 w33


 . (2)

The derivation of the joint density function is analytically
tractable with the Miller’s approach if one or more off diagonal
elements of W3 are zero. The most general such realization is
the tridiagonal form of matrix or in other words w13 = 0. It is
well known that the exponential type covariance matrix gives
a tridiagonal form of inverse matrix [24]. This assumption is
common for all the multivariate derivations given in [15], [17],
[18].

The amplitudes si = |Xi| (1 ≤ i ≤ 3), being the square root
of sum of squares of n nonzero mean independent Gaussian
random variables, are generalized Rician random variables.
Here | · | denotes the norm of a column vector. The joint pdf
of {X1,X2,X3} is clearly given by

f(X1,X2,X3) =
n∏

j=1

f(Vj) =
W

n
2

3

(2π)
3n
2

× exp
{
−1

2

n∑
j=1

(Vj − aj13)W3 (Vj − aj13)
T

}
(3)

where 13 = (1 1 1).
Expanding the quadratic form in (3) and interchanging Vj’s

by Xi (see the display in (1)), we find that

f(X1,X2,X3) =
W

n
2

3

(2π)
3n
2

exp
{
−1

2

(
w11s

2
1 + w22s

2
2

+ w33s
2
3 + wa2

)}
exp

{
XT

1 (w1a − w12X2)
}

exp
{
XT

3 (w3a − w23X2)
}

exp
(
w2XT

2 a
)

(4)

where a2 = |a|2, w1 = w11 + w12, w2 = w12 + w23 +
w22, w3 = w23 + w33 and w = w1 + w2 + w3. From this
pdf (4), we need to integrate out Xi, 1 ≤ i ≤ 3, subject

to the constraints si = |Xi|, which will yield the joint pdf of
correlated generalized Rician variables {s1, s2, s3} [16]. Now,
the joint density can be written as

f(X1,X2,X3) =
W

n
2

3

(2π)
3n
2

exp
{
−1

2

(
w11s

2
1 + w22s

2
2

+w33s
2
3 +wa2

)} ∫
|X1|=s1

exp
{
XT

1 (w1a − w12X2)
}
dσx1∫

|X3|=s3

exp
{
XT

3 (w3a − w23X2)
}
dσx3

×
∫
|X2|=s2

exp
(
w2XT

2 a
)
dσx2 (5)

where dσxi
, 1 ≤ i ≤ 3 are the elements of surface area and

W3 denotes the determinant of the square matrix W3. The
first integral in (5) can be evaluated as [16, eq.2.2.9]∫

|X1|=s1

exp
{
XT

1 (w1a − w12X2)
}
dσx1 = (2πs1)

n
2

× |w1a − w12X2|
2−n

2 In−2
2

(s1|w1a − w12X2) (6)

where In is the nth order modified Bessel function of the
first kind [25], and the second integral follows the same form.
Furthermore, the right side of (6) can be written using the
generalized Neumann addition formula [25] when n > 2 as

(2πs1)
n
2 |w1a − w12X2|

2−n
2 In−2

2
(s1|w1a − w12X2) =

(2πs1)
n
2 2

n−2
2 Γ

(
n−2

2

)
s1

(w1w12as2)
n−2

2

∞∑
k=0

(−1)k
(n

2
+ k − 1

)

× In
2 +k−1 (aw1s1) In

2 +k−1 (w12s1s2)C
n−2

2
k (cos θ) (7)

where Γ (x) is the Gamma function [26], Cλ
n(x) denotes the

ultraspherical polynomials [26] and θ is the angle between
the vectors a and X2. Following (7) we can write (5) as given
in (8). The product of two ultraspherical polynomials can be
written using the Dougall’s identity given in [23, eq.6.8.4] as

Cλ
p (x)Cλ

q (x) =
min(p,q)∑

m=0

A(m, p, q)Cλ
p+q−2n(x) (9)

f (s1, s2, s3) =
W

n
2

3 2n−2Γ2
(

n−2
2

)
s1s3

(2π)
n
2 (w1w12w23w3)

n−2
2 (as2)

n−2
exp

{
−1

2

(
w11s

2
1 + w22s

2
2 + w33s

2
3 + wa2

)}

×
∞∑

k=0

∞∑
l=0

(−1)k+l
(n

2
+ k − 1

) (n
2

+ l − 1
)
In

2 +k−1 (aw1s1) In
2 +k−1 (w12s1s2) In

2 +l−1 (aw3s3) In
2 +l−1 (aw23s2s3)

∫
|X2|=s2

exp
(
w2XT

2 a
)
C

n−2
2

k (cos θ)C
n−2

2
l (cos θ) dσx2 (8)

A(m, p, q) =
(p+ q + λ− 2m)(λ)m(λ)p−m(λ)q−m(2λ)p+q−m(p+ q − 2m)!

(p+ q + λ−m)m!(p−m)!(q −m)!(λ)p+q−m(2λ)p+q−2m
(10)

 1857
Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on July 28,2010 at 20:48:24 UTC from IEEE Xplore.  Restrictions apply. 



where A(m, p, q) is given by (10) with (λ)n = Γ(λ+n)
Γ(λ)

denotes the Pochhammer symbol [27] and min(p, q) selects
the minimum of p, q. We make use of the Dougall’s identity in
(8) to yield (11) given at the bottom of the page. The integral
in (11) can be solved using [16, eq.2.2.26] to give∫

|X2|=s2

exp
(
w2XT

2 a
)
C

n−2
2

k+l−2m (cos θ) dσx2 =

(2π)
n
2 sn−1

2

(
n+k+l−2m−3

n−3

)
(aw2s2)

n−2
2

In
2 +k+l−2m−1 (aw2s2) (12)

where (n
r ) = n!

r!(n−r)! . Substituting (12) in (11) and after
some algebraic manipulations the joint density of trivariate
generalized Rician density for n > 2 can be written as given
in (13). The case when n = 2 is given in [22, eq.3].

Since we are interested in the trivariate noncentral χ2

distribution, the following variable transformations are in-
troduced in (13), r1 = s21, r2 = s22, r3 = s23. Now it is
clear that {r1, r2, r3} represent the noncentral χ2 variables.
After some algebraic manipulation the trivariate non-central
χ2 distribution can be written as given in (14) at the bottom
of the page. To the best of the authors’ knowledge (14) is
a novel result. Even though (14) is not valid for n = 2 the
degenerated cases of (14) valid for all n ≥ 2 as shown below.
Moreover, if a given covariance matrix does not match with
the criteria mentioned above, we can use the Green’s matrix

approach given in [18] to approximate the given covariance
matrix with a matrix having tridiagonal form of inverse. Next
some simplifications of (14) are given.

A. Independent noncentral χ2 distributions

It is obvious that W3 is a diagonal matrix with the elements
{w11, w22, w33} under this scenario. Since all off diagonal
elements are zero, we can obtain the following two important
limits involving the Bessel functions

lim
w12→0

In
2 +k−1

(
w12

√
r1r2

)
w

n−2
2

12

=

(√
r1r2

2

)n
2 −1

Γ
(

n
2

) (15)

lim
w23→0

In
2 +l−1

(
w23

√
r2r3

)
w

n−2
2

23

=

(√
r2r3

2

)n
2 −1

Γ
(

n
2

) (16)

which are valid if k = 0, l = 0. Substituting (15), (16) in (14)
and after some rearrangements with little algebra we get

g (r1, r2, r3) =
3∏

i=1

wii

2

( ri
a2

)n−2
4

exp
{
−wii

2
(
ri + a2

)}

× In
2 −1 (awii

√
ri) . (17)

extension for central χ2 distribution follows from (17).

f (s1, s2, s3) =
W

n
2

3 2n−2Γ2
(

n−2
2

)
s1s3

(2π)
n
2 (w1w12w23w3)

n−2
2 (as2)

n−2
exp

{
−1

2

(
w11s

2
1 + w22s

2
2 + w33s

2
3 + wa2

)}

×
∞∑

k=0

∞∑
l=0

min(k,l)∑
m=0

(−1)k+l
(n

2
+ k − 1

) (n
2

+ l − 1
)
A(m, k, l)In

2 +k−1 (aw1s1) In
2 +k−1 (w12s1s2) In

2 +l−1 (aw3s3)

× In
2 +l−1 (aw23s2s3)

∫
|X2|=s2

exp
(
w2XT

2 a
)
C

n−2
2

k+l−2m (cos θ) dσx2 (11)

f (s1, s2, s3) =
W

n
2

3 2n−2Γ2
(

n−2
2

)
s1s2s3

(w1w2w3w12w23as2)
n−2

2 (a)n−2
exp

{
−1

2

(
w11s

2
1 + w22s

2
2 + w33s

2
3 + wa2

)}

×
∞∑

k=0

∞∑
l=0

min(k,l)∑
m=0

(−1)k+l

(
n+ k + l − 2m− 3

n− 3

)
A(m, k, l)

(n
2

+ k − 1
) (n

2
+ l − 1

)
In

2 +k−1 (aw1s1)

× In
2 +k−1 (w12s1s2) In

2 +l−1 (aw3s3) In
2 +l−1 (aw23s2s3) In

2 +k+l−2m−1 (aw2s2) (13)

g (r1, r2, r3) =
W

n
2

3 2n−5Γ2
(

n−2
2

)
(w1w2w3w12w23)

n−2
2 (a)

3n
2 −3 (√

r2
)n−2

2

exp
{
−1

2

(
w11s

2
1 + w22s

2
2 + w33s

2
3 + wa2

)}

×
∞∑

k=0

∞∑
l=0

min(k,l)∑
m=0

(−1)k+l

(
n+ k + l − 2m− 3

n− 3

)
A(m, k, l)

(n
2

+ k − 1
) (n

2
+ l − 1

)
In

2 +k−1 (aw1
√
r1)

× In
2 +k−1 (w12

√
r1r2) In

2 +l−1 (aw3
√
r3) In

2 +l−1 (aw23
√
r2r3) In

2 +k+l−2m−1 (aw2
√
r2) (14)
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B. Bivariate noncentral χ2 distribution

If {r1, r2} are independent from r3, then we can write
the trivariate density as a product of bivariate and univariate
densities. Equating w23 to zero and using the limit (15) with
l = 0 followed by some manipulations we get the bivariate
density as given in (18). Here W2 denotes the determinant
of 2 × 2 inverse covariance matrix W2. Equation (18) is
equivalent to the previously published result by Miller [16,
eq.2.2.18].

III. CDF AND CHF OF TRIVARIATE DENSITY

A. Cumulative Distribution Function

The trivariate cdf is by definition [28]

G (r1, r2, r3) =
∫ r1

0

∫ r2

0

∫ r3

0

g (y1, y2, y3) dy1dy2dy3.

(19)
Substituting (14) in (19), followed by expansion of the Bessel
function term with its infinite series representation and sub-
sequent term by term integration, we get the cdf of trivariate
noncentral χ2 distribution as given in (20) with λ1 = 2i1 + k,
λ2 = 2i5+k+l−2m, λ3 = 2i3+l, λ4 = 2i2+k, λ5 = 2i4+l,
δ1 = i1 + i2 + k + n

2 , δ2 = i2 + i4 + i5 + k + n
2 − m,

δ3 = i3 + i4 + l + n
2 and γ(a, x) =

∫ x

0
ta−1 exp(−t)dt is the

incomplete gamma function [27]. Moreover if n > 2 is an

even integer then we would have used an alternative closed
form expression given in [19] instead of incomplete gamma
function. Simplification for special cases are straightforward
with (20).

B. Characteristic Function

The joint chf is defined as [28]

ψ (v1, v2, v3) = E {exp (v1r1j + v2r2j + v3r3j)} (21)

where j =
√−1. Following the same line of arguments as for

the cdf derivation, we encounter integrals of the form∫ ∞

0

xν−1 exp (−[p+ jq]x) dx

which can be solved using [26, eq.3.381.5] to yield the chf as
given in (22). The bivariate generalization is straightforward
with (22). If all {r1, r2, r3} are independent then the joint chf
can be written as a product of individual chfs. The chf of
univariate χ2 distribution has a well known closed form [19,
eq.2.1.117]. We end up with a product of three infinite series
of the form

ψ (v1) =
∞∑

i1=0

w
2i1+

n
2

11 a2i1

22i1+
n
2 i1!

(
w2

11
4 + v2

1

)i1+
n
2

× e

{
j(i1+

n
2 ) arctan

(
2v1
w11

)}

g (r1, r2) =
W

n
2

2 2
n
2 −3Γ

(
n−2

2

)
(w1w2w12)

n−2
2 (a)n−2

exp
{
−1

2

(
w11s

2
1 + w22s

2
2 + [w1 + w2] a2

)} ∞∑
k=0

(−1)k

(
n+ k − 3
n− 3

) (n
2

+ k − 1
)

× In
2 +k−1 (aw1

√
r1) In

2 +k−1 (w12
√
r1r2) In

2 +k−1 (aw2
√
r2) (18)

G (r1, r2, r3) = W
n
2

3 Γ2

(
n− 2

2

)
exp

(
−a

2w

2

) ∞∑
k,l=0

min(k,l)∑
m=0

∞∑
i1,i2,i3,i4,i5=0

(−1)k+l
A(m, k, l)

(
n+k+l−2m−3

n−3

)
2

1
2 (λ1+λ2+λ3)i1!i2!i3!i4!i5!

×
(

n
2 + k − 1

) (
n
2 + l − 1

)
aλ1+λ2+λ3wλ1

1 wλ2
2 wλ3

3 wλ4
12w

λ5
23

Γ
(
i1 + n

2 + k
)
Γ

(
i2 + n

2 + k
)
Γ

(
i3 + n

2 + l
)
Γ

(
i4 + n

2 + 1
)
Γ

(
i5 + n

2 + k + l − 2m
)
wδ1

11w
δ2
22w

δ3
33

γ
(
δ1,

w11

2
r1

)

× γ
(
δ2,

w22

2
r2

)
γ

(
δ3,

w33

2
r3

)
(20)

ψ (v1, v2, v3) = W
n
2

3 Γ2

(
n− 2

2

)
exp

(
−a

2w

2

) ∞∑
k,l=0

min(k,l)∑
m=0

∞∑
i1,i2,i3,i4,i5=0

(−1)k+l
A(m, k, l)

(
n+k+l−2m−3

n−3

)
2(λ1+λ2+λ3λ4+λ5)− 3n

2 i1!i2!i3!i4!i5!

×
(

n
2 + k − 1

) (
n
2 + l − 1

)
aλ1+λ2+λ3wλ1

1 wλ2
2 wλ3

3 wλ4
12w

λ5
23Γ (δ1) Γ (δ2) Γ (δ3)

Γ
(
i1 + n

2 + k
)
Γ

(
i2 + n

2 + k
)
Γ

(
i3 + n

2 + l
)
Γ

(
i4 + n

2 + 1
)
Γ

(
i5 + n

2 + k + l − 2m
) (

w2
11
4 + v2

1

) δ1
2

× 1(
w2

22
4 + v2

2

) δ2
2

(
w2

33
4 + v2

3

) δ3
2

exp
{
jδ1 arctan

(
2v1
w11

)
+ jδ2 arctan

(
2v2
w22

)
+ jδ3 arctan

(
2v3
w33

)}
(22)
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ψ (v2) =
∞∑

i5=0

w
2i5+

n
2

22 a2i5

22i5+
n
2 i5!

(
w2

22
4 + v2

2

)i5+
n
2

× e

{
j(i5+

n
2 ) arctan

(
2v2
w22

)}

ψ (v3) =
∞∑

i3=0

w
2i3+

n
2

33 a2i3

22i3+
n
2 i3!

(
w2

33
4 + v2

3

)i3+
n
2

× e

{
j(i3+

n
2 ) arctan

(
2v3
w33

)}

if we assume w12 = w23 = 0 (i.e., i2 = i4 = k = l = 0) in
(22) and the closed form solution for chf is not immediately
obvious. Nevertheless, it is easy to see that the individual
infinite summations are in the form of exponential series and
by using little algebra one can show that the individual chf
series reduces to [19, eq.2.1.117].

IV. CONCLUSION

A new infinite series representation for the trivariate non-
central χ2 distribution has been derived when the underlying
Gaussian components have tridiagonal form of inverse covari-
ance matrix. An identity for a product of two ultrspherical
polynomials due to Dougall and Miller’s approach are used
in the derivation. Moreover, the chf and cdf series are also
derived. Some special case of the joint density function
are also discussed. However, the derivation for an arbitrary
covariance matrix seems intractable with this approach.
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