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Efficient Blind Receiver Design for
Orthogonal Space-Time Block Codes

Tao Cui, Student Member, IEEE, and Chintha Tellambura, Senior Member, IEEE

Abstract— We consider stochastic blind maximum-likelihood
detection of orthogonal space-time block codes (OSTBCs) over a
quasi-static flat multiple-input multiple-output (MIMO) Rayleigh
fading channel. A general decision rule for stochastic blind
maximum-likelihood OSTBC detection is derived. This rule is
simplified using OSTBC linear dispersion matrices to realize a
blind detector, which is implemented by semi-definite relaxation
or sphere decoding. For the latter, the modifications necessary
for both unitary and non-unitary constellations are developed.
Two totally blind detectors using dual constellations or a su-
perimposed training scheme are proposed. As a side product,
two conditions for a rotatable OSTBC are also derived. A
decision-directed, minimum mean-square-error (MMSE) channel
estimator is developed. We also derive the Cramér-Rao bound
(CRB) for channel estimation and discuss the optimal power
allocation. Extensive simulation results are used to compare the
different detectors in terms of complexity and performance.

Index Terms— Blind detector, channel estimation, maximum-
likelihood, MIMO, OSTBC.

I. INTRODUCTION

ORTHOGONAL space-time block codes (OSTBCs) are
a popular multiple antenna technology [1]–[3]. They

achieve full transmit diversity and are amenable to simple
linear maximum-likelihood (ML) detection if the channel
state information (CSI) is known at the receiver. However,
CSI estimation for a multiple antenna channel requires the
transmission of pilot symbols, reducing the effective data rate.
Moreover, the linear ML detector is contingent upon a static
channel over the length of the entire block.1 The channel
variation destroys the orthogonality of the OSTBC receiver
filter, and the linear ML detector will no longer be optimal
[4]–[6]. Even when the channel is static over each signal
block but varies from block to block, it is difficult to track
the time varying channel. These factors have motivated the
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1Throughout this paper, the term ’block’ refers to an OSTBC signal matrix

(i.e., codeword).

development of blind and semi-blind OSTBC detectors [7]–
[11].

In [7], an approximate blind ML OSTBC detector is de-
veloped via a suboptimal blind detector (cyclic detector).
Reference [8] develops subspace based blind and semi-blind
detectors. References [9]–[11] develop a deterministic blind
ML detector for binary phase shift keying (BPSK) or quadra-
ture phase shift keying (QPSK) OSTBCs, using semi-definite
relaxation (SDR) and sphere decoding. The resulting detectors
perform substantially better in terms of the bit error rate
(BER) than the previous blind detectors [7], [8]. These studies
assume a static channel (i.e., one that is constant over several
signalling blocks) and hence neglect any consideration of the
Doppler rate - implicity assuming a zero Doppler rate.

In this paper, different from [7]–[11], we consider stochastic
blind ML OSTBC detection for a quasistatic fading channel,
i.e., the channel remains constant for a single block only and
varies from block to block.2 This model is valid for normalized
Doppler rates up to 3% [12]. We derive a general decision rule
for stochastic ML blind OSTBC detection and show that it
leads to a discrete quadratic optimization problem. Although
such problems can be solved via exhaustive search when
the size is small, we develop the detectors based on sphere
decoding [13], [14], which provides the same optimal solution
as exhaustive search but with much less computational com-
plexity, and semi-definite relaxation [15]. For sphere decoding,
the modifications necessary for both unitary and non-unitary
constellations are developed. We note that [9]–[11] also de-
velop detectors based on semi-definite relaxation and sphere
decoding. The differences are that our detectors are developed
for arbitrary constellations, hold for quasistatic channels, and
take a stochastic approach. For the latter reason, the term
stochastic will be used throughout this paper. Although the
inherent phase ambiguity of blind detectors can be overcome
by a few pilot symbols [7], [9]–[11], which however lowers
the bandwidth efficiency, we present two novel approaches
for totally blind detection without the use of explicit pilot
symbols. The first scheme uses dual constellations such that
the phase angle of any element of the first constellation is
different from that of any element in the second constellation.
As a side product, two conditions for a rotatable OSTBC
are also derived. The second scheme utilizes superimposed
training, where pilot symbols are added to data symbols.
We derive a decision-directed, minimum mean-square-error
(MMSE) channel estimator to alleviate the computational
burden of the blind detectors. We also derive the Cramér-Rao

2However, for a more realistic assessment, in our simulations, we assume
a continuous fading channel with the Jakes’ spectrum and a given Doppler.
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bound (CRB) for channel estimation and discuss the optimal
power allocation. The blind detector and the channel estimator
form an efficient OSTBC receiver structure (Fig. 1). Extensive
simulation results are used to compare the different detectors
in terms of complexity and performance.

The rest of the paper is organized as follows. The system
model and OSTBCs are introduced in Section II. Section III
derives the general stochastic blind ML detection rule and
develops SRD and the sphere decoder based blind detectors.
Section IV presents the two totally blind schemes. Section V
gives the MMSE channel estimator and the CRB. Simulation
results are given in Section VI and conclusions are drawn in
Section VII.

Notation: E{·}, (·)∗, (·)T , (·)H and (·)† denote expecta-
tion, complex conjugation, transpose, conjugate transpose and
Moore-Penrose pseudo-inverse, respectively. The imaginary
unit is j =

√−1. The trace, determinant and the squared
Frobenius norm of matrix A are tr(A), det(A) and ‖A‖F =√

tr(AAH). vec(A) denotes the vector formed by stacking
the columns of A. A circularly complex Gaussian variable
with mean μ and variance σ2 is denoted by z ∼ CN (μ, σ2).
The sets of real numbers and integers are R and Z. The N×N
identity matrix is IN . The Kronecker delta is δi,j = 1 if i = j
and δi,j = 0 if i �= j where i, j ∈ Z. A � B denotes that
A − B is positive semi-definite.

II. SYSTEM MODEL

We consider a MIMO system with Nt transmit and Nr

receive antennas. Each block of transmitted symbols occupies
T time slots and time interval TB . The symbols transmitted
during the nth block are denoted by the T ×Nt matrix S[n] =
[st,i[n]], t = 1, 2, . . . , T and i = 1, 2, . . . , Nt, where st,i[n] is
transmitted by the ith antenna in the t+(n−1)T -th time slot.
For an OSTBC, P symbols x[n] = [x1[n], x2[n], . . . , xP [n]]T

with the same average power Es = E{|xp[n]|2} form S[n].
The entries of S[n] are linear in xi[n] and x∗

i [n], and the block
has the orthogonal property

SH [n]S[n] = c

(
P∑

p=1

|xp[n]|2
)

INt , (1)

where c = 1/r and r = P/T is the rate of the code. For the
Alamouti code [1] or the G2 code in [2], Nt = 2, P = 2,
T = 2, c = 1 and S[n] is given by

S[n] =
(

x1[n] x2[n]
−x∗

2[n] x∗
1[n]

)
. (2)

For the G3 and G4 codes in [2], c = 2.
An OSTBC can be alternately represented as [16]

S[n] =
P∑

p=1

(αp[n]Ap + jβp[n]Bp)

=
P∑

p=1

(
xp[n]Cp + x∗

p[n]Dp

)
, (3)

where xp[n] = αp[n] + jβp[n] and Aq , Bq are called
dispersion matrices, a set of constant matrices that defines
an OSTBC [16]. This representation (3) will be used later.
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Fig. 1. The block diagram of blind receiver for OSTBC.

We consider a frequency-flat Rayleigh fading MIMO chan-
nel resulting from a rich scattering environment. The received
signal at the jth receive antenna at time slot t in the nth block
is

rt,j [n] =
Nt∑
i=1

hi,j [n]st,i[n] + wt,j [n], (4)

where hi,j [n] denotes the path gain from the ith transmit
antenna to the jth receive antenna, and wt,j [n] is the complex
additive white Gaussian noise at the jth receive antenna with
mean zero and variance σ2

n. The fading channel is assumed
to be quasistatic, i.e., channel variations within each block
are negligible. All path gains are statistically independent
(E{hi,j [n]h∗

i′,j′ [n]} = δi,i′δj,j′ ) and have the same time
correlation function Rh(τ). Typically, when classical Jakes’
model [17] is used, Rh[m] is given by

Rh[m] = E{hi,j [n]h∗
i′,j′ [n+m]} = δi,i′δj,j′σ

2
hJ0(2πmfdTB),

(5)
where σ2

h denotes the power of the path gain, J0(·) is the
zeroth order Bessel function of the first kind, and fd is the
Doppler frequency. Note that the quasistatic condition holds
when fdTB < 0.03. The matrix version of (4) is

R[n] = S[n]H[n] + W[n], (6)

where R[n] = [rt,j [n]] is the T ×Nr receive matrix, H[n] =
[hi,j [n]] is the Nt×Nr channel matrix, and W[n] = [wt,j [n]]
is the T × Nr noise matrix.

III. MAXIMUM-LIKELIHOOD BLIND DECODING

This section derives the general ML metric for stochastically
blind OSTBC detection using N consecutive received signal
blocks. This rule will be used for the totally blind detectors
in Section IV or the totally blind detector block in Fig. 1. We
consider the received blocks during n = k + 1 to n = k + N .
Let R̄[k] = [RT [k + 1],RT [k + 2], . . . ,RT [k + N ]]T and
S̄[k] = [ST [k+1],ST [k+2], . . . ,ST [k+N ]]T . The stochastic
ML decision rule for the sequence S̄[k] can be expressed as

ˆ̄S[k] = arg max
S̄[k]

f(R̄[k]|S̄[k]), (7)

where f(a|b) is the probability density function (pdf) of a
conditioned on b. The conditional pdf (7) can be calculated by
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averaging the pdf f(R̄[k]|S̄[k], H̄[k]) over the channel matrix
H̄[k], which results in

f(R̄[k]|S̄[k]) =
exp

(−tr
(
R̄H [k]C−1

R [k]R̄[k]
))

(πNNt det(CR[k]))Nr
, (8)

where the conditional covariance matrix CR[k] is given by

CR[k] =E{R̄[k]R̄H [k]|S̄[k]}
=S̄D[k]CH S̄H

D [k] + Nrσ
2
nITN

, (9)

where S̄D[k] is a block diagonal matrix

S̄D[k] =

⎡
⎢⎢⎢⎣

S[k + 1]
S[k + 2]

. . .
S[k + N ]

⎤
⎥⎥⎥⎦ (10)

and CH is the covariance matrix of the vector H̄ = [HT [k +
1],HT [k + 2], . . . ,HT [k + N ]]T . CH can be represented as

CH = Nr(Ch ⊗ INt), (11)

where ⊗ denotes the Kronecker product and Ch is given by

Ch =

⎡
⎢⎢⎢⎢⎣

Rh[0] Rh[1] · · · Rh[N − 1]

Rh[−1] Rh[0]
...

...
...

...
. . .

...
Rh[−N + 1] . . . . . . Rh[0]

⎤
⎥⎥⎥⎥⎦ . (12)

If xp[n]’s belong to a unitary constellation, we have

SH [n]S[n] = TEsINt . (13)

However, if xp[n]’s are from a non-unitary constellation, when
P is large (for example, P ≥ 4),

∑P
p=1 |xp[n]|2 ≈ PEs

applying the law of large numbers to (1) and we have

SH [n]S[n] ≈ TEsINt . (14)

Since det(CR[k]) = det(CH S̄H
D [k]S̄D[k] + Nrσ

2
nINtN ) ≈

det(TEsCHINtN + Nrσ
2
nINtN ) is almost independent of

S̄D[k] for both unitary and non-unitary constellations, (7) is
equivalent to

S̄[k] = arg min
S̄[k]

tr
(
R̄H [k]C−1

R [k]R̄[k]
)
. (15)

Using the identity (A + BCD)−1 = A−1 − A−1B(C−1 +
DA−1B)−1DA−1, (15) becomes

ˆ̄S[k] = arg min
S̄[k]

1
Nrσ2

n

tr
(
R̄H [k](ITN − S̄D[k]

×(Nrσ
2
nC−1

H + S̄H
D [k]S̄D[k])−1S̄H

D [k])R̄[k]
)

=arg max
S̄[k]

tr
(

R̄H [k]S̄D[k](Nrσ
2
nC−1

H

+S̄H
D [k]S̄D[k])−1S̄H

D [k]R̄[k]

)

=arg max
S̄[k]

tr
(
R̄H [k]S̄D[k]CS̄H

D [k]R̄[k]
)
,

(16)

where C = (Nrσ
2
nC−1

H + S̄H
D [k]S̄D[k])−1. Using (14),

C = D ⊗ INt via Kronecker product properties [18], and
D = (Nrσ

2
nC−1

h + TEsIN )−1 with the (i, j)-th entry di,j .

Therefore, dropping the time index for brevity, (16) can be
written as

ˆ̄S =arg max
S̄

tr

⎛
⎝ N∑

i=1

N∑
j=1

di,jRH [i]S[i]SH [j]R[j]

⎞
⎠

=arg max
S̄

N∑
i=1

N∑
j=1

di,jtr
(
RH [i]S[i]SH [j]R[j]

) , (17)

where the second equality comes from the trace property.
When xp belongs to a non-unitary constellation and P is small
so that (14) is not valid, an approximate ML detector for this
case is given later in (24).

To further simplify (17), we note that tr(AB) =
vec(AH)Hvec(B) [18]. For the (i, j)-th term

di,jtr
(
RH [i]S[i]SH [j]R[j]

)
= di,jvec(SH [i]R[i])Hvec(SH [j]R[j]). (18)

Substituting (3) into SH [j]R[j], we have

vec(SH [j]R[j]) =
P∑

p=1

αp[j]vec
(
AT

p R[j]
)

−jβp[j]vec
(
BT

p R[j]
)

= Fjs[j],

(19)

where s[j] = [α1[j], . . . , αP [j], β1[j], . . . , βP [j]]T

and Fj = [vec(AT
1 R[j]), . . . , vec(AT

P R[j]),
−jvec(BT

1 R[j]), . . . ,−jvec(BT
PR[j])]. Therefore, we

can simplify (17) to derive the new blind detector

ŝ = arg max
s

sTGs, (20)

where s = [sT [1], . . . , sT [N ]]T and G is a positive semidefi-
nite block matrix with the (i, j)-th block [G]i,j = di,jFH

i Fj .
If the channel coherence time is larger than NTB, the

channel remains constant during N blocks. Using M -PSK
constellations, all di,j’s are then equal, and hence (17) re-
duces to the deterministic decision metric given in [9]–[11].
However, (17) is not limited to BPSK or QPSK as in [9]–[11].

Note that our blind detector (20) requires the knowledge
of σ2

n and Ch, which may not readily be obtained. They can
be estimated using the detected data and estimated channel as
shown in Section V. There may exist mismatch between the
estimated σ2

n, Ch and the true parameters. The investigation
of parameters mismatch is beyond the scope of this paper.

A. Efficient Detection

For BPSK, (20) can be solved via semi-definite relaxation
[15]. The idea is to relax (20) to a convex optimization
problem called semidefinite programming (SDP) [15]. the
blind ML detector output ŝ can be found via the Goemans-
Williamson randomization [19], which provides good ap-
proximation accuracy with a modest number of randomiza-
tion operations. The computational complexity of the whole
semi-definite relaxation process including randomization is
O((NP )3.5). However, the semi-definite relaxation detector
is suboptimal. Consequently, we suggest the use of the sphere
decoder [13] to attain ML performance. If xp[k]’s belong to
unitary constellations, sT s = PN and ηsT s is a constant,
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where η is a constant. Therefore, the blind detector (20) can
be restated as

ŝ = arg min
s

sT (ηI2PN − G) s. (21)

If η is larger than the maximum eigenvalue of G, ρmax, it can
be readily verified that ηI2PN −G is positive definite. There
are three possible choices of η: ρmax + σ2

n, ρmax + ρmin, and
tr(G), where ρmin is the minimum non-zero eigenvalue of
G. The third choice is valid since the matrix trace has the
property [18]

tr(G) =
2PN∑
i=1

ρi > ρmax. (22)

From our experimental experience, both the first and the
second choices work well. However, the second choice needs
additional complexity to compute the minimum non-zero
eigenvalue of G. Therefore, we use the first choice in the
simulation.

To see how the blind detector (21) can be solved via
the sphere decoder, we consider the Cholesky decomposition
ηI2PN − G = MTM. The blind detector (21) can then be
restated as

ŝ = argmin
s

‖Ms‖2. (23)

Using the upper triangular structure of M, the detector output
(23) can be computed via the sphere decoder [13].

Note that for QPSK each element of s is independently
chosen from the set {−1, 1}. However, for M -PSK (M > 4),
the real part αp[n] and the imaginary part βp[n] cannot be
chosen independently. In this case, if αp[n] is chosen, βp[n]
is restricted by the constellation. Such constellation-specific
information can be incorporated into the sphere decoder. In
the sphere decoder, when αp[n] is assigned a value from its
candidate set, the candidate set for βp[n] is determined by
the bound given by the sphere decoder and the constellation-
specific. The details of the complex sphere decoder are given
in [20].

The blind detector (21) has also appeared in [10], [11] for
blind OSTBC detection, and the sphere decoder is used to
solve (21). However, the blind detector in [10], [11] is only
applicable for BPSK and a static channel. References [10],
[11] do not discuss how to choose η.

B. Non-Unitary Constellations

The determinant det(CR[k]) is not necessarily a constant
when xp[k]’s are chosen from a non-unitary constellation
such as quadrature amplitude modulation (QAM). Similarly,
the superimposed pilots (Section IV-B) can be viewed as
being chosen from a non-unitary constellation. This case may
be handled by the use of the approximation (14) as done
before. Alternatively, the term det(CR[k]) can be ignored
(Section IV-B), and we solve (16) without the use of (14).
Simulation results show that the performance loss due to
ignoring det(CR[k]) is small. In order to develop the cost
metrics for sphere decoding, we define ξmax = max{|x| |x ∈
Q} and ξmin = min{ |x| | x ∈ Q} where Q is the signal
constellation. Eq. (16) is equivalent to minimizing

g1(s) = ηPN − tr
(
R̄HS̄D(Nrσ

2
nC−1

H + S̄H
D S̄D)−1S̄H

DR̄
)
,

(24)

where s is defined in (20). Let A = Nrσ
2
nC−1

H + S̄H
D S̄D

and B = Nrσ
2
nC−1

H + Tξ2
minIN . It can be readily verified

that A � B. Using Corollary [18, p. 471], it follows that
A−1 � B−1. We can prove that

tr
(
R̄HS̄DA−1S̄H

DR̄
) ≤ tr

(
R̄HS̄DB−1S̄H

DR̄
)
. (25)

Therefore, the cost metrics are related as

g1(s) ≥sT

(
η

ξ2
max

I2PN − G′
)

s = g2(s), (26)

where the (i, j)-th block of G′ is [G′]i,j = bi,jFH
i Fj , bi,j

is the (i, j)-th entry of B and Fi is defined in (19). The
sphere decoder uses the relation g2(s) ≤ g1(s) < r2. All
the candidates that satisfy g2(s) < r2 are found, and the one
that makes g1(s) a minimum is the detector output. During
the search, the bound (or the radius) r2 can be updated by
g1(s̃), where s̃ is a valid candidate within the hyper-sphere.
If ξmax is much larger than ξmin, the bound given by g1(s) is
loose and g2(s) ≤ r2 contains many points, which makes the
algorithm inefficient.

IV. TOTALLY BLIND DETECTORS

We consider the Alamouti code with M -PSK (QM =
{ej2πm/M}, m = 0, . . . , M − 1) as an example. The results
may be generalized to other OSTBC’s and constellations
(details omitted for brevity). We first provide a brief discussion
on rotatable and non-rotatable OSTBCs and derive the dual-
constellation and superimposed pilot schemes.

A. Rotatable and Non-Rotatable OSTBCs

A code is said to rotatable if for any codeword S, there
exists a unitary matrix Θ ( �= ±I) such that SΘ is also a
valid codeword. Otherwise, the code is said to be non-rotatable
[21]. Clearly, a rotatable code gives rise to a phase ambiguity
in (17). For an optimal solution of (17) given by Ŝ[i], i =
1, . . . , N , there may be a unitary matrix Θ such that S̃[i] =
Ŝ[i]Θ is also an optimal solution of (17).

Non-rotatable OSTBCs are bandwidth efficient for blind
decoding and need one pilot symbol only [21]. For example,
the OSTBC in (41) is a non-rotatable code. In [21], a non-
rotatable OSTBC criterion is proposed but it is only applicable
to the BPSK constellation. We next give two conditions for a
rotatable OSTBC.

Condition 1: An OSTBC is rotatable if for any permu-
tation π of {1, . . . , P}, and π �= {1, . . . , P}, there exists a
permutation matrix Π satisfying

CiΠ = aCπ(i) and DiΠ = aDπ(i), i = 1, . . . , P,
(27)

where Ci and Di are defined in (3) and a = ±1.
Condition 2: Let the set IR denote the index set of Ci,

i = 1, . . . , P , containing non-zero rows and the set IC denote
the index set of Di, i = 1, . . . , P , containing non-zero rows.
The code is rotatable only if

IR ∩ IC = φ, (28)

where φ is the null set.
The proof constitutes the fact that if these conditions are

satisfied, then it is possible to construct a rotation matrix.
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For example, IR = {1}, IC = {2}, and IR ∩ IC = φ for
the Alamouti code. Therefore, it is rotatable and two possible
rotation matrices are

Θ =
(

ej2πk/M 0
0 e−j2πk/M

)
, k ∈ {0, 1, . . . , M − 1},

(29)
and

Θ =
(

0 −ej2πk/M

e−j2πk/M 0

)
, k ∈ {0, 1, . . . , M − 1}.

(30)
More generally, if both Conditions 1 and 2 are satisfied

and all of the symbols are from an M -PSK constellation, the
rotation matrix can be constructed as

Θ = ΛΠ, (31)

where Λ is a diagonal matrix with diagonal entries

[Λ]i,i =
{

ej2πk/M i ∈ IR

e−j2πk/M i ∈ IC
. (32)

If only Condition 1 is satisfied, we can set Λ = INt . If only
Condition 2 is satisfied, we can set Π = INt . In either case,
Θ defined in (31) is still a valid rotation matrix.

However, non-rotatable codes are rare as shown in [21]
and they also need a pilot symbol. The use of pilot symbols
results in a bandwidth loss, which motivates the research for
totally blind detectors without any pilots. We present two such
schemes next.

B. Dual-constellation Scheme

In [22], two different PSK-constellations are used to solve
the phase ambiguity (equivalent to rotational and permutation
ambiguities in this paper) in blind OFDM detection, which
motivates our totally blind detector in this subsection. In the
first scheme, we propose the use of dual constellations in N
consecutive blocks. The constellation design criterion is the
following:

Criterion 1: Choose the two constellations Q1 and Q2 such
that, for any u ∈ Q1 and for any v ∈ Q2, the phase angle of
u is different from the phase angle of v.

QPSK (Q4 = {ejmπ/2+π/4, m = 0, 1, 2, 3}) and 3-PSK
(Q3 = {ej2mπ/3, m = 0, 1, 2}) satisfy Criterion 1. For
example, 3-PSK is used in the 1, 3, . . . , N − 1 blocks and
QPSK is used in the remaining blocks assuming N is an even
number.3 If Ŝ[1] and Ŝ[2] maximize (17), Θ1 is a rotation
matrix given by (29) or (30) for Ŝ[1], and Ŝ[1]Θ1 is also a
feasible codeword. The rotation angle for Ŝ[1] is a multiple of
π/2. However, when it is applied to Ŝ[2], it can be verified that
Ŝ[2]Θ1 cannot result in valid codewords for Ŝ[2] due to the
use of different constellations. Similarly, the rotation matrix
Θ2 is also not applicable for Ŝ[1]. Thus, there does not exist
a Θ that makes both Ŝ[1]Θ and Ŝ[2]Θ valid. Therefore, (17)
has a unique solution. QPSK with 5-PSK and 8-PSK with
7-PSK also satisfy the property.

3Note that the dual constellation scheme has also been applied to blind
identification of the Alamouti code in [23]. However, in [23], the two symbols
chosen from two different constellations are used within a single block, which
are sent over the two transmitter antennas.

If the code has permutation ambiguity as opposed to Condi-
tions 1 and 2, following the same argument as for the Alamouti
code, it can be verified that it is a necessary condition to
make the two different constellations satisfy Criterion 1 so
that (17) results in a totally blind detector. Even though a
OSTBC satisfies Conditions 1 and 2, our dual constellation
scheme can also be applied. In this case, we do not need to
insert any pilot, resulting in a bandwidth saving.

The 3-PSK and QPSK constellations pair is not opti-
mized in [22]. We optimize the constellations by maximiz-
ing the Euclidean distance between the correct point and
the wrong point induced by additive noise or phase am-
biguity. We find that the optimal 3-PSK constellation is
Q3 = {1, ej5π/8, e−j5π/8} and the optimal QPSK is Q4 =
{ejkπ/2+π/4, k = 0, 1, 2, 3}.

The binary bits are mapped to 3-PSK via a punctured
convolutional encoder in [22]. Here we introduce a mapping
scheme similar to a linear block code. We map 3 binary
bits to two 3-PSK symbols, which consists of 9 tuples. The
tuple (0, 0) is not used and therefore we incur a loss of 0.17
bits. When performing ML detection, this tuple plays a role
similar to that of the parity check bits in a linear block code,
which enable error detection/correction. Since gray mapping
does not exist for the 3-bit mapping, we develop a quasi-gray
mapping scheme by minimizing the number of neighborhood
bit errors. After optimization, we find that the suboptimal
mapping scheme is given by (33) (see top of next page). The
use of two PSK constellations reduces the minimum Euclidean
distance. Alternatively, a semi-blind detector can be designed
by transmitting one pilot (i.e., by fixing one element of s),
which also eliminates the ambiguity problems. Compared with
the detector with rotatable codes using a pilot block, the semi-
blind detector is also bandwidth efficient.

Using the dual-constellation scheme, the resulting totally
blind detector (20) can be solved using the modified sphere
detector for PSK in [20].

C. Superimposed Pilot Scheme

The superposition of pilot and data symbols has been
proposed in [8], [24] for channel estimation. Our key idea is to
use superimposed pilots to resolve the phase ambiguity. The
p-th transmitted symbol in the n-th block can be represented
as

xp[n] =
√

γn,ptp[n] +
√

λn,pup[n], (34)

where tp[n] is the known pilot with power Es and up[n] is a
data symbol from Q. We have γn,p + λn,p, and γn,p denotes
the percentage of the power allocated to training. In fact, (34)
is a framework for all of the training schemes in this paper.
If γn,p = 1 for p = 1, . . . , P , it reduces to the case using
a pilot block to solve the ambiguity. When γn,p = 0 and the
two constellations satisfying Conditions 1 and 2 are employed,
it becomes the dual constellation scheme. We still call the
detector using (34) a totally blind detector since if γn,p �= 1,
the data rate remains the same as γn,p = 0 or full rate. The
superimposed pilots can be used only for the first block, i.e.,
0 < γ1,p < 1 and γn,p = 0 for n = 2, . . . , N or for all of the
blocks 0 < γ1,p < 1 for n = 1, . . . , N . We show next that the
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100 → (1, ej 5π
8 ), 010 → (1, e−j 5π

8 ), 001 → (ej 5π
8 , 1),

000 → (ej 5π
8 , ej 5π

8 ), 011 → (ej 5π
8 , e−j 5π

8 ), 111 → (e−j 5π
8 , 1),

101 → (e−j 5π
8 , ej 5π

8 ), 110 → (e−j 5π
8 , e−j 5π

8 ).
(33)

superimposed pilots scheme is also a necessary condition for
the totally blind detector.

The two constellations scheme resolves the ambiguity by
modifying only the phase so that there does not exist a valid
rotation matrix Θ for all of the OSTBC codewords from the
two constellations. For constant tp[n], (34) forms a new non-
symmetric constellation for xp[n] with nonzero mean and we
denote the new constellation as Qs. Clearly, either the phase or
the amplitude of the point in Qs are different from those in Q.
Except for BPSK, Qs and Q satisfy Criterion 1. In addition,
due to the difference in amplitude, the minimum Euclidean
distance between the correct point and the wrong point by
additive noise or phase ambiguity may be increased and this
leads to performance improvement.

The value for γn,p can be optimized. We take BPSK for
example, and we assume that all the γn,p’s are equal and
Es = 1. If γn,p > λn,p and tp[n] = 1, Qs = {√γn,p +√

λn,p,
√

γn,p −√λn,p}. Due to additive noise and permu-
tation ambiguity, Qs may be treated as Q′

s = {−√
γn,p −√

λn,p,−√
γn,p +

√
λn,p}. To gain the best performance, we

should maximize the minimum Euclidean distance in the set
Qs ∪ Q′

s, which results in

max
λn,p,γn,p

min{2√λn,p, 2
√

γn,p − 2
√

λn,p}. (35)

We can get γn,p = 4
5 and λn,p = 1

5 . Similarly, if γn,p < λn,p,
we have γn,p = 1

5 and λn,p = 4
5 .

For the detection of symbols for the superimposed scheme,
we note that if S[n] contains superimposed pilots, SH [n]S[n]
cannot be approximated as TEsINt any more and Qs is not
a unitary constellation. We thus apply the modified sphere
decoder (24)-(26) for non-unitary constellations. By choosing
ξmax and ξmin for Qs, we can define g2(s) = ‖Ms‖2 as in
(26), where MTM = η

ξ2
max

I2PN −G′. Note that the s in (23)
can be written as

s = Γtt + Γuu, (36)

where t and u are formulated using the real and imaginary
parts of tp[n] and up[n] as s in (20), Γt and Γu are diagonal
matrices with diagonal entries

[Γt](2n−2)P+p,(2n−2)P+p = [Γt](2n−1)P+p,(2n−1)P+p

=
√

γn,p, n = 1, . . . , N, p = 1, . . . , P

[Γu](2n−2)P+p,(2n−2)P+p = [Γu](2n−1)P+p,(2n−1)P+p

=
√

λn,p, n = 1, . . . , N, p = 1, . . . , P
(37)

Thus, g2(s) is reduced to

g2(u) = ‖y − M′u‖2, (38)

where y = −MΓtt and M′ = MΓu. When using the sphere
decoder, we solve g2(u) ≤ g1(s) < r2, g1(s) is defined in
(24) and r2 is updated using g1(s).

Since the data symbols at the superimposed pilot blocks
have less energy than other pure data symbols, they may not
be reliably detected. To improve the overall performance, we
first use the MMSE channel estimator in Section V to estimate
the channel in pure data blocks. The channel at superimposed
pilot blocks are then predicted and the superimposed data is
detected using the linear coherent ML detector for an OSTBC.

V. CHANNEL ESTIMATION AND PREDICTION

The “Parameters Estimator", “Channel Estimator and Pre-
dictor", and “Coherent Decoder" blocks in Fig. 1 are briefly
discussed in this section. Although the data symbols can be
efficiently detected using (20) without estimating the channel,
the computational burden may be reduced by a dual-mode
receiver with blind and decision-directed modes. This receiver
starts with the blind mode using the blind detector (20) and
then reverts to the decision-directed mode, where the detected
symbols are used to predict the channel.

In the blind mode, after the data symbols have been detected
using (20), the channel estimator may be designed according
to the MMSE criterion using Ŝ[k]. With quasistatic fading (the
case of static fading can be obtained similarly.), the MMSE
channel estimator is given by

ˆ̄H =
(

ˆ̄SH
D

ˆ̄SD + σ2
n(C−1

h ⊗ INt)
)−1 ˆ̄SH

DR̄, (39)

where H̄ = [HT [1],HT [2], . . . ,HT [N ]]T as defined in (10).
To bound the performance of the proposed blind receiver and
to optimize the power allocation between pilot symbols and
data symbols, we derive the CRB of the channel estimate
for the joint channel estimation and detection following [25],
which assumes the entries of S[k] are Gaussian distributed.4

After a lengthy derivation of the Fisher Information Matrix
(FIM) [25], we derive the CRB as

CRB = Nrtr

((
1
σ2

n

E ⊗ INt + C−1
h ⊗ INt

)−1
)

= NrNttr

((
1
σ2

n

E + C−1
h

)−1
) , (40)

where E = diag{E1, . . . , EN}, and Ei is the total power
assigned to the i-th block. When superimposed pilots are
used, a remarkable property of (40) is that the CRB does not
depend on the power allocated to the pilots or the location of
pilots due to the property of OSTBC. However, the training
power determines the SNR required to achieve the CRB. The
more training power, the lower SNR is needed. All the power
allocation schemes achieve the CRB in high SNR.

The CRB for quasistatic fading channels (40) only depends
on the total power allocated to each block. When the channel

4Note that even though the entries of S[k] are of discrete values, this
Gaussian simplification provides a tractable lower bound on the performance.
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is almost constant during the N blocks, from an informa-
tion point of view, the optimal power allocation scheme is
Ek+1 = Ek+2 = . . . Ek+N = E/N by maximizing the mutual
information between the input and the output [24]. But, when
the channel is time-selective, the optimal power allocation for
each block should minimize the CRB (40) given constant total
power E . In practice, to simplify system design, one may
nevertheless employ the equal power allocation scheme.

In the decision-directed mode, Wiener filtering or Kalman
filtering [26] may be applied to predict the channel in the
following blocks if the channel correlation is known at the
receiver. With Ĥ[N + 1], the data symbol in the N + 1-
th block can then be decoded using the linear ML detector.
The decoded symbol Ŝ[N + 1] can be used to update the
channel estimate Ĥ[N+1] using the MMSE channel estimator
(39) with N = 1. In the N + 2-th block, the channel is
first predicted using the estimated channels from the 2nd
to the N + 1-th blocks. Similarly, the data symbols are
first decoded using the predicted channel and are then used
to update the channel estimate. The decision-directed mode
lasts for Nd blocks. The receiver then reverts to blind mode
to stop the error propagation caused by the decision-direct.
This will alleviate the computational complexity of the blind
detector since the linear ML detector has low complexity. The
bandwidth efficiency is also improved since the receiver can
work in full rate transmission without transmitting pilots.

Note that in both modes, the blind detector (20) and the
MMSE channel estimator need the knowledge of σ2

n and Ch.
If S̄[k] is known, (8) can also be considered as an ML function
of σ2

n and Ch. But (8) is a nonlinear function in σ2
n and Ch.

It is complicated to estimate them directly from (8). At the
receiver, σ2

n and Ch can also be estimated using the time
average of ‖R[n] − Ŝ[n]Ĥ[n]‖2 and ĤH [n]Ĥ[n]. Therefore,
the blind detector and channel estimator, as a whole, form a
bandwidth efficient and low complexity receiver structure.

VI. SIMULATION RESULTS

We now present simulation results for our blind detector
over a flat Rayleigh fading channel. For more realistic results,
rather than simply using the quasistatic fading model, we
generate the MIMO channel gains by sampling a continuous
fading process via the Jakes model [17]. The SNR is defined to
be E{‖H‖2

F}/σ2
n. As well, it is assumed that the receiver has

perfect knowledge of channel correlation and noise variance.
We first compare our proposed blind detector with those
proposed in the literature [7]–[9] in terms of both performance
and complexity. Note those detectors need pilots to resolve
the ambiguity. The cyclic ML is initialized by a pilot symbol
according to the Blind Detector in [7]. We next show the
performance of our blind receiver working in both blind and
decision-directed modes. Finally, we compare our proposed
totally blind detectors.

A. Comparison of Different Blind OSTBC Detectors

We first consider the non-rotatable OSTBC with Nt = 3
and P = 4 [9] ⎛

⎝ x1 x2 x3 x4

−x2 x1 x4 −x3

−x3 −x4 x1 x2

⎞
⎠ . (41)

The number of receiver antennas is Nr = 3 and the number
of blocks is N = 8. BPSK is used for this code. x1[1]
is transmitted as a pilot to solve the phase ambiguity. The
MATLAB V5.3 command “flops" is used to count the number
of flops. The ML detection with perfect CSI is used as the
benchmark. The semi-definite relaxation algorithm follows
exactly the one given in [15].

We first consider that the channel remains constant for N
blocks. Fig. 2 shows the BER versus SNR of various blind
detectors, i.e., (23) with sphere decoder (stochastic SD), deter-
ministic SDR [9], blind cyclic [7] and blind subspace [8]. The
stochastic SD and deterministic SDR perform substantially
better than the other blind detectors. At a BER of 10−3, the
stochastic SD has a 0.2-dB gain over the deterministic SDR.
Although the stochastic SD performs 2 dB worse than the
benchmark, it has a smaller performance loss and complexity
than differential unitary space time modulation (DUSTM)
[27], where a 3-dB loss is observed. Our stochastic SD
achieves the same diversity order as the benchmark.

Figs. 3 and 4 compare the average complexities of different
blind detectors in a static channel. We simulate this system
using MATLAB V7.0 on a PC with an Intel Pentium-4 proces-
sor at 3.4GHz. Both the average flop count and the average
computational time are used as the complexity measures.
The complexity of the preprocessing stage such as Cholesky
decomposition in the stochastic SD or the initialization in [7],
[8] is also counted. The complexities of deterministic SDR,
blind subspace, and blind cyclic are almost independent of
SNR, while that of blind SD depends on SNR. In terms of
flops, the deterministic SDR is the most complex one, while
the proposed stochastic SD is the least complex. Therefore,
the blind SD outperforms the other blind detectors in terms
of both BER and complexity. However, when the average
computational time is measured, the blind subspace achieves
the minimum complexity. The stochastic SD only has less
computational time in high SNR. A possible explanation is
the fact that the deterministic SDR, blind subspace, and blind
cyclic detectors can exploit Matlab vector operation, whereas
the stochastic SD does not. Thus, on processors that have
special hardware (parallel) architectures for vector and matrix
operations, matrix-based algorithms may be faster than the
sphere decoder.

The effects of channel variation on different detectors are
shown in Fig. 5 for fdTB = 0.04. The stochastic SDR denotes
solving (20) using semi-definite relaxation. The deterministic
SDR, blind cyclic and blind subspace detectors perform poorly
due to the model mismatch. At a BER of 10−2, the stochastic
SD still has a 0.2-dB gain over the stochastic SDR. However,
the performance gap between stochastic SD and the bench-
mark increases to 2.8 dB, since the quasistatic assumption is
invalid for a large Doppler spread. Our blind detector (20) also
shows a model mismatch problem.

B. Performance of Totally Blind Detectors

We next test our totally blind detector for rotatable Alamouti
code (2). The number of receiver antennas is Nr = 2 and the
number of blocks is N = 4. We compare the performance of
a training based detector (TRD) with a pilot block, a totally
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Fig. 2. BER versus SNR for different blind detectors with N = 8 and BPSK
over a static channel.
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Fig. 3. Average flops versus SNR for different blind detectors with N = 8
and BPSK over a static channel.

blind detector with dual constellations (TCD) and a totally
blind detector with superimposed pilots (SPD). In the TRD,
QPSK is used and the first block contains all pilots. QPSK and
3-PSK are used for TCD. The first and third blocks use 3-PSK
and the second and fourth blocks use QPSK. The 3-PSK signal
points are mapped using (33). In SPD, superimposed BPSK
pilots and data are used for the first block, and γ1,p = 4

5 ,
λ1,p = 1

5 and tp[1] = 1, p = 1, 2. The remaining blocks use
QPSK. We also show the performance for semi-blind TCD
with one pilot and denote it as TCD-SB. TRD transmits 12
bits, TCD 14 bits, SPD 14 bits and TCD-SB 13 bits in the N
blocks. To compare the performance of detectors with different
data rates, we use the effective signal-to-noise ratio per data
bit:

SNRb =
NE{‖H‖2

F}
Nbσ2

n

, (42)

where Nb is the number of bit transmitted in N blocks.
Figs. 6 and 7 compare the BER and MSE performance of

different detectors in a time-selective channel with fdTB =
0.005. The TCD performs the worst and has a 4-dB loss over
the TRD at a BER of 10−3. However the TCD-SB gains 0.8-
dB over the TCD. The SPD performs better than both the TCD
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Fig. 4. Average computational time versus SNR for different blind detectors
with N = 8 and BPSK over a static channel.
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Fig. 5. BER versus SNR for different blind detectors with N = 8 and BPSK
over a time-selective channel with fdTB = 0.04.

and TCD SB. Even though SPD has a 2.5-dB loss over TRD,
two more bits are transmitted using SPD, which gives a 17%
bandwidth improvement. The MSE (43) of channel estimation
is shown in Fig. 7. The different detectors are compared in
terms of the SNR per bit, and their CRB’s are different.
SPD-DD denotes the performance of channel estimation using
the decision-directed mode. Although the channel is assumed
quasistatic for the blind detectors and channel estimators, they
can achieve their corresponding CRBs in high SNR. SPD and
TCD-SB require a lower SNR to achieve the CRB than TCD.
This also justifies that when fDTB is small, the time-selective
channel becomes quasistatic. When the Doppler spread is
large, the quasistatic assumption becomes invalid, and our
blind detectors perform worse. Nevertheless, they perform
well provided the Doppler spread is small.

C. Performance of Dual-Mode Blind Receivers

Figs. 8 and 9 present the BER and MSE of of a receiver
working in blind mode (BM) and decision-directed mode
(DDM). The number of blocks in decision-directed mode is
chosen as Nd = 4, 8, 16. The system parameters are the same
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Fig. 6. BER performance of different totally blind detectors in a time-
selective channel with fdTB = 0.005.
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Fig. 7. MSE performance of different totally blind detectors in a time-
selective channel with fdTB = 0.005.

as before and fdTB = 0.02. The MSE of channel estimate is
defined as

MSE =
E

{∑T
t=1

∥∥∥H[t] − Ĥ
∥∥∥2

F

}
T

, (43)

where H[t] is the MIMO channel during the t-th symbol in
each block. When Nd increases, the BER of DDM increases
due to the error propagation caused by the decision-direct
mode. However, all the DDMs perform within 0.6 dB of the
BM. But when Nd = 16, the dual-mode receiver has a 66%
reduction in complexity over the BM receiver. In practical
systems, the performance loss due to the increase of Nd may
be compensated by error correction coding. Fig. 9 shows the
MSE of channel estimation. DDM-PR denotes the channel
predictor using MMSE and DDM-DD is the channel estimator
using the decision-direct mode. With different Nd, all the cases
achieve almost the same MSE with DDM-PR.

VII. CONCLUSIONS

We considered stochastic blind maximum-likelihood detec-
tion of OSTBCSs over a quasi-static flat MIMO Rayleigh
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Fig. 8. BER performance of a blind receiver working two modes with
different Nd and fdTB = 0.02.
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Fig. 9. MSE performance of a blind receiver working two modes with
different Nd and fdTB = 0.02.

fading channel. A general decision rule for stochastic blind
maximum-likelihood OSTBC detection has been derived. The
blind detectors have been implemented by semi-definite re-
laxation or sphere decoding. For the latter, the modifications
necessary for both unitary and non-unitary constellations have
been developed. Two totally blind detectors using dual constel-
lations or a superimposed training scheme were proposed. As
a side product, two conditions for a rotatable OSTBC were
also derived. A decision-directed, minimum mean-square-
error (MMSE) channel estimator was also developed. The
Cramér-Rao bound (CRB) for channel estimation was derived.
Simulation results show that our proposed blind detector with
SD achieves better performance than other blind detectors but
with less complexity. The blind dual-mode receiver not only
performs well, but also reduces complexity.
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